A simple and practical method to calculate the fractal dimension (FD) of amicron's projective surface profile based on fractal theory is proposed. Taking AI(OH)3 material particles as an example, the scanning ele...A simple and practical method to calculate the fractal dimension (FD) of amicron's projective surface profile based on fractal theory is proposed. Taking AI(OH)3 material particles as an example, the scanning electron microscope (SEM) photos of particles were processed using an image.processing software (IPS) Photoshop. Taking the pixel as a fixed yardstick with the enlargement of the size of the particle image, the box-dimension and circumference-area (C-S) methods were used to calculate the FD of the surface profile of the particle. The FD of 1.2623 of the classic Koch curve is obtained, which approximates the true value of 1.2628. The complexities of the object's boundary and surface micro-topography are simulated successfully by a generator method.展开更多
Simplification and encryption are performed on the point cloud data concerning high-relief( 20 cm tillage) and low-relief( raking bare slope) terrain on a different scale of observation. We select three indicators( su...Simplification and encryption are performed on the point cloud data concerning high-relief( 20 cm tillage) and low-relief( raking bare slope) terrain on a different scale of observation. We select three indicators( surface curvature,slope aspect and surface roughness) to evaluate the effect of simplification and encryption on micro-topography data analysis. The results show that simplification and encryption have a significant impact on the curvature of high-relief terrain,but have no significant impact on low-relief terrain. The slope aspect change is not significant after 5,10 mm data simplification and encryption; 1 mm simplification has a regular impact on surface roughness; 5 mm encryption and simplification have a complex impact on high-relief terrain; 10 mm encryption has a complex impact on high-relief terrain roughness change but a regular impact on bare slope change.展开更多
Airborne laser scanning(ALS)has recently been identified as a potential tool in topographic mapping for archaeological prospection.However,most existing applications in this field refers to manned ALS systems,for whic...Airborne laser scanning(ALS)has recently been identified as a potential tool in topographic mapping for archaeological prospection.However,most existing applications in this field refers to manned ALS systems,for which the high operation and maintenance costs limits its application in small-scale archaeological investigation.In this paper,we conducted an exploratory study on the application of the unmanned aerial vehicle(UAV)laser scanning(ULS)system in ancient micro-topography detection over wooded areas.Compared with manned ALS technology,we analyzed the advantages and potentials of ULS technology for archaeological applications.Then we outlined existing mainstream survey-grade UAV-based laser scanners,data processing and visualization approaches.Furthermore,we performed case studies in three cultural heritage sites in Zhejiang Province,China using two representative mainstream survey-grade ULS systems.Results were then verified by an in-site investigation.Finally,the correct selection of ULS devices,the planning of data acquisition missions and the use of appropriate data processing methods specifically for archaeological prospection were discussed.This paper provides a cost-effective and flexible solution for micro-topography detection in wooded areas.ULS technology,as demonstrated here,can be an important supplement to existing archaeological investigation methods,particularly for small-scale areas,and has promising prospects in archaeological applications.展开更多
Soil water is an important factor restricting afforestation on the semi-arid Loess Plateau.The microtopography of the loess slope has changed the distribution pattern of soil water on the slope.To improve water utiliz...Soil water is an important factor restricting afforestation on the semi-arid Loess Plateau.The microtopography of the loess slope has changed the distribution pattern of soil water on the slope.To improve water utilization efficiency and optimize afforestation configuration patterns,the relationship between soil water and precipitation at micro-topographic scale must be studied.We used time series analysis to study the temporal variation of soil water and its response to precipitation in four kinds of micro-topographies and undisturbed slope on loess slopes.Micro-topographies significantly influenced soil water distribution and dynamics on the slopes.Soil water stored in the platform,sinkhole,and ephemeral gully influenced subsequent soil water for 4 weeks,whereas soil water stored in the scarp and undisturbed slope could influence soil water for 2 weeks.It took 12 weeks,10 weeks,18 weeks,6 weeks,and 12 weeks for precipitation to reach the deeper soil layer in the platform,sinkhole,scarp,ephemeral gully,and undisturbed slope,respectively.These soil water characteristics in different micro-topographies are vital factors that should be taken into consideration when undertaking afforestation on the Loess Plateau.展开更多
The TiN, TiAlN, and TiAlSiN coatings were prepared on YT14 cutting tool surface with CAIP(cathode arc ion plating), the surface morphologies and phases were analyzed with FESEM(field emission scanning electron micr...The TiN, TiAlN, and TiAlSiN coatings were prepared on YT14 cutting tool surface with CAIP(cathode arc ion plating), the surface morphologies and phases were analyzed with FESEM(field emission scanning electron microscopy), and XRD(X-ray diffraction), respectively, and the coating parameters such as 3D surface micro-topography, grain size, surface height, hierarchy, profile height, and power spectral density, etc, were measured with AFM(atomic force microscope). The results show that the phases of TiN, TiAlN, and TiAlSiN coatings are TiN, TiN+TiAlN, TiN+Si_3N_4+TiAlN, respectively, while the surface roughness Sa of TiN, TiAlN, and TiAlSiN coatings is 75.3, 98.9, and 42.1 nm, respectively, and the roughness depth Sk is 209, 389, and 54 nm, respectively, the sequence of average grain sizes is TiAlN〉TiN〉TiAlSiN. The surface bearing index Sbi of TiN, TiAlN, and TiAlSiN coatings is 0.884, 1.01, and 0.37, respectively, and the sequence of surface bearing capability is TiAlN〉TiN〉TiAlSiN. At the lower wavelength(102-103 nm), the power spectral densities have a certain correlation, and the sequence of TiN〉TiAlN〉TiAlSiN, while the correlation is low at the higher wavelength(〉103 nm).展开更多
Soil moisture is a limiting factor for vegetation restoration on the Loess Plateau, China. Micro-topography may cause heterogeneities in the distribution of soil moisture, but little is known about its effect on deep ...Soil moisture is a limiting factor for vegetation restoration on the Loess Plateau, China. Micro-topography may cause heterogeneities in the distribution of soil moisture, but little is known about its effect on deep soil moisture. Our study aims to explore the distribution and impact of soil moisture within the upper 10 m of soil for different microtopographies. Taking undisturbed slope as the control, five micro-topographies were selected. Soil moisture over a depth of 0-10 m from 2017 to 2019 was investigated, and soil particle size and soil organic matter were measured. Variance analysis and multiple comparisons were used to analyze the difference in soil moisture for different microtopographies and multiple-linear regression was used to analyze the influence of micro-topography on soil moisture. There are significant differences in soil moisture within the different layers underlying the examined micro-topographies, while the inter-annual variation in soil water storage for the selected microtopographies increase with increased rainfall. The depth of influence of micro-topographic vegetation on soil moisture exceeded 1000 cm for a gully(GU), 740 cm for a sink hole(SH), 480 cm for a scarp(SC), 360 cm for an ephemeral gully(EG) and 220 cm for a platform(PL). Micro-topography will cause the heterogeneous distribution of soil moisture in the shallower layers, which changes the vegetation distribution differences between micro-topographies. This may be the survival strategy of herbaceous vegetation in response to climate change in the Loess Plateau. For future vegetation restoration efforts, we need to pay attention to the influence of microtopography on soil moisture.展开更多
This article describes how the cartographic depth-to-water (DTW) index in combination with other variables can be used to quantify, model and map the distribution of common forest floor bryophytes, at 1 m resolution. ...This article describes how the cartographic depth-to-water (DTW) index in combination with other variables can be used to quantify, model and map the distribution of common forest floor bryophytes, at 1 m resolution. This was done by way of a case study, using 12 terrain and climate representative locations across New Brunswick, Canada. The presence/absence by moss species was determined at each location along upland-to-wetland transects within >10-m spaced 1-m2 forest floor plots. It was found that Bazzania trilobata, Dicranum polysetum, Polytrichum commune, Hylocomium splendens, and Pleurozium schreberi had greater probabilities of occurrence in well-drained forested areas, whereas Sphagnum fuscum and Sphagnum girgensohnii dominated in low-lying wet areas. The presence/absence of each species was quantified by way of logistic regression analyses, using DTW, slope, canopy closure, forest litter depth, ecosite type (8 classes), nutrient regime (4 classes, poor to rich);vegetation type (deciduous, coniferous, mixed, and shrubs), and macro- and micro-topography (upland, wetland;mounds, pits) as predictor variables. Among these, log10DTW and forest litter depth were the most consistent predictor variables, followed by mound versus pit. For the mapping purpose, only log10DTW and already mapped classifications for upland versus wetland and vegetation type were used to predict the probability of occurrences for the most frequent moss species, namely, D. polysetum, P. schreberi and Sphagnum spp. The overall accuracy for doing this ranged from 67% to 83%, with false positives and negatives amounting to 18% to 42%. The overall classification accuracy exceeded the probability by chance alone at 76.8%, with the significance level reached at 75.3%. The average level of probability by chance alone was 60.3%.展开更多
Surface integrity parameters such as surface topography,hardness gradient,and residual stress have significant impacts on contact fatigue of tooth surface.To meet the needs of efficient and stable contact fatigue calc...Surface integrity parameters such as surface topography,hardness gradient,and residual stress have significant impacts on contact fatigue of tooth surface.To meet the needs of efficient and stable contact fatigue calculations,efficient mixed lubrication calculations were achieved in this study by dividing the lubrication region and reconstructing the asperities.By considering the influence of the residual stress and hardness gradient on the tooth surface,a calculation model for gear contact fatigue was established and verified based on fatigue tests of gear contact.The results are as follows:(1)Due to the influence of rough surfaces,there were two high-stress peaks in the near-surface layer(6μm)and sub-surface layer(245μm)of the tooth surface,which corresponded to micro-pitting and pitting areas,respectively.(2)Ignoring the influence of various integrity parameters led to errors of several orders of magnitude in predicting the contact fatigue life of the tooth surface.(3)The fatigue failure area predicted by the model proposed in this paper was consistent with the experimental results,and the average error in the fatigue life was approximately 14.3%.The method proposed in this paper can effectively predict the contact fatigue life and dangerous areas of the tooth surface,with advantages of high computational efficiency and good stability,laying a foundation for research on tooth surface anti-fatigue design.展开更多
基金Project 50474003 supported by the National Natural Science Foundation of China
文摘A simple and practical method to calculate the fractal dimension (FD) of amicron's projective surface profile based on fractal theory is proposed. Taking AI(OH)3 material particles as an example, the scanning electron microscope (SEM) photos of particles were processed using an image.processing software (IPS) Photoshop. Taking the pixel as a fixed yardstick with the enlargement of the size of the particle image, the box-dimension and circumference-area (C-S) methods were used to calculate the FD of the surface profile of the particle. The FD of 1.2623 of the classic Koch curve is obtained, which approximates the true value of 1.2628. The complexities of the object's boundary and surface micro-topography are simulated successfully by a generator method.
文摘Simplification and encryption are performed on the point cloud data concerning high-relief( 20 cm tillage) and low-relief( raking bare slope) terrain on a different scale of observation. We select three indicators( surface curvature,slope aspect and surface roughness) to evaluate the effect of simplification and encryption on micro-topography data analysis. The results show that simplification and encryption have a significant impact on the curvature of high-relief terrain,but have no significant impact on low-relief terrain. The slope aspect change is not significant after 5,10 mm data simplification and encryption; 1 mm simplification has a regular impact on surface roughness; 5 mm encryption and simplification have a complex impact on high-relief terrain; 10 mm encryption has a complex impact on high-relief terrain roughness change but a regular impact on bare slope change.
基金the National Natural Science Foundation of China under grant number 41771489the National Natural Science Foundation of China under grant number 41701497the Open Foundation of Hengyang Base of International Centre on Space Technologies for Natural and Cultural Heritage under the auspices of UNESCO under grant number HIST19K02.
文摘Airborne laser scanning(ALS)has recently been identified as a potential tool in topographic mapping for archaeological prospection.However,most existing applications in this field refers to manned ALS systems,for which the high operation and maintenance costs limits its application in small-scale archaeological investigation.In this paper,we conducted an exploratory study on the application of the unmanned aerial vehicle(UAV)laser scanning(ULS)system in ancient micro-topography detection over wooded areas.Compared with manned ALS technology,we analyzed the advantages and potentials of ULS technology for archaeological applications.Then we outlined existing mainstream survey-grade UAV-based laser scanners,data processing and visualization approaches.Furthermore,we performed case studies in three cultural heritage sites in Zhejiang Province,China using two representative mainstream survey-grade ULS systems.Results were then verified by an in-site investigation.Finally,the correct selection of ULS devices,the planning of data acquisition missions and the use of appropriate data processing methods specifically for archaeological prospection were discussed.This paper provides a cost-effective and flexible solution for micro-topography detection in wooded areas.ULS technology,as demonstrated here,can be an important supplement to existing archaeological investigation methods,particularly for small-scale areas,and has promising prospects in archaeological applications.
基金financially supported by Forestry Industry Research Special Funds for Public Welfare Projects(201104002-2)China National Scientific and Technical Innovation Research Project for 12th Five Year Plan(2015BAD07B0201)
文摘Soil water is an important factor restricting afforestation on the semi-arid Loess Plateau.The microtopography of the loess slope has changed the distribution pattern of soil water on the slope.To improve water utilization efficiency and optimize afforestation configuration patterns,the relationship between soil water and precipitation at micro-topographic scale must be studied.We used time series analysis to study the temporal variation of soil water and its response to precipitation in four kinds of micro-topographies and undisturbed slope on loess slopes.Micro-topographies significantly influenced soil water distribution and dynamics on the slopes.Soil water stored in the platform,sinkhole,and ephemeral gully influenced subsequent soil water for 4 weeks,whereas soil water stored in the scarp and undisturbed slope could influence soil water for 2 weeks.It took 12 weeks,10 weeks,18 weeks,6 weeks,and 12 weeks for precipitation to reach the deeper soil layer in the platform,sinkhole,scarp,ephemeral gully,and undisturbed slope,respectively.These soil water characteristics in different micro-topographies are vital factors that should be taken into consideration when undertaking afforestation on the Loess Plateau.
基金Funded by the Jiangsu Province Science and Technology Support Program(Industry)(No.BE2014818)
文摘The TiN, TiAlN, and TiAlSiN coatings were prepared on YT14 cutting tool surface with CAIP(cathode arc ion plating), the surface morphologies and phases were analyzed with FESEM(field emission scanning electron microscopy), and XRD(X-ray diffraction), respectively, and the coating parameters such as 3D surface micro-topography, grain size, surface height, hierarchy, profile height, and power spectral density, etc, were measured with AFM(atomic force microscope). The results show that the phases of TiN, TiAlN, and TiAlSiN coatings are TiN, TiN+TiAlN, TiN+Si_3N_4+TiAlN, respectively, while the surface roughness Sa of TiN, TiAlN, and TiAlSiN coatings is 75.3, 98.9, and 42.1 nm, respectively, and the roughness depth Sk is 209, 389, and 54 nm, respectively, the sequence of average grain sizes is TiAlN〉TiN〉TiAlSiN. The surface bearing index Sbi of TiN, TiAlN, and TiAlSiN coatings is 0.884, 1.01, and 0.37, respectively, and the sequence of surface bearing capability is TiAlN〉TiN〉TiAlSiN. At the lower wavelength(102-103 nm), the power spectral densities have a certain correlation, and the sequence of TiN〉TiAlN〉TiAlSiN, while the correlation is low at the higher wavelength(〉103 nm).
基金financially supported by the 13th Five-Year National Key Research and Development Project (No.2016YFC0501705) funded by the Ministry of Science and Technology (MOST),P.R.China。
文摘Soil moisture is a limiting factor for vegetation restoration on the Loess Plateau, China. Micro-topography may cause heterogeneities in the distribution of soil moisture, but little is known about its effect on deep soil moisture. Our study aims to explore the distribution and impact of soil moisture within the upper 10 m of soil for different microtopographies. Taking undisturbed slope as the control, five micro-topographies were selected. Soil moisture over a depth of 0-10 m from 2017 to 2019 was investigated, and soil particle size and soil organic matter were measured. Variance analysis and multiple comparisons were used to analyze the difference in soil moisture for different microtopographies and multiple-linear regression was used to analyze the influence of micro-topography on soil moisture. There are significant differences in soil moisture within the different layers underlying the examined micro-topographies, while the inter-annual variation in soil water storage for the selected microtopographies increase with increased rainfall. The depth of influence of micro-topographic vegetation on soil moisture exceeded 1000 cm for a gully(GU), 740 cm for a sink hole(SH), 480 cm for a scarp(SC), 360 cm for an ephemeral gully(EG) and 220 cm for a platform(PL). Micro-topography will cause the heterogeneous distribution of soil moisture in the shallower layers, which changes the vegetation distribution differences between micro-topographies. This may be the survival strategy of herbaceous vegetation in response to climate change in the Loess Plateau. For future vegetation restoration efforts, we need to pay attention to the influence of microtopography on soil moisture.
文摘This article describes how the cartographic depth-to-water (DTW) index in combination with other variables can be used to quantify, model and map the distribution of common forest floor bryophytes, at 1 m resolution. This was done by way of a case study, using 12 terrain and climate representative locations across New Brunswick, Canada. The presence/absence by moss species was determined at each location along upland-to-wetland transects within >10-m spaced 1-m2 forest floor plots. It was found that Bazzania trilobata, Dicranum polysetum, Polytrichum commune, Hylocomium splendens, and Pleurozium schreberi had greater probabilities of occurrence in well-drained forested areas, whereas Sphagnum fuscum and Sphagnum girgensohnii dominated in low-lying wet areas. The presence/absence of each species was quantified by way of logistic regression analyses, using DTW, slope, canopy closure, forest litter depth, ecosite type (8 classes), nutrient regime (4 classes, poor to rich);vegetation type (deciduous, coniferous, mixed, and shrubs), and macro- and micro-topography (upland, wetland;mounds, pits) as predictor variables. Among these, log10DTW and forest litter depth were the most consistent predictor variables, followed by mound versus pit. For the mapping purpose, only log10DTW and already mapped classifications for upland versus wetland and vegetation type were used to predict the probability of occurrences for the most frequent moss species, namely, D. polysetum, P. schreberi and Sphagnum spp. The overall accuracy for doing this ranged from 67% to 83%, with false positives and negatives amounting to 18% to 42%. The overall classification accuracy exceeded the probability by chance alone at 76.8%, with the significance level reached at 75.3%. The average level of probability by chance alone was 60.3%.
基金the support of the National Natural Science Foundation of China(No.51535012)the Science and Technology Project of Jiangxi Provincial Department of Education(No.GJJ220512)the Talent Launch Project of Jiangxi University of Science and Technology(No.205200100621).
文摘Surface integrity parameters such as surface topography,hardness gradient,and residual stress have significant impacts on contact fatigue of tooth surface.To meet the needs of efficient and stable contact fatigue calculations,efficient mixed lubrication calculations were achieved in this study by dividing the lubrication region and reconstructing the asperities.By considering the influence of the residual stress and hardness gradient on the tooth surface,a calculation model for gear contact fatigue was established and verified based on fatigue tests of gear contact.The results are as follows:(1)Due to the influence of rough surfaces,there were two high-stress peaks in the near-surface layer(6μm)and sub-surface layer(245μm)of the tooth surface,which corresponded to micro-pitting and pitting areas,respectively.(2)Ignoring the influence of various integrity parameters led to errors of several orders of magnitude in predicting the contact fatigue life of the tooth surface.(3)The fatigue failure area predicted by the model proposed in this paper was consistent with the experimental results,and the average error in the fatigue life was approximately 14.3%.The method proposed in this paper can effectively predict the contact fatigue life and dangerous areas of the tooth surface,with advantages of high computational efficiency and good stability,laying a foundation for research on tooth surface anti-fatigue design.