期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of microbe-derived antioxidants on growth performance,hepatic oxidative stress,mitochondrial function and cell apoptosis in weaning piglets
1
作者 Chengbing Yu Yuxiao Luo +5 位作者 Cheng Shen Zhen Luo Hongcai Zhang Jing Zhang Weina Xu Jianxiong Xu 《Journal of Animal Science and Biotechnology》 CSCD 2024年第6期2639-2655,共17页
Background Weaning causes redox dyshomeostasis in piglets,which leads to hepatic oxidative damage.Microbederived antioxidants(MA)have great potential for anti-oxidat ion.This study aimed to investigate changes in hepa... Background Weaning causes redox dyshomeostasis in piglets,which leads to hepatic oxidative damage.Microbederived antioxidants(MA)have great potential for anti-oxidat ion.This study aimed to investigate changes in hepatic redox system,mitochondrial function and apoptosis after weaning,and effects of MA on growth performance and liver health in weaning piglets.Methods This study consisted of 2 experimets.In the both experiments,piglets were weaned at 21 days of age.In Exp.1,at 21(W0),22(W1),25(W4),28(W7),and 35(W14)days of age,6 piglets were slaughtered at each timepoint.In Exp.2,piglets were divided into 2 groups:one received MA gavage(MA)and the other received saline gavage(CON).At 25 days of age,6 piglets from each group were sacrificed.Results In Exp.1,weaning caused growth inhibition and liver developmental retardation from W0 to W4.The mRNA sequencing between W0 and W4 revealed that pathways related to"regulation of apoptotic process"and"reactive oxygen species metabolic process"were enriched.Further study showed that weaning led to higher hepatic content of reactive oxygen species(ROS),H_(2)O_(2) and O_(2)~-.Weaning enhanced mitochondrial fission and suppressed their fusion,activated mitophagy,thus triggering cell apoptosis.In Exp.2,MA improved growth performance of piglets with higher average daily gain(ADG)and average daily feed intake(ADFI).The hepatic ROS,as well as products of oxidative damage malonaldehyde(MDA)and 8-hydroxy-2'-deoxyguanosine(8-OHdG)in the MA group decreased significantly than that of the CON group.The MA elevated mitochondrial membrane potential,increased activity of mitochondrial respiratory chain complexes(MRC)ⅠandⅣ,enhanced mitochondrial fusion and reduced mitophagy thus decreasing cell apoptosis.Conclusions The present study showed that MA improved the growth performance of weaning piglets and reversed weaning-induced oxidative damage,mitochondrial dysfunction,and apoptosis.Our results suggested that MA had promising prospects for maintaining liver health in weaning piglets and provided a reference for studies of liver diseases in humans. 展开更多
关键词 Apoptosis microbe-derived antioxidants Mitochondrial function Oxidative stress Weaning piglets
在线阅读 下载PDF
Self-doping active sites in microbe-derived carbonaceous electrocatalysts for the oxygen reduction reaction performance
2
作者 Xiaofeng Xiao Xiaochun Tian +3 位作者 Junpeng Li Fan Yang Rui Bai Feng Zhao 《Nano Research》 SCIE EI CSCD 2024年第8期6803-6819,共17页
Microorganisms are rich in heteroatoms,which can be self-doped to form active sites during pyrolysis and loaded on microbederived carbonaceous materials.In recent years,microbe-derived carbonaceous materials,character... Microorganisms are rich in heteroatoms,which can be self-doped to form active sites during pyrolysis and loaded on microbederived carbonaceous materials.In recent years,microbe-derived carbonaceous materials,characterized with abundant selfdoping sites,have been continuously developed as cost-effective electrocatalysts for oxygen reduction reaction(ORR).To fully unlock the catalytic potential of microbe-derived carbonaceous materials,a comprehensive analysis of catalytic sites and mechanisms for ORR is essential.This paper provides a summary of the ORR catalytic performance of microbe-derived carbonaceous materials reported to date,with a specific focus on the self-doping sites introduced during their pyrolytic fabrication.It highlights the mono-or co-doping sites involving nonmetallic elements such as oxygen(O),nitrogen(N),phosphorus(P),and sulfur(S)atoms,as well as covers the doping of metallic iron(Fe)atoms with various coordination configurations in microbe-derived carbonaceous materials.Understanding the impact of these self-doping sites on ORR catalytic performance can guide the design of doping sites in microbe-derived carbonaceous materials.This approach has the potential to maximize electrocatalytic activity of microbe-derived carbonaceous materials and contributes to the development of more efficient and cost-effective carbonaceous electrocatalysts. 展开更多
关键词 electrocatalysis heteroatoms self-doped single atom catalyst microbe-derived carbonaceous material
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部