Decomposition of Microcystis is accompanied by the release of phosphorus,during bacteria play an important role.A series of experiments were undertaken to evaluate the effect of bacteria on the decomposition of Microc...Decomposition of Microcystis is accompanied by the release of phosphorus,during bacteria play an important role.A series of experiments were undertaken to evaluate the effect of bacteria on the decomposition of Microcystis taken from Lake Taihu,China,a lake that is suffering from dense Microcystis blooms.The 16 experiments involved four size fractions of colonial Microcystis with or without the addition of lake sediment and Gram-negative bacterial inhibitor NAN_3.The highest decomposition rates were recorde...展开更多
The application of photocatalytic technology in algae killing is limited by the non-floatability and difficulty in recycling of the photocatalysts.Loading photocatalyst on magnetic or floatable carriers is the most po...The application of photocatalytic technology in algae killing is limited by the non-floatability and difficulty in recycling of the photocatalysts.Loading photocatalyst on magnetic or floatable carriers is the most popular method for overcoming the above inadequacies.In this work,a CdZnS/TiO_(2) membrane photocatalyst with adjustable suspended depth(include floating)and flexible assembly is designed,which is less prone to dislodgement due to in situ synthesis and has a wider range of applicability than previously reported photocatalysts.The photocatalytic removal of Microcystis aeruginosa revealed that the suspended depth and distribution format of the CdZnS/TiO_(2) membrane photocatalysts have striking effects on the photocatalytic removal performance of Microcystis aeruginosa,the photocatalytic removal efficiency of CdZnS/TiO_(2)-2 membrane photocatalysts for Microcystis aeruginosa could reach to 98.6%in 60 min when the photocatalysts assembled in the form of 3×3 arrays suspended at a depth of 2 cm from the liquid surface.A tiny amount of TiO_(2) loading allows the formation of Z-Scheme heterojunction,resulting in accelerating the separation efficiency of photogenerated carriers,preserving the photogenerated electrons and holes with stronger reduction and oxidation ability and inhabiting the photo-corrosion of CdZnS.展开更多
The harmful algal bloom primarily caused by Microcystis aeruginosa(M.aeruginosa)has become one of the serious biological pollution issues in actual water,which has received intense attention worldwide.Over the past ye...The harmful algal bloom primarily caused by Microcystis aeruginosa(M.aeruginosa)has become one of the serious biological pollution issues in actual water,which has received intense attention worldwide.Over the past years,increasing number of publications have reported that metal-organic frameworks(MOFs)based functional materials exhibited significant inhibition against M.aeruginosa via multiple mechanisms,but no review papers systematically presented progresses regarding MOFs-based materials for M.aeruginosa control up to now.With this review paper,we summarized the state-of-the-art studies of MOFsbased materials for M.aeruginosa removal,comparing and discussing the design strategies of MOFs-based materials and their antimicrobial mechanisms.Meanwhile,we discussed methods for evaluating the water purification performances of MOFs-based materials against M.aeruginosa.Finally,the perspectives for design of novel MOFs-based functional materials and application scenarios were proposed to provide an outlook on areas where greater efforts should be made in the future.展开更多
Recently,Prevotella spp.,a major genus of gram-negative commensal bacteria in humans,have emerged as a key microbial contributor to host metabolism due to its ability to ferment dietary fibers,produce beneficial short...Recently,Prevotella spp.,a major genus of gram-negative commensal bacteria in humans,have emerged as a key microbial contributor to host metabolism due to its ability to ferment dietary fibers,produce beneficial short-chain fatty acids,and influence immune responses.However,their diversity and functional differences have created challenges for their development and therapeutic use.Recent studies have shown that specific Prevotella species,such as P.copri,P.intestinalis,and P.histicola,can strengthen gut barrier integrity and reduce metabolic imbalances.Notably,Prevotella populations can be increased through high-fiber or herbal-based treatments.Traditional herbal medicines,including fiber-rich decoctions,also demonstrate the potential to boost endogenous Prevotella communities,enhance microbial fermentation,and improve glucose and lipid balance.This perspective examines the context-dependent roles of Prevotella spp.,with emphasis on the functional heterogeneity of key species such as P.copri,suggests a framework for combining herbal modulation with species-level microbiota profiling,and outlines a research plan to explore microbe-herb synergy in treating obesity,type 2 diabetes,and related metabolic disorders.This strategy offers a new,ecology-based approach to complement standard metabolic interventions.展开更多
Cronobacter spp.has strong resistance to desiccation and high permeability in Enterobacteriaceae,and powdered infant formula(PIF)is one of the main contamination routes.In recent years,the contamination of Cronobacter...Cronobacter spp.has strong resistance to desiccation and high permeability in Enterobacteriaceae,and powdered infant formula(PIF)is one of the main contamination routes.In recent years,the contamination of Cronobacter spp.in PIF incidents occurs from time to time,causing infant serious diseases or death.In this investigation,matrix-assisted laser desorption/ionization time of flight mass spectrometry was used to identify the phenotypes of 35 Cronobacter strains isolated from PIF and its processing environment.Subsequently,the isolates were evaluated for drying and osmotic pressure tolerance.The results showed that the deactivation rate of the strains ranged from 9.01%to 77.57%,and the highest osmotic pressure condition the strains could tolerate was 6 g/100 mL Na Cl.In addition,there was a positive correlation between biofilm formation ability and desiccation resistance.Combined with transcriptomics,Cronobacter spp.could activate biofilm synthesis,produce more trehalose,accumulate betaine and electrolytes to stabilize intracellular structure under the two treatment conditions.A total of 31 and 43 genes were found related to desiccation and permeability resistance,respectively.And some genes(cysM,thuF,ycjO,etc.)were found to be associated with two tolerances for the first time.展开更多
Objective:To evaluate the predictive value of secreted phosphoprotein 1(SPP1)gene expression for postoperative survival in patients with advanced liver cancer undergoing hepatic artery interventional chemoembolization...Objective:To evaluate the predictive value of secreted phosphoprotein 1(SPP1)gene expression for postoperative survival in patients with advanced liver cancer undergoing hepatic artery interventional chemoembolization treatment.Method:Bioinformatics methods,including gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis,were used to identify genes related to survival prognosis in hepatocellular carcinoma(HCC)patients.A retrospective analysis of 115 advanced liver cancer patients treated between January 2016 and October 2017 was conducted.Patients were categorized into SPP1 high-expression(n=89)and low-expression groups(n=26).Additionally,115 healthy individuals served as the control group.The relationship between SPP1 expression and clinical pathological features was analyzed.A 60-month follow-up and logistic regression analysis identified risk factors affecting survival.Results:SPP1 mRNA expression was significantly higher in liver cancer patients compared to healthy controls(P<0.05).SPP1 expression levels were significantly associated with tumor size,Child-Pugh grading,lymph node metastasis,and BCLC staging(P<0.05).High SPP1 expression,along with tumor size,Child-Pugh grading,lymph node metastasis,and BCLC staging,were independent risk factors for survival(P<0.05).The 60-month survival rate was 17.39%,with a median survival of 40 months in the low-expression group versus 18 months in the high-expression group(P<0.05).Conclusion:SPP1 expression is significantly upregulated in advanced liver cancer patients and has predictive value for postoperative survival following hepatic artery chemoembolization treatment.SPP1,combined with clinical indicators such as tumor size,Child-Pugh grading,lymph node metastasis,and BCLC staging,may serve as a prognostic biomarker for interventional treatment outcomes.展开更多
Freshwater algal blooms have become a growing concern world-wide. They are caused by a high level ofcyanobacteria, predominantly Microcystis spp. and Cylindrospermopsis raciborskii, which can produce microcystin and c...Freshwater algal blooms have become a growing concern world-wide. They are caused by a high level ofcyanobacteria, predominantly Microcystis spp. and Cylindrospermopsis raciborskii, which can produce microcystin and cylindrospermopsin, respectively. Longtime exposure to these cyanotoxins may affect public health, thus reliable detection, quantification, and enumeration of these harmful algae species has become a priority in water quality management. Traditional manual enumeration of algal bloom cells primarily involves microscopic identification which limited by inaccuracy and time-consumption. With the development of molecular techniques and an increasing number of microbial sequences available in the Genbank database, the use of molecular methods can be used for more rapid, reliable, and accurate detection and quantification. In this study, multiplex polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR) techniques were developed and applied for monitoring cyanobacteria Microcystis spp. and C. raciborskii in the Macao Storage Reservoir (MSR). The results showed that the techniques were successful for identifying and quantifying the species in pure cultures and mixed cultures, and proved to be a potential application for water sampling in MSR. When the target species were above 1 million cells/L, similar cell numbers estimated by microscopic enumeration and qPCR were obtained. Further quantification in water samples indicated that the ratio of the estimated number of cell by microscopy and qPCR was 0.4-12.9 for cyanobacteria and 0.2-3.9 for C. raciborskii. However, Microcystis spp. was not observed by manual enumeration, while it was detected at low levels by qPCR, suggesting that qPCR is more sensitive and accurate. Thus the molecular approaches provide an additional reliable monitoring option to traditional micro- scopic enumeration for the ecosystems monitoring program.展开更多
文摘Decomposition of Microcystis is accompanied by the release of phosphorus,during bacteria play an important role.A series of experiments were undertaken to evaluate the effect of bacteria on the decomposition of Microcystis taken from Lake Taihu,China,a lake that is suffering from dense Microcystis blooms.The 16 experiments involved four size fractions of colonial Microcystis with or without the addition of lake sediment and Gram-negative bacterial inhibitor NAN_3.The highest decomposition rates were recorde...
基金financially supported by the Natural Science Foundation of ShanDong(Nos.ZR2023QD152 and ZR2021MD002).
文摘The application of photocatalytic technology in algae killing is limited by the non-floatability and difficulty in recycling of the photocatalysts.Loading photocatalyst on magnetic or floatable carriers is the most popular method for overcoming the above inadequacies.In this work,a CdZnS/TiO_(2) membrane photocatalyst with adjustable suspended depth(include floating)and flexible assembly is designed,which is less prone to dislodgement due to in situ synthesis and has a wider range of applicability than previously reported photocatalysts.The photocatalytic removal of Microcystis aeruginosa revealed that the suspended depth and distribution format of the CdZnS/TiO_(2) membrane photocatalysts have striking effects on the photocatalytic removal performance of Microcystis aeruginosa,the photocatalytic removal efficiency of CdZnS/TiO_(2)-2 membrane photocatalysts for Microcystis aeruginosa could reach to 98.6%in 60 min when the photocatalysts assembled in the form of 3×3 arrays suspended at a depth of 2 cm from the liquid surface.A tiny amount of TiO_(2) loading allows the formation of Z-Scheme heterojunction,resulting in accelerating the separation efficiency of photogenerated carriers,preserving the photogenerated electrons and holes with stronger reduction and oxidation ability and inhabiting the photo-corrosion of CdZnS.
基金supported by National Natural Science Foundation of China(Nos.22176012,52370025)the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture(No.JDLJ20220802)+1 种基金the Doctor Graduate Scientific Research Ability Improvement Project of Beijing University of Civil Engineering and Architecture(No.DG2023014)Guangxi Key Laboratory of Urban Water Environment。
文摘The harmful algal bloom primarily caused by Microcystis aeruginosa(M.aeruginosa)has become one of the serious biological pollution issues in actual water,which has received intense attention worldwide.Over the past years,increasing number of publications have reported that metal-organic frameworks(MOFs)based functional materials exhibited significant inhibition against M.aeruginosa via multiple mechanisms,but no review papers systematically presented progresses regarding MOFs-based materials for M.aeruginosa control up to now.With this review paper,we summarized the state-of-the-art studies of MOFsbased materials for M.aeruginosa removal,comparing and discussing the design strategies of MOFs-based materials and their antimicrobial mechanisms.Meanwhile,we discussed methods for evaluating the water purification performances of MOFs-based materials against M.aeruginosa.Finally,the perspectives for design of novel MOFs-based functional materials and application scenarios were proposed to provide an outlook on areas where greater efforts should be made in the future.
基金supported by the National Research Foundation of Korea(2020R1F1A1074155).
文摘Recently,Prevotella spp.,a major genus of gram-negative commensal bacteria in humans,have emerged as a key microbial contributor to host metabolism due to its ability to ferment dietary fibers,produce beneficial short-chain fatty acids,and influence immune responses.However,their diversity and functional differences have created challenges for their development and therapeutic use.Recent studies have shown that specific Prevotella species,such as P.copri,P.intestinalis,and P.histicola,can strengthen gut barrier integrity and reduce metabolic imbalances.Notably,Prevotella populations can be increased through high-fiber or herbal-based treatments.Traditional herbal medicines,including fiber-rich decoctions,also demonstrate the potential to boost endogenous Prevotella communities,enhance microbial fermentation,and improve glucose and lipid balance.This perspective examines the context-dependent roles of Prevotella spp.,with emphasis on the functional heterogeneity of key species such as P.copri,suggests a framework for combining herbal modulation with species-level microbiota profiling,and outlines a research plan to explore microbe-herb synergy in treating obesity,type 2 diabetes,and related metabolic disorders.This strategy offers a new,ecology-based approach to complement standard metabolic interventions.
基金supported by the Joint Funds of the National Natural Science Foundation of China(U21A20272)。
文摘Cronobacter spp.has strong resistance to desiccation and high permeability in Enterobacteriaceae,and powdered infant formula(PIF)is one of the main contamination routes.In recent years,the contamination of Cronobacter spp.in PIF incidents occurs from time to time,causing infant serious diseases or death.In this investigation,matrix-assisted laser desorption/ionization time of flight mass spectrometry was used to identify the phenotypes of 35 Cronobacter strains isolated from PIF and its processing environment.Subsequently,the isolates were evaluated for drying and osmotic pressure tolerance.The results showed that the deactivation rate of the strains ranged from 9.01%to 77.57%,and the highest osmotic pressure condition the strains could tolerate was 6 g/100 mL Na Cl.In addition,there was a positive correlation between biofilm formation ability and desiccation resistance.Combined with transcriptomics,Cronobacter spp.could activate biofilm synthesis,produce more trehalose,accumulate betaine and electrolytes to stabilize intracellular structure under the two treatment conditions.A total of 31 and 43 genes were found related to desiccation and permeability resistance,respectively.And some genes(cysM,thuF,ycjO,etc.)were found to be associated with two tolerances for the first time.
基金Medical Research Project of Xi’an Science and Technology Bureau“Molecular Mechanism of miR-1305 Competitive Endogenous circRNA in the Development of Liver Cancer”(Project No.22YXYJ0134)General Project of Key Research and Development Program of Shaanxi Provincial Department of Science and Technology“Mechanism Study on the Inhibition of Liver Cancer Invasion and Metastasis by Downregulating METTL3 and Reducing the m6A Modification Level of MMP3 with Honokiol”(Project No.2023-YBSF-631)。
文摘Objective:To evaluate the predictive value of secreted phosphoprotein 1(SPP1)gene expression for postoperative survival in patients with advanced liver cancer undergoing hepatic artery interventional chemoembolization treatment.Method:Bioinformatics methods,including gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis,were used to identify genes related to survival prognosis in hepatocellular carcinoma(HCC)patients.A retrospective analysis of 115 advanced liver cancer patients treated between January 2016 and October 2017 was conducted.Patients were categorized into SPP1 high-expression(n=89)and low-expression groups(n=26).Additionally,115 healthy individuals served as the control group.The relationship between SPP1 expression and clinical pathological features was analyzed.A 60-month follow-up and logistic regression analysis identified risk factors affecting survival.Results:SPP1 mRNA expression was significantly higher in liver cancer patients compared to healthy controls(P<0.05).SPP1 expression levels were significantly associated with tumor size,Child-Pugh grading,lymph node metastasis,and BCLC staging(P<0.05).High SPP1 expression,along with tumor size,Child-Pugh grading,lymph node metastasis,and BCLC staging,were independent risk factors for survival(P<0.05).The 60-month survival rate was 17.39%,with a median survival of 40 months in the low-expression group versus 18 months in the high-expression group(P<0.05).Conclusion:SPP1 expression is significantly upregulated in advanced liver cancer patients and has predictive value for postoperative survival following hepatic artery chemoembolization treatment.SPP1,combined with clinical indicators such as tumor size,Child-Pugh grading,lymph node metastasis,and BCLC staging,may serve as a prognostic biomarker for interventional treatment outcomes.
文摘Freshwater algal blooms have become a growing concern world-wide. They are caused by a high level ofcyanobacteria, predominantly Microcystis spp. and Cylindrospermopsis raciborskii, which can produce microcystin and cylindrospermopsin, respectively. Longtime exposure to these cyanotoxins may affect public health, thus reliable detection, quantification, and enumeration of these harmful algae species has become a priority in water quality management. Traditional manual enumeration of algal bloom cells primarily involves microscopic identification which limited by inaccuracy and time-consumption. With the development of molecular techniques and an increasing number of microbial sequences available in the Genbank database, the use of molecular methods can be used for more rapid, reliable, and accurate detection and quantification. In this study, multiplex polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR) techniques were developed and applied for monitoring cyanobacteria Microcystis spp. and C. raciborskii in the Macao Storage Reservoir (MSR). The results showed that the techniques were successful for identifying and quantifying the species in pure cultures and mixed cultures, and proved to be a potential application for water sampling in MSR. When the target species were above 1 million cells/L, similar cell numbers estimated by microscopic enumeration and qPCR were obtained. Further quantification in water samples indicated that the ratio of the estimated number of cell by microscopy and qPCR was 0.4-12.9 for cyanobacteria and 0.2-3.9 for C. raciborskii. However, Microcystis spp. was not observed by manual enumeration, while it was detected at low levels by qPCR, suggesting that qPCR is more sensitive and accurate. Thus the molecular approaches provide an additional reliable monitoring option to traditional micro- scopic enumeration for the ecosystems monitoring program.