Electrochemical CO_(2)reduction(ECR)to value-added products is regarded as a sustainable strategy to mitigate global warming and energy crisis,and designing highly efficient and robust catalysts is essential.In this w...Electrochemical CO_(2)reduction(ECR)to value-added products is regarded as a sustainable strategy to mitigate global warming and energy crisis,and designing highly efficient and robust catalysts is essential.In this work,transition metal sulfides(TMS)-decorated CuS microflower-like structures were prepared via the one-pot hydrothermal synthe-sis method for ECR to CO,and the influence of TMS doping on ECR performance was demonstrated.Characterization of the catalysts was performed using XRD,FESEM-EDS,N_(2)physisorption,and XPS,revealing the successful loading of TMS,the formation of microflower-like architectures and the generation of sulfur vacancies.Electrochemical tests demonstrated that doping ZnS,Bi_(2)S_(3),CdS and MoS_(2)improved the intrinsic CO_(2) reduction activity of the CuS catalyst.Particularly,the MoS_(2)-CuS composite catalyst with imperfect petal-like structure showed uniform distribution of edge Mo sites,which worked synergistically with the formed grain boundaries(GBs)and undercoordinated S vacancy sites in promotingCO_(2)activation,stabilizing ^(*)COOH adsorption,facilitating ^(*)CO desorption,and lowering the energy barrier of the potential-limiting step for improved CO selectivity.The MoS_(2)-CuS catalyst achieved a maximum CO selectivity of 83.2%at-0.6 V versus the reversible hydrogen electrode(RHE)and a high CO cathodic energetic effi-ciency of 100%.At this potential,the catalyst maintained stable catalytic activity and CO selectivity during a 333-min electrolysis process.The findings will offer a promising avenue for the development of efficient and stable catalysts for CO production from ECR.展开更多
基金Natural Science Research of Jiangsu Higher Education Institutions of China(23KJB470028)National Natural Science Foundation of China(51806108 and 52276120)Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX24_0684).
文摘Electrochemical CO_(2)reduction(ECR)to value-added products is regarded as a sustainable strategy to mitigate global warming and energy crisis,and designing highly efficient and robust catalysts is essential.In this work,transition metal sulfides(TMS)-decorated CuS microflower-like structures were prepared via the one-pot hydrothermal synthe-sis method for ECR to CO,and the influence of TMS doping on ECR performance was demonstrated.Characterization of the catalysts was performed using XRD,FESEM-EDS,N_(2)physisorption,and XPS,revealing the successful loading of TMS,the formation of microflower-like architectures and the generation of sulfur vacancies.Electrochemical tests demonstrated that doping ZnS,Bi_(2)S_(3),CdS and MoS_(2)improved the intrinsic CO_(2) reduction activity of the CuS catalyst.Particularly,the MoS_(2)-CuS composite catalyst with imperfect petal-like structure showed uniform distribution of edge Mo sites,which worked synergistically with the formed grain boundaries(GBs)and undercoordinated S vacancy sites in promotingCO_(2)activation,stabilizing ^(*)COOH adsorption,facilitating ^(*)CO desorption,and lowering the energy barrier of the potential-limiting step for improved CO selectivity.The MoS_(2)-CuS catalyst achieved a maximum CO selectivity of 83.2%at-0.6 V versus the reversible hydrogen electrode(RHE)and a high CO cathodic energetic effi-ciency of 100%.At this potential,the catalyst maintained stable catalytic activity and CO selectivity during a 333-min electrolysis process.The findings will offer a promising avenue for the development of efficient and stable catalysts for CO production from ECR.