期刊文献+
共找到233篇文章
< 1 2 12 >
每页显示 20 50 100
Variation of microfibril angle and its correlation to wood properties in poplars 被引量:9
1
作者 方升佐 杨文忠 洑香香 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第4期261-267,共7页
The microfibril angle of seven poplar clones was determined by using X-ray diffraction technique. Microfibril angle, wood basic density, fiber length, fiber width and cellulose content were assessed for every growth r... The microfibril angle of seven poplar clones was determined by using X-ray diffraction technique. Microfibril angle, wood basic density, fiber length, fiber width and cellulose content were assessed for every growth ring at breast height for all sample trees. Significant variation in microfibril angle was observed among growth rings. Mean microfibril angle (MFA) at breast height varied from 7.8?to 28?between growth rings with cambial age and showed a consistent pith-to-bark trend of decline an-gles. Analysis of variance also indicated that there were significant differences in wood basic density, fiber length, fiber width and cellulose content between the growth rings, which had an increasing tendency from pith to bark. Correlations between MFA and examined wood properties were predominantly large and significant negative (?0.01), and the coefficients were -0.660 for cellulose content, -0.586 for fiber length, -0.516 for fiber width and -0.450 for wood basic density, respectively. Regression analysis with linear and curve estimation indicated that a quadratic function showed the largest R2 and the least standard error for describing the relationships between microfibril angle and measured wood properties, and the correlation coefficients were over -0.45 (n=125). The results from this study suggested that microfibril angle would be a good characteristic for improvement in the future breeding program of poplars. 展开更多
关键词 Poplar clone microfibril angle X-ray diffraction Wood property Selective breeding
在线阅读 下载PDF
Influence of Topology Structure on the Stability of Konjac Glucomannan Nano Gel Microfibril 被引量:9
2
作者 陈涵 穆若郡 +4 位作者 庞杰 谭小丹 林海斌 马真 CHIANG Wei-Yin 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2015年第12期1939-1941,共3页
Konjac glucomannan nano gel microfibrils were prepared by using electrospinning method. Topology structures were analyzed by Fourier transform infrared spectroscopy (FT-IR) and Field emission scanning electron micro... Konjac glucomannan nano gel microfibrils were prepared by using electrospinning method. Topology structures were analyzed by Fourier transform infrared spectroscopy (FT-IR) and Field emission scanning electron microscopy (FESEM), while the differential scanning calorimetry (DSC) was carried out to check the thermal stability of the structure. Results reveal that the interaction of KGM intermolecular hydrogen bonds and topological tangle rate are increased by electrospirming, while stable structures of nano gel microfibrils are formed without altering the molecular groups of origin, These structures compose of topological networks of clustered nano fibers with lower porosity and higher density. 展开更多
关键词 ELECTROSPINNING konjak glucomannan nano fibre nano gel microfibril
在线阅读 下载PDF
DIFFERENT TYPES OF MICROFIBRILLATED CELLULOSE AS FILLER MATERIALS IN POLYSODIUM ACRYLATE SUPERABSORBENTS 被引量:2
3
作者 Mikael Larsson Qi Zhou Anette Larssona 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2011年第4期407-413,共7页
Three types of microfibrillated cellulose (MFC) with differences in structure and surface charge were used at low concentration as filler materials in polysodium acrylate superabsorbents (SAPs). The swelling of th... Three types of microfibrillated cellulose (MFC) with differences in structure and surface charge were used at low concentration as filler materials in polysodium acrylate superabsorbents (SAPs). The swelling of the composite hydrogels was determined in 0.9% NaCl solution as well as in deionized water. The shear modulus of the samples was determined through uniaxial compression analysis after synthesis and after swelling in 0.9% NaC1 solution. Furthermore, the ability to retain filler effects after washing was investigated. The results showed that all of the investigated MFCs had a strong reinforcing effect on the shear modulus after synthesis. The filler effect on swelling and on the associated shear modulus of swollen samples showed a more complicated dependence on structure and surface charge. Finally, it was found that the filler effects were reasonably retained after washing and subsequent drying. The results confirm that MFC holds great potential as a filler material in superabsorbent applications. Furthermore, the results provide some insight on how the structural properties and surface charge of MFC will affect gel properties depending on swelling conditions. This information should be useful in evaluating the use of different types of MFC in future applications. 展开更多
关键词 SAP MFC microfibrillated cellulose Polyacrylic acid Hydrogels.
原文传递
Biocomposites of Polylactic Acid Reinforced by DL-Lactic Acid-Grafted Microfibrillated Cellulose 被引量:2
4
作者 Chaodong Liu Yutong Yang +1 位作者 Boyu Cui Weihong Wang 《Journal of Renewable Materials》 SCIE EI 2022年第11期2961-2972,共12页
Microfibrillated cellulose(MFC)is often added to polylactic acid(PLA)matrixes as a reinforcing filler to obtain fully-biodegradable composites with improved mechanical properties.However,the incompatibility between MF... Microfibrillated cellulose(MFC)is often added to polylactic acid(PLA)matrixes as a reinforcing filler to obtain fully-biodegradable composites with improved mechanical properties.However,the incompatibility between MFC and the PLA matrix limits the mechanical performance of MFC-reinforced PLA composites.In this paper,DL-lactic acid-grafted-MFC(MFC-g-DL)was used to improve the compatibility with PLA.Reinforced composites were prepared by melt extrusion and hot-cold pressing.The tensile strength of the PLA/MFC-g-DL composite increased by 22.1%compared with that of PLA after adding 1%MFC-g-DL.Scanning electron microscopy(SEM),differential scanning calorimetry(DSC),and dynamic thermomechanical analysis(DMA)were used to explore the enhancement mechanism.The energy dissipation in the MFC network and the improved compatibility between PLA and MFC-g-DL played important roles in the reinforcement.The SEM results showed that there was a closer combination between PLA and MFC-g-DL.The DSC results showed that the addition of cellulose changed the glass transition temperature,melting temperature,and crystallization temperature of PLA.The TG results showed that the initial and maximum decomposition temperature were lower than those of PLA.The ultraviolet spectra showed that the composite had good transparency at a low concentration of MFC-g-DL. 展开更多
关键词 Polylactic acid microfibrillated cellulose tensile properties TRANSPARENCY
在线阅读 下载PDF
Microfibril angle variability in Masson Pine (Pinus massoniana Lamb.) using X-ray diffraction 被引量:1
5
作者 Zhang Bo Fei Ben-hua +1 位作者 Yu Yan Zhao Rong-jun 《Forestry Studies in China》 CAS 2007年第1期33-38,共6页
The microfibril angle of fiber walls is an ultra-mieroscopic feature affecting the performance of wood products. It is therefore essential to get more definitive information to improve selection and utilization. X-ray... The microfibril angle of fiber walls is an ultra-mieroscopic feature affecting the performance of wood products. It is therefore essential to get more definitive information to improve selection and utilization. X-ray diffraction is a rapid method for measuring microfibril angles. In this paper, the variability of microfibril angle in plantation-grown Masson pine was investigated by peak-fitting method. This method was compared with the traditional hand-drawn method, 40% peak height method and half peak height method. X-ray diffraction measurements indicated that the microfibril angle changed as a function of the position in the tree. The mean microfibril angle decreased more gradually as the distance increased from the pith and reached the same level in mature wood. The microfibril angle also seemed to decrease clearly from the base upward. Differences of angle-intensity curves between heartwood and sapwood were also examined. 展开更多
关键词 X-ray diffraction microfibril angle peak-fitting method half peak height method Masson pine
在线阅读 下载PDF
Different Kinds of Microfibrillated Cellulose as Coating Layers Providing Fiber-based Barrier Properties 被引量:4
6
作者 Ruijuan Zhang Yanqun Su Jingang Liu 《Paper And Biomaterials》 CAS 2021年第1期33-40,共8页
In this study,we investigated the barrier properties of different kinds of microfibrillated cellulose(MFC)coating layers.The air,oxygen,and water vapor permeability,as well as the water contact angles(WCA),were measur... In this study,we investigated the barrier properties of different kinds of microfibrillated cellulose(MFC)coating layers.The air,oxygen,and water vapor permeability,as well as the water contact angles(WCA),were measured to quantify the barrier efficacy of the applied coatings.The WCA data showed that the surfaces of MFC-coated cardboards are more hydrophilic than those of uncoated cardboards.However,different MFC coatings realize different oxygen transmission rates(OTRs)and water vapor transmission rates(WVTRs).The MFC coating derived from bleached bamboo pulp subjected to carboxyethylation pretreatment(MFCCBP)gave the best oxygen and water vapor barrier performances.The OTR of the virgin cardboard(>16500 cm^(3)/(m^(2)·24 h))decreased to 4638 cm^(3)/(m^(2)·24 h)after coating with the MFCCBP.The WVTR similarly decreased from 1016.7 g/(m^(2)·24 h)to 603.2 g/(m^(2)·24 h). 展开更多
关键词 microfibrillated cellulose coating performance surface properties barrier properties
在线阅读 下载PDF
Preparation and Application of Microfibrillated Cellulose-modified Ground Calcium Carbonate 被引量:2
7
作者 Xia Lv YanQun Su JinGang Liu 《Paper And Biomaterials》 2017年第3期18-27,共10页
Microfibrillated cellulose(MFC) was first prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl(TEMPO) oxidation pretreatment and mechanical grinding in the presence of a certain amount of ground calcium carbonate(GCC).The... Microfibrillated cellulose(MFC) was first prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl(TEMPO) oxidation pretreatment and mechanical grinding in the presence of a certain amount of ground calcium carbonate(GCC).The effects of GCC dosage and grinding concentration on the fibrillation were investigated.The obtained MFC was then added to the bulk GCC to form MFC-modified GCC fillers.The properties of MFCmodified GCC fillers were compared to those of the traditional GCC fillers.Results showed that the resulting fibrils became more uniform when the dosage of GCC was 10%~15% and the concentration of the suspension was 6.97%.Compared to traditional GCC,the average particle size of the MFCmodified GCC fillers was larger.Scanning electron microscopy images showed that GCC and MFC formed a bridge structure in the MFC-modified GCC fillers.In the process of papermaking,the MFC-modified GCC fillers decreased the drainage rate but increased the retention of fillers.The prepared papers filled with MFC-modified GCC fillers had higher tensile strength than those filled with traditional GCC fillers. 展开更多
关键词 microfibrillated cellulose GCC GRINDING modified filler
在线阅读 下载PDF
Cellulose Microfibril from Banana Peels as a Nanoreinforcing Fillers for Zein Films 被引量:1
8
作者 Manisara Phiriyawirut Parichat Maniaw 《Open Journal of Polymer Chemistry》 2012年第2期56-62,共7页
Cellulose microfibril (CMF) was the extraction with acid mixture from peel of Musa sapientum Linn type of banana (Kluai Nam Wa). The fibrous-shape of CMF interconnected weblike structure with the average diameter 26 n... Cellulose microfibril (CMF) was the extraction with acid mixture from peel of Musa sapientum Linn type of banana (Kluai Nam Wa). The fibrous-shape of CMF interconnected weblike structure with the average diameter 26 nm were observed by TEM. In order to prepare zein/CMF nanocomposite films, 16% wt zein solution was prepared by dissolved in 80% ethanol aqueous solution which contain glycerol 20% w/w. The suspension of CMF and zein solution was mixed with 0% - 5% weight fractions of solid CMF in zein matrix. The morphology of the zein films is more roughness by increased amount of cellulose microfibrils. It was found that as CMF content increase from 0 to 5% wt results in increasing tensile strength and Young’s modulus of zein nanocomposite films. The highest strength obtains at 4% wt CMF. 展开更多
关键词 ZEIN CELLULOSE microfibril NANOCOMPOSITE REINFORCEMENT
在线阅读 下载PDF
Lignin-containing Microfibrillated Cellulose Prepared from Corncob Residue via Calcium Hydroxide Co-grinding and Its Application in Paper Reinforcement 被引量:1
9
作者 Jinghuan Chen Jingang Liu Zehong Xu 《Paper And Biomaterials》 CAS 2022年第2期37-45,共9页
In this study,lignin-containing microfibrillated cellulose(MFC)was prepared from corncob residue after xylose extraction via co-grinding with calcium hydroxide.The product was then compared with the MFC obtained by di... In this study,lignin-containing microfibrillated cellulose(MFC)was prepared from corncob residue after xylose extraction via co-grinding with calcium hydroxide.The product was then compared with the MFC obtained by direct grinding and applied to strengthen paper.The chemical composition and morphological structure analysis results showed that the corncob residue can be used to prepare lignin-containing MFC and does not require further purification.Moreover,the co-grinding with calcium hydroxide is easier to fibrillate corncob residue.The MFC obtained by cogrinding with calcium hydroxide had a higher aspect ratio,and its surface was coated with calcium carbonate nanoparticles.MFCs obtained by both the methods mentioned above had an obvious strengthening effect on paper.Compared with the paper without MFC,the tensile index,elongation,burst index,and folding strength of the paper with MFC obtained by co-grinding with calcium hydroxide significantly increased by 17.5%,22.1%,19.5%,and 157.1%,respectively.This study provides a novel idea for the utilization of corncob residue,which may enhance the value and promote the comprehensive utilization of corn by-products. 展开更多
关键词 corncob residue microfibrillated cellulose calcium hydroxide CO-GRINDING paper reinforcement
在线阅读 下载PDF
Fast self-assembled microfibrillated cellulose@MXene film with high-performance energy storage and superior mechanical strength
10
作者 Zhirong Zhang Zhongping Yao Zhaohua Jiang 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第11期3575-3578,共4页
The trade-off between the electrochemical performance and mechanical strength is still a challenge for Ti_(3)C_(2)T_(x)free-standing electrode.Herein,a facile approach was proposed to fabricate a Microfibrillated cell... The trade-off between the electrochemical performance and mechanical strength is still a challenge for Ti_(3)C_(2)T_(x)free-standing electrode.Herein,a facile approach was proposed to fabricate a Microfibrillated cellulose@Ti_(3)C_(2)T_(x)(MFC@Ti_(3)C_(2)T_(x))self-assembled microgel film by means of hydrogen bonding linkage.Benefiting from the rich hydroxyl groups on the MFC,the Ti_(3)C_(2)T_(x)nanosheets coated on the MFC in a time scale of minutes(within 1 min)instead of hours.The ultralong 1D frame of MFC effectively mitigated the re-aggregation of Ti_(3)C_(2)T_(x)nanosheet.The fluffy MFC@Ti_(3)C_(2)T_(x)film structure and the constructed 1D/2D conducting Ti_(3)C_(2)T_(x)pathways in horizontal and vertical directions endowed the fast ion transport of the electrolytes and the improved accessibility to the Ti_(3)C_(2)T_(x)surface.As a result,the freestanding MFC@Ti_(3)C_(2)T_(x)microgel film delivered a high specific capacitance of 451F/g.And the rate performance was increased to 71%from the 64%of that of pristine Ti_(3)C_(2)T_(x)film.Furthermore,the tensile strength of MFC@Ti_(3)C_(2)T_(x)film was also promoted to 46.3 MPa,3 folds of that of the pristine Ti_(3)C_(2)T_(x)film,due to the high strength of MFC and the hydrogen bonding effect. 展开更多
关键词 MXene microfibrillated cellulose SUPERCAPACITOR SELF-ASSEMBLE MICROGEL
原文传递
Isolation and Characterization of Cellulose Microfibrils and Nanocrystals from Corn Silk
11
作者 YANG Xue JIANG Shuai +1 位作者 YU Jianyong LIU Lifang 《Journal of Donghua University(English Edition)》 EI CAS 2018年第5期357-360,共4页
For the value-added utilization of discarded agricultural wastes,corn silk( CS) obtained abundantly in the farming field has been tested as a new source of cellulosic materials. Cellulose microfibril( CMF) and cellulo... For the value-added utilization of discarded agricultural wastes,corn silk( CS) obtained abundantly in the farming field has been tested as a new source of cellulosic materials. Cellulose microfibril( CMF) and cellulose nanocrystal( CNC) were isolated from CS by ethanol and alkali pretreatments,and acid hydrolysis.The characterization was performed by scanning electron microscopy( SEM),Fourier transform infrared spectroscopy( FT-IR),X-ray diffraction( XRD), thermogravimetric analysis( TGA) and transmission electron microscopy( TEM). After chemical pretreatments,the lignin,hemicelluloses and other non-structural components were removed. The degree of crystallinity and thermal stability of CMF and CNC were increased compared to raw CS. The crystallinity indexes of CS,CMF and CNC were 45. 90%,65. 77%,and 73. 75% respectively. The CNC was flat and rod like shape with diameter and aspect ratio range of 13. 96-33. 69 nm and 34. 34-23. 02 nm respectively. The nanocrystals had an alternative potential to be used as reinforcing filler for bio-nanocomposites preparation. 展开更多
关键词 agricultural waste CORN silk(CS) CELLULOSE microfibril(CMF) CELLULOSE nanocrystal(CNC) new CELLULOSE source
在线阅读 下载PDF
The Arrangement and Size of Cellulose Microfibril Aggregates in the Cell Walls of Sclerenchyma Fibers and Parenchyma Tissue in Bamboo
12
作者 Wenting Ren Fei Guo +3 位作者 Minghui Liu Haocheng Xu Hankun Wang Yan Yu 《Journal of Renewable Materials》 SCIE EI 2021年第12期2291-2301,共11页
Understanding the assembly and spatial arrangement of bamboo cell wall components is crucial for its optimal utilization.Bamboo cell walls consist of aggregates of cellulose microfibrils and matrix.In the present stud... Understanding the assembly and spatial arrangement of bamboo cell wall components is crucial for its optimal utilization.Bamboo cell walls consist of aggregates of cellulose microfibrils and matrix.In the present study,the size and arrangement of cellulose microfibril aggregates in the cell walls of sclerenchyma fibers and parenchyma cells in moso bamboo were investigated with NMR and FE-SEM.The NMR measurement showed that the characteristic sizes of the microfibril aggregates of fibers and parenchyma cells were approximately 25.8 nm and 18.8 nm,respectively.Furthermore,high-resolution SEM showed the size of microfibril aggregates varied little across the cell wall of sclerenchyma fiber.However,there were significant size differences between the broad and narrow lamellae both in fiber and parenchyma cells,which is thought to be closely related to the orientation of microfibrils in these layers.The microfibril aggregates in the fibers mainly appear in a random arrangement,although occasionally in a radial or tangential arrangement in individual cell.Parenchyma cells have a relatively thinner cell wall layers,in which microfibril aggregates appear in a concentric lamellar arrangement. 展开更多
关键词 Bamboo fiber parenchyma cell microfibril aggregate SIZE arrangement
在线阅读 下载PDF
Effect of Y-Methacryloxypropyltrimethoxysilane (MPS) and Tetraethoxysilane (TEOS) Towards Preparation of Oil Absorbent Foams from Polyvinyl Alcohol (PVA) Reinforced with Microfibrillated Cellulose (MFC)
13
作者 Dzun Noraini Jimat Sharifah Shahira Syed Putra +2 位作者 Parveen Jamal Wan Mohd Fazli Wan Nawawi Mohammed Saedi Jami 《Journal of Renewable Materials》 SCIE EI 2020年第7期739-757,共19页
Increasing usage of foams in various industry sectors had causing serious disposal problems once it reaches the end of its life-cycle.Herein,PVA-MFC foam was prepared by freeze-drying using polyvinyl alcohol(PVA)and m... Increasing usage of foams in various industry sectors had causing serious disposal problems once it reaches the end of its life-cycle.Herein,PVA-MFC foam was prepared by freeze-drying using polyvinyl alcohol(PVA)and microfibrillated cellulose(MFC)as a reinforced material from sugarcane bagasse(SCB).In this study,the PVA-MFC foam was chemically silylated with Y-methacryloxypropyltrimethoxysilane(MPS)and tetraethoxysilane(TEOS).The wetting ability and mechanical strength of the silylated_(2,20)PVA-MFC foam was greatly enhanced compared with unmodified_(2,20)PVA-MFC foam.The silane chemicals(MPS and TEOS)had been confirmed grafted on_(2,20)PVA-MFC foam due to the presence of Si-C and Si-O-C stretching vibration as showed in Fourier Transform Infrared(FTIR)spectra and cloud-like coating of porous pore was observed in scanning electron microscopy(SEM)images.The silylated_(2,20)PVA-MFC foam(MPS and TEOS)exhibited a series of desirable properties such as lower swelling ratio and high absorption capacity of solvents and oils but had low thermal stability in thermogravimetric(TGA)analysis.The characterization of_(2,20)PVA-MFC foam using TEOS was further investigated.A significant difference in morphology was clearly observed between the unmodified and silylated_(2,20)PVA-MFC-TEOS foam through field emission scanning electron microscopy(FESEM)images.The X-ray photoelectron(XPS)analysis of silylated_(2,20)PVA-MFC-TEOS foam confirmed the presence of C,O and trace amount of Si elements.These synthesized_(2,20)PVA-MFC foam could be a promising material for broad range of polymer foam applications. 展开更多
关键词 Polyvinyl alcohol foam microfibrillated cellulose sugarcane bagasse Y-methacryloxypropyltrimethoxysilane tetraethoxysilane and oil absorbent
在线阅读 下载PDF
Thermal Insulation Properties of Microfibrillated Cellulose Aerogel
14
作者 YANG Simin LUO Xinrong +2 位作者 AN Yuying TU Lexi SHEN Hua 《Journal of Donghua University(English Edition)》 CAS 2021年第2期106-113,共8页
Microfibrillated cellulose(MFC)aerogels are bio-based materials with high thermal resistance.In this study,MFC aerogels and MFC-kapok composite aerogels were prepared.A series of experiments were carried out in a clim... Microfibrillated cellulose(MFC)aerogels are bio-based materials with high thermal resistance.In this study,MFC aerogels and MFC-kapok composite aerogels were prepared.A series of experiments were carried out in a climate chamber to study the influence of MFC concentration,the temperature gradient,testing methods and introduction of kapok fibers on the thermal insulation properties of aerogels.The results suggested that the density of MFC aerogels was less than 10 mg/cm3 and the porosity was higher than 99%.Besides,the minimum thermal conductivity of MFC aerogels was 0.0357 W·m-1·K-1 observed at 0.8%MFC aerogels.The minimum thermal conductivity of MFC-kapok composite aerogels was 0.0382 W·m-1·K-1 when the ratio of MFC to kapok was 2∶6. 展开更多
关键词 microfibrillated cellulose(MFC)aerogel FREEZE-DRYING thermal resistance KAPOK thermal conductivity
在线阅读 下载PDF
Highly Bendable Ionic Electro-responsive Artificial Muscles Using Microfibrillated Cellulose Fibers Combined with Polyvinyl Alcohol
15
作者 Congqing Deng Shanqi Zheng +1 位作者 Ke Zhong Fan Wang 《Journal of Bionic Engineering》 CSCD 2024年第5期2313-2323,共11页
For promising applications such as soft robotics,flexible haptic monitors,and active biomedical devices,it is important to develop ultralow voltage,highly-performant artificial muscles with high bending strains,rapid ... For promising applications such as soft robotics,flexible haptic monitors,and active biomedical devices,it is important to develop ultralow voltage,highly-performant artificial muscles with high bending strains,rapid response times,and superior actuation endurance.We report a novel highly performant and low-cost artificial muscle based on microfibrillated cellulose(MFC),ionic liquid(IL),and polyvinyl alcohol(PVA),The proposed MFC-IL-PVA actuator exhibits excellent electro-chemical performance and actuations characteristics with a high specific capacitance of 225 mF/cm2,a large bending strain of 0.51%,peak displacement up to 7.02 mm at 0.25 V ultra-low voltage,outstanding actuation flexural endurance(99.1%holding rate for 3 h),and a wide frequency band(0.1-5 Hz).These attributes stem mainly from its high specific surface area and porosity,tunable mechanical properties,and the strong ionic interactions of cations and anions with MFC and PVA in ionic liquids.Furthermore,bionic applications such as bionic flytraps,bionic butterflies with vibrating wings,and smart circuit switches have been successfully realized using this technology.These specific bionic applications demonstrate the versatility and potential of the MFC-IL-PVA actuator,highlighting its important role in the fields of bionic engineering,robotics,and smart materials.They open up new possibilities for innovative scientific research and technological applications. 展开更多
关键词 Artificial muscles Ionic actuators microfibrillated cellulose Bionic applications
在线阅读 下载PDF
Anion exchangers prepared from graft polymerisation of microfibrillated cellulose using the reactive ionic liquid
16
作者 Muzamil Jalil Ahmed Baohu Wu Antoni Sánchez-Ferrer 《Journal of Bioresources and Bioproducts》 2025年第3期310-324,共15页
Microfibrillated cellulose(MFC)was functionalised using a reactive ionic liquid monomer,i.e.,glycidyltriethylammonium chloride(GTEAC),via chain-growth polymerisation,resulting in a novel cationic polyelectrolyte-graft... Microfibrillated cellulose(MFC)was functionalised using a reactive ionic liquid monomer,i.e.,glycidyltriethylammonium chloride(GTEAC),via chain-growth polymerisation,resulting in a novel cationic polyelectrolyte-grafted quaternised MFC(QMFC).The degree of quaternisation and maximum ion exchange capacity of the resulting QMFC were 2.13 mmol/g(i.e.,132 mg/g)and 1.51 mmol/g(i.e.,94 mg/g),respectively.Small-angle X-ray scattering(SAXS)and wide-angle X-ray scattering(WAXS)experiments confirmed the retention of monoclinic crystalline structure for cellulose I with the corresponding decrease in the degree of crystallinity from 85%to 56%and the increase in the spacing between cellulose crystallites by 35%.The presence of the amorphous and grafted polymers was confirmed by microscopy,thermal analysis,and water sorption exper-iments.QMFC filter cartridges were prepared and tested under dynamic flow conditions with a pressure of 0.2 MPa(retention time of 0.5 min).These cationic polyelectrolytes enhanced multi-site ion exchange interactions as evidenced by the Freundlich sorption isotherm.The QMFC filter cartridges demonstrated high anion removal efficiency values of 83.2%,98.1%,and 94.9%for NO_(3)^(−),SO_(4)^(2−),and PO_(4)^(3−),respectively.This system achieved a process mass efficiency of 2.79,an E-factor of 1.97,and an energy efficiency score of 66.3,which conforms to the green chemistry principles and demonstrates high potential for sustainable water purification. 展开更多
关键词 Reactive ionic liquids Glycidyltriethylammonium chloride microfibrillated cellulose Graft polymerisation Anion exchange
在线阅读 下载PDF
CONCENTRATION DEPENDENCE OF Se EFFECT ON THE CYTOSKELETON AND COLLAGEN MICROFIBRILS OF CHICKEN EMBRYO CHONDROCYTE AND ITS EXTRACELLULAR MATRIX
17
作者 吴莲英 孙珊 +2 位作者 及惠芬 林治焕 杨福愉 《Chinese Science Bulletin》 SCIE EI CAS 1991年第21期1834-1838,共5页
Kaschin-Beck disease (KBD), endemic in China, occurs along a low selenium belt where the Se contents of water, soil, crops and patients’ blood and hair are all in a low state. Supplementation of Na<sub>2</... Kaschin-Beck disease (KBD), endemic in China, occurs along a low selenium belt where the Se contents of water, soil, crops and patients’ blood and hair are all in a low state. Supplementation of Na<sub>2</sub>SeO<sub>3</sub> has been effective in preventing such a disease. The main pathological changes of KBD are the necrosis of cartilage, early 展开更多
关键词 CHONDROCYTE eytoskeleton EXTRACELLULAR matrix COLLAGEN microfibrilS
在线阅读 下载PDF
Multiscale engineered artificial compact bone via bidirectional freeze-driven lamellated organization of mineralized collagen microfibrils
18
作者 Lingwenyao Kong Yonggang Zhao +6 位作者 Yang Xiong Junlin Chen Shuo Wang Ziming Yan Huibin Shi Zhanli Liu Xiumei Wang 《Bioactive Materials》 SCIE CSCD 2024年第10期168-181,共14页
Bone,renowned for its elegant hierarchical structure and unique mechanical properties,serves as a constant source of inspiration for the development of synthetic materials.However,achieving accurate replication of bon... Bone,renowned for its elegant hierarchical structure and unique mechanical properties,serves as a constant source of inspiration for the development of synthetic materials.However,achieving accurate replication of bone features in artificial materials with remarkable structural and mechanical similarity remains a significant challenge.In this study,we employed a cascade of continuous fabrication processes,including biomimetic mineralization of collagen,bidirectional freeze-casting,and pressure-driven fusion,to successfully fabricate a macroscopic bulk material known as artificial compact bone(ACB).The ACB material closely replicates the composition,hierarchical structures,and mechanical properties of natural bone.It demonstrates a lamellated alignment of mineralized collagen(MC)microfibrils,similar to those found in natural bone.Moreover,the ACB exhibits a similar high mineral content(70.9%)and density(2.2 g/cm^(3))as natural cortical bone,leading to exceptional mechanical properties such as high stiffness,hardness,and flexural strength that are comparable to those of natural bone.Importantly,the ACB also demonstrates excellent mechanical properties in wet,outstanding biocompatibility,and osteogenic properties in vivo,rendering it suitable for a broad spectrum of biomedical applications,including orthopedic,stomatological,and craniofacial surgeries. 展开更多
关键词 Artificial compact bone Bidirectional freeze-casting Mineralized collagen microfibril Hierarchical structures
原文传递
Effect of microfibrillated cellulose(MFC)on the properties of gelatin based composite films
19
作者 Shuaishuai Yang Haichao Li Huizhen Sun 《Journal of Bioresources and Bioproducts》 EI 2018年第3期107-111,共5页
Properties of gelatin composite films(with 4%glycerol as plasticizer)with different mass concentrations of microfibrillated cellulose(MFC)(0.2-1.0%)were investigated.The prepared composite films with 1.0%MFC showed th... Properties of gelatin composite films(with 4%glycerol as plasticizer)with different mass concentrations of microfibrillated cellulose(MFC)(0.2-1.0%)were investigated.The prepared composite films with 1.0%MFC showed the highest tensile strength(12.32 MPa)with the lowest water absorption rate(391.1%).The composite films can be dissolved in hot water of 95℃ in less than 5 minutes.However,the addition of MFC had insignificant effect on the heat shrinkage and light transmittance of the resultant composite films. 展开更多
关键词 Gelatin films microfibrillated cellulose Physicochemical properties
在线阅读 下载PDF
Review of Preparation and Properties of Microfibrillated Cellulose Originated from Plants
20
作者 Jiang Zehui Wang Hankun +2 位作者 Yu Yan Tian Genlin Wang Hao 《Chinese Forestry Science and Technology》 2012年第3期75-76,共2页
Microfibrilled cellulose(MFC) is a new kind of nanoscale cellulose functional materials, having broad application prospects in many fields like food,medicine,cosmetic,paint,paper and pulp engineering,composite materia... Microfibrilled cellulose(MFC) is a new kind of nanoscale cellulose functional materials, having broad application prospects in many fields like food,medicine,cosmetic,paint,paper and pulp engineering,composite materials,et al.The research on MFC has been extensively conducted for the past 30 years in some developed countries,and even some relevant products have appeared in the market.On the contrast,similar studies in China were rather limited.This paper firstly introduced the properties and application of MFC briefly,and then gave more detailed description on the preparation technology of MFC and its important performance indexes. Several suggestions on the future study on MFC were also proposed. 展开更多
关键词 microfibrillated CELLULOSE MECHANICAL TREATMENT pro-treatment MECHANICAL PROPERTY optical PROPERTY BARRIER PROPERTY of oxygen
原文传递
上一页 1 2 12 下一页 到第
使用帮助 返回顶部