BACKGROUND Gastric cancer(GC)is a malignant tumor originating from gastric mucosal epithelial cells that has high morbidity and mortality.microRNAs(miR)are important diagnostic markers and therapeutic targets in this ...BACKGROUND Gastric cancer(GC)is a malignant tumor originating from gastric mucosal epithelial cells that has high morbidity and mortality.microRNAs(miR)are important diagnostic markers and therapeutic targets in this disease.AIM To explore the mechanism of miR-125a-5p in the pathogenesis of GC.METHODS The expression levels of miR-125a-5p,SERPINE1 and DNMT1 in GC cells and tissues were detected by real-time polymerase chain reaction(PCR)and Western blotting.Methylation-specific PCR was used to detect the level of miR-125a-5p methylation.A cell counting kit 8 assay,scratch test,and a Transwell assay were performed to detect the proliferation,migration,and invasiveness of HGC27 cells,respectively.The expression of the epithelial mesenchymal transition(EMT)-related proteins E-cadherin,N-cadherin and vimentin in HGC27 cells was detected by Western blotting,while the expression of vimentin was detected by immunofluorescence.RESULTS This study revealed that miR-125a-5p was expressed at low levels in GC clinical samples and cells and that miR-125a-5p overexpression inhibited the proliferation,migration,invasiveness and EMT of GC cells.Mechanistically,miR-125a-5p can reduce GC cell proliferation,promote E-cadherin expression,inhibit N-cadherin and vimentin expression,and reduce the EMT of GC cells,thus constraining GC cells to a certain extent.Moreover,DNMT1 inhibited miR-125a-5p expression by increasing the methylation of the miR-125a-5p promoter,thereby promoting the expression of SERPINE1,which acts together with miR-125a-5p to exert antagonistic effects on GC.CONCLUSION Our study revealed that DNMT1 promoted SERPINE1 protein expression by inducing miR-125a-5p methylation,which led to the proliferation,migration and occurrence of EMT in GC cells.展开更多
BACKGROUND Diabetic kidney disease(DKD),characterized by increased urinary microalbumin levels and decreased renal function,is the primary cause of end-stage renal di-sease.Its pathological mechanisms are complicated ...BACKGROUND Diabetic kidney disease(DKD),characterized by increased urinary microalbumin levels and decreased renal function,is the primary cause of end-stage renal di-sease.Its pathological mechanisms are complicated and multifactorial;Therefore,sensitive and specific biomarkers are needed.Urinary exosome originate from diverse renal cells in nephron segments and partially mirror the pathological changes in the kidney.The microRNAs(miRNAs)in urinary exosome are remark-ably stable and highly tissue-specific for the kidney.METHODS Type 2 diabetic mellitus(T2DM)patients were recruited from the Second Hospital of Hebei Medical University and were divided into two groups:DM,diabetic pa-tients without albuminuria[urinary albumin to creatinine ratio(UACR)<30 mg/g]and DKD,diabetic patients with albuminuria(UACR≥30 mg/g).Healthy subjects were the normal control(NC)group.Urinary exosomal miR-145-5p,miR-27a-3p,and miR-29c-3p,were detected using real-time quantitative polymerase chain reaction.The correlation between exosomal miRNAs and the clinical in-dexes was evaluated.The diagnostic values of exosomal miR-145-5p and miR-27a-3p in DKD were determined using receiver operating characteristic(ROC)analysis.Biological functions of miR-145-5p were investigated by performing RESULTS Urinary exosomal expression of miR-145-5p and miR-27a-3p was more upregulated in the DKD group than in the DM group(miR-145-5p:4.54±1.45 vs 1.95±0.93,P<0.001;miR-27a-3p:2.33±0.79 vs 1.71±0.76,P<0.05)and the NC group(miR-145-5p:4.54±1.45 vs 1.55±0.83,P<0.001;miR-27a-3p:2.33±0.79 vs 1.10±0.51,P<0.001).The exosomal miR-145-5p and miR-27a-3p positively correlated with albuminuria and serum creatinine and negatively correlated with the estimated glomerular filtration rate.miR-27a-3p was also closely related to blood glucose,gly-cosylated hemoglobin A1c,and low-density lipoprotein cholesterol.ROC analysis revealed that miR-145-5p had a better area under the curve of 0.88[95%confidence interval(CI):0.784-0.985,P<0.0001]in diagnosing DKD than miR-27a-3p with 0.71(95%CI:0.547-0.871,P=0.0239).Bioinformatics analysis revealed that the target genes of miR-145-5p were located in the actin filament,cytoskeleton,and extracellular exosome and were involved in the pathological processes of DKD,including apoptosis,inflammation,and fibrosis.CONCLUSION Urinary exosomal miR-145-5p and miR-27a-3p may serve as novel noninvasive diagnostic biomarkers or promising therapeutic targets for DKD.展开更多
基金the Research Program of the Science and Technology Department of Yunnan Province,No.202101AY070001-204.
文摘BACKGROUND Gastric cancer(GC)is a malignant tumor originating from gastric mucosal epithelial cells that has high morbidity and mortality.microRNAs(miR)are important diagnostic markers and therapeutic targets in this disease.AIM To explore the mechanism of miR-125a-5p in the pathogenesis of GC.METHODS The expression levels of miR-125a-5p,SERPINE1 and DNMT1 in GC cells and tissues were detected by real-time polymerase chain reaction(PCR)and Western blotting.Methylation-specific PCR was used to detect the level of miR-125a-5p methylation.A cell counting kit 8 assay,scratch test,and a Transwell assay were performed to detect the proliferation,migration,and invasiveness of HGC27 cells,respectively.The expression of the epithelial mesenchymal transition(EMT)-related proteins E-cadherin,N-cadherin and vimentin in HGC27 cells was detected by Western blotting,while the expression of vimentin was detected by immunofluorescence.RESULTS This study revealed that miR-125a-5p was expressed at low levels in GC clinical samples and cells and that miR-125a-5p overexpression inhibited the proliferation,migration,invasiveness and EMT of GC cells.Mechanistically,miR-125a-5p can reduce GC cell proliferation,promote E-cadherin expression,inhibit N-cadherin and vimentin expression,and reduce the EMT of GC cells,thus constraining GC cells to a certain extent.Moreover,DNMT1 inhibited miR-125a-5p expression by increasing the methylation of the miR-125a-5p promoter,thereby promoting the expression of SERPINE1,which acts together with miR-125a-5p to exert antagonistic effects on GC.CONCLUSION Our study revealed that DNMT1 promoted SERPINE1 protein expression by inducing miR-125a-5p methylation,which led to the proliferation,migration and occurrence of EMT in GC cells.
基金Supported by the Nature Science Foundation of Hebei Province,No.H2023104011.
文摘BACKGROUND Diabetic kidney disease(DKD),characterized by increased urinary microalbumin levels and decreased renal function,is the primary cause of end-stage renal di-sease.Its pathological mechanisms are complicated and multifactorial;Therefore,sensitive and specific biomarkers are needed.Urinary exosome originate from diverse renal cells in nephron segments and partially mirror the pathological changes in the kidney.The microRNAs(miRNAs)in urinary exosome are remark-ably stable and highly tissue-specific for the kidney.METHODS Type 2 diabetic mellitus(T2DM)patients were recruited from the Second Hospital of Hebei Medical University and were divided into two groups:DM,diabetic pa-tients without albuminuria[urinary albumin to creatinine ratio(UACR)<30 mg/g]and DKD,diabetic patients with albuminuria(UACR≥30 mg/g).Healthy subjects were the normal control(NC)group.Urinary exosomal miR-145-5p,miR-27a-3p,and miR-29c-3p,were detected using real-time quantitative polymerase chain reaction.The correlation between exosomal miRNAs and the clinical in-dexes was evaluated.The diagnostic values of exosomal miR-145-5p and miR-27a-3p in DKD were determined using receiver operating characteristic(ROC)analysis.Biological functions of miR-145-5p were investigated by performing RESULTS Urinary exosomal expression of miR-145-5p and miR-27a-3p was more upregulated in the DKD group than in the DM group(miR-145-5p:4.54±1.45 vs 1.95±0.93,P<0.001;miR-27a-3p:2.33±0.79 vs 1.71±0.76,P<0.05)and the NC group(miR-145-5p:4.54±1.45 vs 1.55±0.83,P<0.001;miR-27a-3p:2.33±0.79 vs 1.10±0.51,P<0.001).The exosomal miR-145-5p and miR-27a-3p positively correlated with albuminuria and serum creatinine and negatively correlated with the estimated glomerular filtration rate.miR-27a-3p was also closely related to blood glucose,gly-cosylated hemoglobin A1c,and low-density lipoprotein cholesterol.ROC analysis revealed that miR-145-5p had a better area under the curve of 0.88[95%confidence interval(CI):0.784-0.985,P<0.0001]in diagnosing DKD than miR-27a-3p with 0.71(95%CI:0.547-0.871,P=0.0239).Bioinformatics analysis revealed that the target genes of miR-145-5p were located in the actin filament,cytoskeleton,and extracellular exosome and were involved in the pathological processes of DKD,including apoptosis,inflammation,and fibrosis.CONCLUSION Urinary exosomal miR-145-5p and miR-27a-3p may serve as novel noninvasive diagnostic biomarkers or promising therapeutic targets for DKD.