This paper describes the implementation of a data logger for the real-time in-situ monitoring of hydrothermal systems. A compact mechanical structure ensures the security and reliability of data logger when used under...This paper describes the implementation of a data logger for the real-time in-situ monitoring of hydrothermal systems. A compact mechanical structure ensures the security and reliability of data logger when used under deep sea. The data logger is a battery powered instrument, which can connect chemical sensors (pH electrode, H2S electrode, H2 electrode) and temperature sensors. In order to achieve major energy savings, dynamic power management is implemented in hardware design and software design. The working current of the data logger in idle mode and active mode is 15 μA and 1.44 mA respectively, which greatly extends the working time of battery. The data logger has been successftdly tested in the first Sino-American Cooperative Deep Submergence Project from August 13 to September 3, 2005.展开更多
Background:While nest attentiveness plays a critical role in the reproductive success of avian species,nest attentiveness data with high temporal resolution is not available for many species.However,improvements in bo...Background:While nest attentiveness plays a critical role in the reproductive success of avian species,nest attentiveness data with high temporal resolution is not available for many species.However,improvements in both video monitoring and temperature logging devices present an opportunity to increase our understanding of this aspect of avian behavior.Methods:To investigate nest attentiveness behaviors and evaluate these technologies,we monitored 13 nests across two Common Tern(Sterna hirundo)breeding colonies with a paired video camera-temperature logger approach,while monitoring 63 additional nests with temperature loggers alone.Observations occurred from May to August of 2017 on Poplar(Chesapeake Bay,Maryland,USA)and Skimmer Islands(Isle of Wight Bay,Maryland,USA).We examined data respective to four times of day:Morning(civil dawn‒11:59),Peak(12:00‒16:00),Cooling(16:01‒civil dusk),and Night(civil dusk‒civil dawn).Results:While successful nests had mostly short duration off-bouts and maintained consistent nest attentiveness throughout the day,failed nests had dramatic reductions in nest attentiveness during the Cooling and Night periods(p<0.05)with one colony experiencing repeated nocturnal abandonment due to predation pressure from a Great Horned Owl(Bubo virginianus).Incubation appeared to ameliorate ambient temperatures during Night,as nests were significantly warmer during Night when birds were on versus off the nest(p<0.05).Meanwhile,off-bouts during the Peak period occurred during higher ambient temperatures,perhaps due to adults leaving the nest during the hottest periods to perform belly soaking.Unfortunately,temperature logger data alone had limited ability to predict nest attentiveness status during shorter bouts,with results highly dependent on time of day and bout duration.While our methods did not affect hatching success(p>0.05),video-monitored nests did have significantly lower clutch sizes(p<0.05).Conclusions:The paired use of iButtons and video cameras enabled a detailed description of the incubation behavior of COTE.However,while promising for future research,the logistical and potential biological complications involved in the use of these methods suggest that careful planning is needed before these devices are utilized to ensure data is collected in a safe and successful manner.展开更多
钻井液气体同位素录井(MOIL)是一门新兴的录井技术。国内传统的同位素分析通常为离线分析,时间成本和资金成本较高;而中法渤海地质服务公司在同位素录井服务中使用的Geoisotope在线同位素录井仪虽然实现了同位素数据的在线测量,但...钻井液气体同位素录井(MOIL)是一门新兴的录井技术。国内传统的同位素分析通常为离线分析,时间成本和资金成本较高;而中法渤海地质服务公司在同位素录井服务中使用的Geoisotope在线同位素录井仪虽然实现了同位素数据的在线测量,但仅能提供甲烷的同位素数据,并且尺寸较大,数据易受外界因素影响。英国CSS公司研制的Isologger钻井液同位素录井仪,采用了稳定同位素比率质谱仪(Isotope—ratio mass spectrometry,简称“IRMS”),该设备具有体积小、测量精度高、受外界影响较小的特点;合理地引入了气相色谱分离单元,使得Isologger能够通过在线分析得出C1-C5的同位素数据,丰富了采集的同位素数据信息。该仪器以多组分的同位素数据为基础,可在现场进行井下油气层分析、烃类成熟度分析等工作,极大地提高了录井工作的指导地位。同位素录井在深海、非常规油气层、高温高压含硫地层等区域有着很好的应用前景。展开更多
In the evolving situation of highly infectious coronavirus,the number of confirmed cases in India has largely increased,which has resulted in a shortage of health care resources.Thus,the Ministry of Health and Family ...In the evolving situation of highly infectious coronavirus,the number of confirmed cases in India has largely increased,which has resulted in a shortage of health care resources.Thus,the Ministry of Health and Family Welfare-Government of India issued guidelines for the‘Home isolation of COVID-19 positive patients’methodology for asymptomatic patients or with mild symptoms.During home isolation,the patients are required to monitor and record the pulse rate,body temperature,and oxygen saturation three times a day.This paper proposes a system that can request data from the required sensor to measure the pulse rate,body temperature,or oxygen saturation.The requested data is sensed by the respective sensor placed near the patients’body and sent to the CAN data logger over the CAN bus.The CAN data logger live streams the sensor values and stores the same to an excel sheet along with details like the patient’s name,patient’s age,and date.The physicians can then access this information.展开更多
基金supported by the International Cooperative Key Project(Grant No.2004DFA04900)Ministry of Sciences and Technology of PRC,and the National Natural Science Foundation of China (Grant Nos.40637037 and 50675198)
文摘This paper describes the implementation of a data logger for the real-time in-situ monitoring of hydrothermal systems. A compact mechanical structure ensures the security and reliability of data logger when used under deep sea. The data logger is a battery powered instrument, which can connect chemical sensors (pH electrode, H2S electrode, H2 electrode) and temperature sensors. In order to achieve major energy savings, dynamic power management is implemented in hardware design and software design. The working current of the data logger in idle mode and active mode is 15 μA and 1.44 mA respectively, which greatly extends the working time of battery. The data logger has been successftdly tested in the first Sino-American Cooperative Deep Submergence Project from August 13 to September 3, 2005.
基金This work was supported by the U.S.Army Corps of Engineers(Baltimore District),U.S.Geological Survey(Patuxent Wildlife Research Center)the University of Maryland,the Maryland Department of Natural Resources(Wildlife and Heritage Program)the Maryland Environmental Service,and the Maryland Coastal Bays Program.
文摘Background:While nest attentiveness plays a critical role in the reproductive success of avian species,nest attentiveness data with high temporal resolution is not available for many species.However,improvements in both video monitoring and temperature logging devices present an opportunity to increase our understanding of this aspect of avian behavior.Methods:To investigate nest attentiveness behaviors and evaluate these technologies,we monitored 13 nests across two Common Tern(Sterna hirundo)breeding colonies with a paired video camera-temperature logger approach,while monitoring 63 additional nests with temperature loggers alone.Observations occurred from May to August of 2017 on Poplar(Chesapeake Bay,Maryland,USA)and Skimmer Islands(Isle of Wight Bay,Maryland,USA).We examined data respective to four times of day:Morning(civil dawn‒11:59),Peak(12:00‒16:00),Cooling(16:01‒civil dusk),and Night(civil dusk‒civil dawn).Results:While successful nests had mostly short duration off-bouts and maintained consistent nest attentiveness throughout the day,failed nests had dramatic reductions in nest attentiveness during the Cooling and Night periods(p<0.05)with one colony experiencing repeated nocturnal abandonment due to predation pressure from a Great Horned Owl(Bubo virginianus).Incubation appeared to ameliorate ambient temperatures during Night,as nests were significantly warmer during Night when birds were on versus off the nest(p<0.05).Meanwhile,off-bouts during the Peak period occurred during higher ambient temperatures,perhaps due to adults leaving the nest during the hottest periods to perform belly soaking.Unfortunately,temperature logger data alone had limited ability to predict nest attentiveness status during shorter bouts,with results highly dependent on time of day and bout duration.While our methods did not affect hatching success(p>0.05),video-monitored nests did have significantly lower clutch sizes(p<0.05).Conclusions:The paired use of iButtons and video cameras enabled a detailed description of the incubation behavior of COTE.However,while promising for future research,the logistical and potential biological complications involved in the use of these methods suggest that careful planning is needed before these devices are utilized to ensure data is collected in a safe and successful manner.
文摘钻井液气体同位素录井(MOIL)是一门新兴的录井技术。国内传统的同位素分析通常为离线分析,时间成本和资金成本较高;而中法渤海地质服务公司在同位素录井服务中使用的Geoisotope在线同位素录井仪虽然实现了同位素数据的在线测量,但仅能提供甲烷的同位素数据,并且尺寸较大,数据易受外界因素影响。英国CSS公司研制的Isologger钻井液同位素录井仪,采用了稳定同位素比率质谱仪(Isotope—ratio mass spectrometry,简称“IRMS”),该设备具有体积小、测量精度高、受外界影响较小的特点;合理地引入了气相色谱分离单元,使得Isologger能够通过在线分析得出C1-C5的同位素数据,丰富了采集的同位素数据信息。该仪器以多组分的同位素数据为基础,可在现场进行井下油气层分析、烃类成熟度分析等工作,极大地提高了录井工作的指导地位。同位素录井在深海、非常规油气层、高温高压含硫地层等区域有着很好的应用前景。
文摘In the evolving situation of highly infectious coronavirus,the number of confirmed cases in India has largely increased,which has resulted in a shortage of health care resources.Thus,the Ministry of Health and Family Welfare-Government of India issued guidelines for the‘Home isolation of COVID-19 positive patients’methodology for asymptomatic patients or with mild symptoms.During home isolation,the patients are required to monitor and record the pulse rate,body temperature,and oxygen saturation three times a day.This paper proposes a system that can request data from the required sensor to measure the pulse rate,body temperature,or oxygen saturation.The requested data is sensed by the respective sensor placed near the patients’body and sent to the CAN data logger over the CAN bus.The CAN data logger live streams the sensor values and stores the same to an excel sheet along with details like the patient’s name,patient’s age,and date.The physicians can then access this information.