Debonding at the cement-casing interface is recognized as a principal failure mechanism leading to CO_(2) leakage in wells.This detachment gives rise to a microannulus,which notably possesses greater permeability than...Debonding at the cement-casing interface is recognized as a principal failure mechanism leading to CO_(2) leakage in wells.This detachment gives rise to a microannulus,which notably possesses greater permeability than undamaged cement,undermining its sealing efficacy.Conventionally,the permeability of the microannulus is regarded as a uniform value throughout the well.However,fundamentally,a microannulus is one type of fracture,and its gap or aperture size is affected by the effective stress.In this work,we developed a unique experimental apparatus.This equipment facilitates the curing of cement inside a steel casing,the formation of a microannulus between the casing and the cement,and the investigation of the fluid flow dynamics along the microannulus under laboratory-replicated in situ conditions.The microannulus was formed by injecting fluid from one end of the setup,and receiving similar amount of fluid on the other end signified the development of the leakage channel.Additionally,strain gauges affixed to the casing’s external surface yielded key information on the microannulus’s opening and closure.We observed a noticeable decline in microannulus hydraulic aperture(or permeability)in relation to effective stress and an exponential equation fits their relationship.Our findings also indicate a distinct behavior when comparing liquid CO_(2) with water.Specifically,it is easier for liquid CO_(2) to create the microannulus.However,the hydraulic aperture range for this microannulus(0.7-6 mm)is considerably smaller than that created by water flow(2-17 mm).Finally,we integrated the stressdependent microannulus aperture size into the combined analysis of well mechanical integrity and well leakage.The outcomes consistently demonstrated that when factoring in the stress-dependent aperture sizes,the leakage rates are 3e5 times compared to a fixed aperture model.The traditional assumption of a constant aperture significantly underestimates fluid leakage risks.展开更多
Flow behavior of transient mixed electro-osmotic and pressure driven flows (EOF/PDF) through a microannulus is investigated based on a linearized Poisson-Boltzmann equation and Navier-Stokes equation. A semi-analytica...Flow behavior of transient mixed electro-osmotic and pressure driven flows (EOF/PDF) through a microannulus is investigated based on a linearized Poisson-Boltzmann equation and Navier-Stokes equation. A semi-analytical solution of EOF velocity distribution as functions of relevant parameters is derived by Laplace transform method. By numerical computations of inverse Laplace transform, the effects of inner to outer wall zeta potential β, the normalized pressure gradient Ω and the inner to outer radius ratio α on transient EOF velocity are presented.展开更多
A microannulus(MA) is the primary reason for sustained casing pressure in multi-stage fractured-shale gas wells. However, the effect of the casing eccentricity on the long horizontal section has not been considered. I...A microannulus(MA) is the primary reason for sustained casing pressure in multi-stage fractured-shale gas wells. However, the effect of the casing eccentricity on the long horizontal section has not been considered. In this study, a full-scale integrity tester for cement sheaths is adopted to measure the cumulative plastic deformation. Numerical models are applied to evaluate the development of the cumulative plastic deformation and quantify the MA width considering casing centralization and eccentricity in the context of multiple loading and unloading cycles. Subsequently, the influences of the eccentricity distance and angle, cement-sheath mechanical variables, and different well depths on the cumulative sheath plastic deformation and sheath MA development are explored. The research results demonstrate that casing eccentricity significantly increases the cumulative sheath plastic deformation compared with that of the casing-centered condition. Consequently, the risk of sealing integrity failure increases. The accumulated plastic deformation increases when the eccentricity distance increases. In contrast, the initial plastic deformation increases as the eccentricity angle increases. However, the cumulative plastic deformation decreases after a specific loading and unloading cycle count. Affected by the coupled influence of the internal casing pressure and fracturing stages, the width of the MA in the horizontal section increased from the toe to the heel, and the casing eccentricity significantly increased the MA width at each stage, thus increasing the risk of gas channeling. Finally, an engineering case is considered to study the influence of casing eccentricity. The results show that cement slurries that form low and high elastic moduli can be applied to form a cement sheath when the fracturing stage is lower or higher than a specific value, respectively. The results of this study offer theoretical references and engineering support for the integrity control of cement sheath sealing.展开更多
基金Financial support for this work from the U.S.Department of Energy(DOE)Office of Basic Energy Sciences for“Center for Coupled Chemo-Mechanics of Cementitious Composites for EGS(C4M)”,DOE’s“National Risk Assessment Partnership(NRAP)”programDOE Office of Energy Efficiency&Renewable Energy’s Geothermal Technologies Office for“Advanced Downhole Acoustic Sensing for Wellbore Integrity”is gratefully acknowledged.
文摘Debonding at the cement-casing interface is recognized as a principal failure mechanism leading to CO_(2) leakage in wells.This detachment gives rise to a microannulus,which notably possesses greater permeability than undamaged cement,undermining its sealing efficacy.Conventionally,the permeability of the microannulus is regarded as a uniform value throughout the well.However,fundamentally,a microannulus is one type of fracture,and its gap or aperture size is affected by the effective stress.In this work,we developed a unique experimental apparatus.This equipment facilitates the curing of cement inside a steel casing,the formation of a microannulus between the casing and the cement,and the investigation of the fluid flow dynamics along the microannulus under laboratory-replicated in situ conditions.The microannulus was formed by injecting fluid from one end of the setup,and receiving similar amount of fluid on the other end signified the development of the leakage channel.Additionally,strain gauges affixed to the casing’s external surface yielded key information on the microannulus’s opening and closure.We observed a noticeable decline in microannulus hydraulic aperture(or permeability)in relation to effective stress and an exponential equation fits their relationship.Our findings also indicate a distinct behavior when comparing liquid CO_(2) with water.Specifically,it is easier for liquid CO_(2) to create the microannulus.However,the hydraulic aperture range for this microannulus(0.7-6 mm)is considerably smaller than that created by water flow(2-17 mm).Finally,we integrated the stressdependent microannulus aperture size into the combined analysis of well mechanical integrity and well leakage.The outcomes consistently demonstrated that when factoring in the stress-dependent aperture sizes,the leakage rates are 3e5 times compared to a fixed aperture model.The traditional assumption of a constant aperture significantly underestimates fluid leakage risks.
文摘Flow behavior of transient mixed electro-osmotic and pressure driven flows (EOF/PDF) through a microannulus is investigated based on a linearized Poisson-Boltzmann equation and Navier-Stokes equation. A semi-analytical solution of EOF velocity distribution as functions of relevant parameters is derived by Laplace transform method. By numerical computations of inverse Laplace transform, the effects of inner to outer wall zeta potential β, the normalized pressure gradient Ω and the inner to outer radius ratio α on transient EOF velocity are presented.
基金financially supported by the National Natural Science Foundation of China (Grant No. 52374001, No. 52004013)。
文摘A microannulus(MA) is the primary reason for sustained casing pressure in multi-stage fractured-shale gas wells. However, the effect of the casing eccentricity on the long horizontal section has not been considered. In this study, a full-scale integrity tester for cement sheaths is adopted to measure the cumulative plastic deformation. Numerical models are applied to evaluate the development of the cumulative plastic deformation and quantify the MA width considering casing centralization and eccentricity in the context of multiple loading and unloading cycles. Subsequently, the influences of the eccentricity distance and angle, cement-sheath mechanical variables, and different well depths on the cumulative sheath plastic deformation and sheath MA development are explored. The research results demonstrate that casing eccentricity significantly increases the cumulative sheath plastic deformation compared with that of the casing-centered condition. Consequently, the risk of sealing integrity failure increases. The accumulated plastic deformation increases when the eccentricity distance increases. In contrast, the initial plastic deformation increases as the eccentricity angle increases. However, the cumulative plastic deformation decreases after a specific loading and unloading cycle count. Affected by the coupled influence of the internal casing pressure and fracturing stages, the width of the MA in the horizontal section increased from the toe to the heel, and the casing eccentricity significantly increased the MA width at each stage, thus increasing the risk of gas channeling. Finally, an engineering case is considered to study the influence of casing eccentricity. The results show that cement slurries that form low and high elastic moduli can be applied to form a cement sheath when the fracturing stage is lower or higher than a specific value, respectively. The results of this study offer theoretical references and engineering support for the integrity control of cement sheath sealing.