Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU),and the contacting between the robot foot end and the ground is complex and variable,which increases the difficulty of force con...Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU),and the contacting between the robot foot end and the ground is complex and variable,which increases the difficulty of force control inevitably.In the recent years,although many scholars researched some control methods such as disturbance rejection control,parameter self-adaptive control,impedance control and so on,to improve the force control performance of HDU,the robustness of the force control still needs improving.Therefore,how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper.The force control system mathematic model of HDU is established by the mechanism modeling method,and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived,considering the dynamic characteristics of the load stiffness and the load damping under different environment structures.Then,simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform,which provides the foundation for the force control compensation experiment research.In addition,the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping,under which the force control compensation method is introduced,and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment.The research results indicate that if the load characteristics are known,the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation,i.e.,this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters,thereby,the online PID parameters tuning control method which is complex needs not be adopted.All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.展开更多
Tong's B-type water drive method was proposed as early as the 1970s and has been widely applied in the dynamic prediction and effective evaluation of oilfield development.Through extensive applications and studies...Tong's B-type water drive method was proposed as early as the 1970s and has been widely applied in the dynamic prediction and effective evaluation of oilfield development.Through extensive applications and studies,many researchers found that the statistical constants in the formula of the Tong's B-type water drive method(also referred to as the Tong's B-type formula)are not applicable to multiple types of reservoirs,especially low-permeability ones,due to the limited range of reservoir types when the formula was conceived.Moreover,they put forward suggestions to improve the Tong's B-type formula,most of which focused on the research and calculation of the first constant in the formula.For oilfields in the development stages of high or ultra-high water cuts,it is widely accepted that different types of reservoirs have different limit water cuts.This understanding naturally makes it necessary to further modify the Tong's B-type formula.It is practically significant to establish the water drive formula and cross plot considering that the two constants in the formula vary with reservoir type.By analyzing the derivation process and conditions of the Tong's B-type formula,this study points out two key problems,i.e.,the two constants 7.5 and 1.69 in the formula are not applicable to all types of reservoir.Given this,this study establishes a function between key reservoir parameters and the first constant and another function between key reservoir parameters and recovery efficiency.Based on the established two functions and considering that different types of oil reservoir have different limit water cuts,this study develops an improved Tong's B-type formula and prepares the corresponding improved cross plot.The results of this study will improve the applicability and accuracy of Tong's B-type water drive method in predicting the trend of water cut increasing for different types of oil reservoirs.展开更多
Based on the evaluation of dynamic performance for feed drives in machine tools, this paper presents a two-stage tuning method of servo parameters. In the first stage, the evaluation of dynamic performance, parameter ...Based on the evaluation of dynamic performance for feed drives in machine tools, this paper presents a two-stage tuning method of servo parameters. In the first stage, the evaluation of dynamic performance, parameter tuning and optimization on a mechatronic integrated system simulation platform of feed drives are performed. As a result, a servo parameter combination is acquired. In the second stage, the servo parameter combination from the first stage is set and tuned further in a real machine tool whose dynamic performance is measured and evaluated using the cross grid encoder developed by Heidenhain GmbH. A case study shows that this method simplifies the test process effectively and results in a good dynamic performance in a real machine tool.展开更多
Underwater vehicles play important roles in underwater observation, ocean resource exploration, and sample collection.Soft robots are a unique type of underwater vehicles due to their good environmental adaptability a...Underwater vehicles play important roles in underwater observation, ocean resource exploration, and sample collection.Soft robots are a unique type of underwater vehicles due to their good environmental adaptability and motion flexibility, although they are weak in terms of actuation and response ability. The transient driving method(TDM) was developed to resolve these shortcomings. However, the interaction between the robots’ swift motions and flow fields has not yet been fully studied. In this study, a computational fluid dynamic model is developed to simulate the fluid fields disturbed by transient high-speed motions generated by the robots. Focusing on the dependence of robot dynamics on thrust force and eccentricity, typical structures of both flow and turbulence fields around the robots are obtained to quantitatively analyze robot kinematic performance, velocity distribution, vortex systems, surface pressure, and turbulence. The results demonstrate the high-speed regions at the robots’ heads and tails and the vortex systems due to sudden expansion, indicating a negative relationship between the maximum fluid velocity and eccentricity. The reported results provide useful information for studying the environmental interaction abilities of robots during operating acceleration and steering tasks.展开更多
This paper focuses on the high-voltage safety of drive motor systems in new energy vehicles and conducts standardized research on functional safety design in the concept phase. In view of the lack of high-voltage haza...This paper focuses on the high-voltage safety of drive motor systems in new energy vehicles and conducts standardized research on functional safety design in the concept phase. In view of the lack of high-voltage hazard analysis for drive motor systems in existing standards, based on theories such as GB/T 34590 and ISO 26262, the safety levels are deeply analyzed. The HAZOP method is innovatively used, and 16 types of guidewords are combined to comprehensively analyze the system functions, identifying vehicle hazards such as high-voltage electric shock caused by functional abnormalities, including high-voltage interlock function failure and abnormal active discharge. Subsequently, safety goals such as preventing high-voltage electric shock are set, functional safety requirements such as accurately obtaining collision signals and timely discharging high-voltage electricity are formulated, and requirements for external signal sources and other technologies are clearly defined, constructing a complete high-voltage safety protection system. The research results provide important technical support and standardized references for the high-voltage safety functional design of drive motor systems in new energy vehicles, and are of great significance for improving the high-voltage safety level of the new energy vehicle industry, expecting to play a key role in subsequent product development and standard improvement.展开更多
Adverse weather has a considerable impact on the behavior of drivers,which puts vehicles and drivers in hazardous situations that can easily cause traffic accidents.This research examines how drivers'perceived ris...Adverse weather has a considerable impact on the behavior of drivers,which puts vehicles and drivers in hazardous situations that can easily cause traffic accidents.This research examines how drivers'perceived risk changes during car following under different adverse weather conditions by using driving simulation experiment.An expressway road scenario was built in a driving simulator.Eleven types of weather conditions,including clear sky,four levels of fog,four levels of rain and two levels of snow,were designed.Furthermore,to simulate the carfollowing behavior,three car-following situations were designed according to the motion of the lead car.Seven car-following indicators were extracted based on risk homeostasis theory.Then,the entropy weight method was used to integrate the selected indicators into an index to represent the drivers'perceived risk.Multiple linear regression was applied to measure the influence of adverse weather conditions on perceived risk,and the coefficients were considered as indicators.The results demonstrate that both the weather conditions and road type have significant effects on car-following behavior.Drivers'perceived risk tends to increase with the worsening weather conditions.Under conditions of extremely poor visibility,such as heavy dense fog,the measured drivers'perceived risk is low due to the difficulties in vehicle operation and limited visibility.展开更多
Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we use...Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we used a coincident-loop and central loop type of configuration, where the coil plane l) vertical to and 2) parallel to the working face. A SIROTEM instrument at different locations was used to observe the transient electromagnetic responses of the excavator and to analyze the response amplitudes. The result shows that the tunneling machine affects the advanced detection data and is related to the way the coil is coupled. When the excavator is 6 m from the observatory, the interference of tunneling machine can be ignored.展开更多
In this paper,a kind of lateral stability control strategy is put forward about the four wheel independent drive electric vehicle.The design of control system adopts hierarchical structure.Unlike the previous control ...In this paper,a kind of lateral stability control strategy is put forward about the four wheel independent drive electric vehicle.The design of control system adopts hierarchical structure.Unlike the previous control strategy,this paper introduces a method which is the combination of sliding mode control and optimal allocation algorithm.According to the driver’s operation commands(steering angle and speed),the steady state responses of the sideslip angle and yaw rate are obtained.Based on this,the reference model is built.Upper controller adopts the sliding mode control principle to obtain the desired yawing moment demand.Lower controller is designed to satisfy the desired yawing moment demand by optimal allocation of the tire longitudinal forces.Firstly,the optimization goal is built to minimize the actuator cost.Secondly,the weighted least-square method is used to design the tire longitudinal forces optimization distribution strategy under the constraint conditions of actuator and the friction oval.Beyond that,when the optimal allocation algorithm is not applied,a method of axial load ratio distribution is adopted.Finally,Car Sim associated with Simulink simulation experiments are designed under the conditions of different velocities and different pavements.The simulation results show that the control strategy designed in this paper has a good following effect comparing with the reference model and the sideslip angle is controlled within a small rang at the same time.Beyond that,based on the optimal distribution mode,the electromagnetic torque phase of each wheel can follow the trend of the vertical force of the tire,which shows the effectiveness of the optimal distribution algorithm.展开更多
Lead zirconate titanium solid-solution (PZT) thin films with variousthickness are synthesized on titanium substrates by repeated hydrothermal treatments. Young modulus,electric-field-induced displacement and the densi...Lead zirconate titanium solid-solution (PZT) thin films with variousthickness are synthesized on titanium substrates by repeated hydrothermal treatments. Young modulus,electric-field-induced displacement and the density of the PZT film are measured respectively.Bimorph- type bending actuators are fabricated using these films. The model, which is used toanalyze the driving ability of bimorph-type bending actuators by hydrothermal method, is set up. Itcan be seen that the driving ability of bimorph-type bending actuators can be greatly improved byoptimizing the thickness of PZT thin film and substrate from the theoretical analysis results. Themeasured values are expected to agree with the theoretical values calculated by the above model.展开更多
This paper describes the robust optimum design which combines the geometrical optimization method proposed by Hashimoto and statistical method. Recently, 2.5″ hard disk drives (HDDs) are widely used for mobile device...This paper describes the robust optimum design which combines the geometrical optimization method proposed by Hashimoto and statistical method. Recently, 2.5″ hard disk drives (HDDs) are widely used for mobile devices such as laptops, video cameras and car navigation systems. In mobile applications, high durability towards external vibrations and shocks are essentials to the bearings of HDD spindle motor. In addition, the bearing characteristics are influenced by manufacturing error because of small size of the bearings of HDD. In this paper, the geometrical optimization is carried out to maximize the bearing stiffness using sequential quadratic programming to improve vibration characteristics. Additionally, the bearing stiffness is analyzed considering dimensional tolerance of the bearing using statistical method. The dimensional tolerance is assumed to distribute according to the Gaussian distribution, and then the bearing stiffness is estimated by combining the expectation and standard deviation. As a result, in the robust optimum design, new groove geometry of bearing can be obtained in which the bearing stiffness is four times higher than the stiffness of conventional spiral groove bearing. Moreover, the bearing has lower variability compared with the result of optimum design neglecting dimensional tolerance.展开更多
Torsional vibration of roller oscillating tooth gear drive (ROTGD) is studied in this paper. On the basis of conservation law for kinetic energy and potential energy, the mathematical expressions are developed which d...Torsional vibration of roller oscillating tooth gear drive (ROTGD) is studied in this paper. On the basis of conservation law for kinetic energy and potential energy, the mathematical expressions are developed which describe transformation of moment of inertia of inertial components into input shaft. Also, the formula is derived which expresses transformation of contact stiffness of elastic components into input shaft torsional stiffness. Besides, torsional vibration model of ROTGD is presented by using the transfer matrix method, and natural frequencies and vibration mode shapes are determined. Eventually, an example is given.展开更多
During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have ...During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata.展开更多
Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a not...Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.展开更多
To describe the complex phase transformation in the process of depletion exploitation of volatile oil reservoir,four fluid phases are defined,and production and remaining volume of these phases are calculated based on...To describe the complex phase transformation in the process of depletion exploitation of volatile oil reservoir,four fluid phases are defined,and production and remaining volume of these phases are calculated based on the principle of surface volume balance,then the recovery prediction method of volatile oil reservoir considering the influence of condensate content in released solution gas and the correction method of multiple degassing experiments data are established.Taking three typical kinds of crude oil(black oil,medium-weak volatile oil,strong volatile oil)as examples,the new improved method is used to simulate constant volume depletion experiments based on the corrected data of multiple degassing experiment to verify the reliability of the modified method.By using"experimental data and traditional method","corrected data and traditional method"and"corrected data and modified method",recovery factors of these three typical kinds of oil are calculated respectively.The source of parameters and the calculation methods have little effect on the recovery of typical black oil.However,with the increase of crude oil volatility,the oil recovery will be seriously underestimated by using experimental data or traditional method.The combination of"corrected data and modified method"considers the influence of condensate in gas phase in both experimental parameters and calculation method,and has good applicability to typical black oil and volatile oil.The strong shrinkage of volatile oil makes more"liquid oil"convert to"gaseous oil",so volatile oil reservoir can reach very high oil recovery by depletion drive.展开更多
Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recogn...Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recognition System(TSRS)is one of themost important components ofADAS.Among the challengeswith TSRS is being able to recognize road signs with the highest accuracy and the shortest processing time.Accordingly,this paper introduces a new real time methodology recognizing Speed Limit Signs based on a trio of developed modules.Firstly,the Speed Limit Detection(SLD)module uses the Haar Cascade technique to generate a new SL detector in order to localize SL signs within captured frames.Secondly,the Speed Limit Classification(SLC)module,featuring machine learning classifiers alongside a newly developed model called DeepSL,harnesses the power of a CNN architecture to extract intricate features from speed limit sign images,ensuring efficient and precise recognition.In addition,a new Speed Limit Classifiers Fusion(SLCF)module has been developed by combining trained ML classifiers and the DeepSL model by using the Dempster-Shafer theory of belief functions and ensemble learning’s voting technique.Through rigorous software and hardware validation processes,the proposedmethodology has achieved highly significant F1 scores of 99.98%and 99.96%for DS theory and the votingmethod,respectively.Furthermore,a prototype encompassing all components demonstrates outstanding reliability and efficacy,with processing times of 150 ms for the Raspberry Pi board and 81.5 ms for the Nano Jetson board,marking a significant advancement in TSRS technology.展开更多
Recently, linear motors can have high speed control, high acceleration-deceleration. So linear motors are widely used in industrial applications such as precision machine tools. In our laboratory focusing on transport...Recently, linear motors can have high speed control, high acceleration-deceleration. So linear motors are widely used in industrial applications such as precision machine tools. In our laboratory focusing on transport system, we propose parallel synchronous drive of used the PM-LSM (permanent magnet linear synchronous motor). It can pass luggage without having to stop the working. When you establish "parallel synchronous drive", a motor follows the other motor. In our laboratory, one of the motors is called "master motor" and the other motor called "slave motor". The master motor's speed and position pass slave motor then establish parallel synchronous drive. Therefore, slave motor requires high-responsive and precision that follows the master motor. This paper focuses on the control of the slave motor.展开更多
Based on generalized the variation method, by introducing Hamilton function and Lagrange multiplier, this paper proposed a linear quadratic optimal control strategy for an incomplete controllable system with fixed ter...Based on generalized the variation method, by introducing Hamilton function and Lagrange multiplier, this paper proposed a linear quadratic optimal control strategy for an incomplete controllable system with fixed terminal state and time. Applying the proposed optimal control to the simple two-input dual-stage actuator magnetic head positioning system with three degrees-of-freedom, the simulation results show that the system has no residual vibration at the terminal position and time, which can reduce the total access time during head positioning process. To verify the validation of the optimal control strategy of three degrees-of-freedom spring-mass models in actual magnetic head positioning of hard disk drives, a finite element model of an actual magnetic head positioning system is presented. Substituting the optimal control force from simple three degrees-of-freedom spring-mass models into the finite element model, the simulation results show that the magnetic head also has no residual vibration at the end of track-to-track travel. That is to say, the linear quadratic optimal control technique based on simple two-input dual- stage actuator system with three degrees-of-freedom proposed in this paper is of high reliability for the industrial application of an actual magnetic head positioning system.展开更多
Suppression of spiral wave and turbulence in the complex Cinzburg-Landau equation (CCLE) plays a prominent role in nonlinear science and complex dynamical system. In this paper, the nonlinear behavior of the propose...Suppression of spiral wave and turbulence in the complex Cinzburg-Landau equation (CCLE) plays a prominent role in nonlinear science and complex dynamical system. In this paper, the nonlinear behavior of the proposed drive-response system, which consists of two coupled OGLEs, is investigated and controlled by a state error feedback controller with the lattice Boltzmann method. First, spiral wave appropriate parameters of the response system under the no-flux and turbulence are, respectively, generated by selecting boundary and perpendicular gradient initial conditions. Then, based on the random initial condition, the target wave yielded by introducing spatially localized inhomogeneity into the drive system is applied on the above response system. The numerical simulation results show that the spiral wave and turbulence existing in the response system could be successfully eliminated by the target wave in the drive system during a short evolution time. Furthermore, it turns out that the transient time for the drive course is related to the control intensity imposed on the whole media.展开更多
The control of nuclear fuel manipulator crane (MC) drive system is essential for its running and other systems are designed surrounding the drive system.This paper gives a brief introduction to the composition and f...The control of nuclear fuel manipulator crane (MC) drive system is essential for its running and other systems are designed surrounding the drive system.This paper gives a brief introduction to the composition and function of MC,analyses its drive mode and control method and applies PLC to control its frequency transducer directly to help the motor work more stable.Based on the control requirements of bridge,trolley,Hoist,the control system of bridge applies a drive mode with 2-drag2 drive model on both sides and a multi-control method to realize simultaneous runningof two sides,1-drag-1 model on through-going axes and closed loop control method finish the precise location of trolley,and the using of 1-drag-1 model drive mode and closed loop control method solves the protect control difficulty of hoist which stops/starts repeatedly and changes speed.展开更多
基金Supported by National Key Basic Research Program of China(973 Program,Grant No.2014CB046405)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)Hebei Military and Civilian Industry Development Funds Projects of China(Grant No.2015B060)
文摘Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU),and the contacting between the robot foot end and the ground is complex and variable,which increases the difficulty of force control inevitably.In the recent years,although many scholars researched some control methods such as disturbance rejection control,parameter self-adaptive control,impedance control and so on,to improve the force control performance of HDU,the robustness of the force control still needs improving.Therefore,how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper.The force control system mathematic model of HDU is established by the mechanism modeling method,and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived,considering the dynamic characteristics of the load stiffness and the load damping under different environment structures.Then,simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform,which provides the foundation for the force control compensation experiment research.In addition,the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping,under which the force control compensation method is introduced,and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment.The research results indicate that if the load characteristics are known,the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation,i.e.,this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters,thereby,the online PID parameters tuning control method which is complex needs not be adopted.All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
文摘Tong's B-type water drive method was proposed as early as the 1970s and has been widely applied in the dynamic prediction and effective evaluation of oilfield development.Through extensive applications and studies,many researchers found that the statistical constants in the formula of the Tong's B-type water drive method(also referred to as the Tong's B-type formula)are not applicable to multiple types of reservoirs,especially low-permeability ones,due to the limited range of reservoir types when the formula was conceived.Moreover,they put forward suggestions to improve the Tong's B-type formula,most of which focused on the research and calculation of the first constant in the formula.For oilfields in the development stages of high or ultra-high water cuts,it is widely accepted that different types of reservoirs have different limit water cuts.This understanding naturally makes it necessary to further modify the Tong's B-type formula.It is practically significant to establish the water drive formula and cross plot considering that the two constants in the formula vary with reservoir type.By analyzing the derivation process and conditions of the Tong's B-type formula,this study points out two key problems,i.e.,the two constants 7.5 and 1.69 in the formula are not applicable to all types of reservoir.Given this,this study establishes a function between key reservoir parameters and the first constant and another function between key reservoir parameters and recovery efficiency.Based on the established two functions and considering that different types of oil reservoir have different limit water cuts,this study develops an improved Tong's B-type formula and prepares the corresponding improved cross plot.The results of this study will improve the applicability and accuracy of Tong's B-type water drive method in predicting the trend of water cut increasing for different types of oil reservoirs.
基金This paper is supported by the Major State Basic Research Development Program of China under Grant No2005CB724101the Key Items Program of International Science and Technology Cooperation of China under Grant No2003DF000021
文摘Based on the evaluation of dynamic performance for feed drives in machine tools, this paper presents a two-stage tuning method of servo parameters. In the first stage, the evaluation of dynamic performance, parameter tuning and optimization on a mechatronic integrated system simulation platform of feed drives are performed. As a result, a servo parameter combination is acquired. In the second stage, the servo parameter combination from the first stage is set and tuned further in a real machine tool whose dynamic performance is measured and evaluated using the cross grid encoder developed by Heidenhain GmbH. A case study shows that this method simplifies the test process effectively and results in a good dynamic performance in a real machine tool.
基金supported by the Key Research and Development Program of Zhejiang Province (No. 2021C03180), Chinathe Fundamental Research Funds for the Central Universities (No. 226-2022-00096), China+2 种基金the Startup Fund of the Hundred Talent Program at Zhejiang University, Chinathe China Scholarship Council (No. 202006320349)the Tezhi Program of Zhejiang Province (No. 2021R52049), China。
文摘Underwater vehicles play important roles in underwater observation, ocean resource exploration, and sample collection.Soft robots are a unique type of underwater vehicles due to their good environmental adaptability and motion flexibility, although they are weak in terms of actuation and response ability. The transient driving method(TDM) was developed to resolve these shortcomings. However, the interaction between the robots’ swift motions and flow fields has not yet been fully studied. In this study, a computational fluid dynamic model is developed to simulate the fluid fields disturbed by transient high-speed motions generated by the robots. Focusing on the dependence of robot dynamics on thrust force and eccentricity, typical structures of both flow and turbulence fields around the robots are obtained to quantitatively analyze robot kinematic performance, velocity distribution, vortex systems, surface pressure, and turbulence. The results demonstrate the high-speed regions at the robots’ heads and tails and the vortex systems due to sudden expansion, indicating a negative relationship between the maximum fluid velocity and eccentricity. The reported results provide useful information for studying the environmental interaction abilities of robots during operating acceleration and steering tasks.
文摘This paper focuses on the high-voltage safety of drive motor systems in new energy vehicles and conducts standardized research on functional safety design in the concept phase. In view of the lack of high-voltage hazard analysis for drive motor systems in existing standards, based on theories such as GB/T 34590 and ISO 26262, the safety levels are deeply analyzed. The HAZOP method is innovatively used, and 16 types of guidewords are combined to comprehensively analyze the system functions, identifying vehicle hazards such as high-voltage electric shock caused by functional abnormalities, including high-voltage interlock function failure and abnormal active discharge. Subsequently, safety goals such as preventing high-voltage electric shock are set, functional safety requirements such as accurately obtaining collision signals and timely discharging high-voltage electricity are formulated, and requirements for external signal sources and other technologies are clearly defined, constructing a complete high-voltage safety protection system. The research results provide important technical support and standardized references for the high-voltage safety functional design of drive motor systems in new energy vehicles, and are of great significance for improving the high-voltage safety level of the new energy vehicle industry, expecting to play a key role in subsequent product development and standard improvement.
基金supported by the National Natural Science Foundation of China project(61672067)Science and Technology Program of Beijing(Z151100002115040)
文摘Adverse weather has a considerable impact on the behavior of drivers,which puts vehicles and drivers in hazardous situations that can easily cause traffic accidents.This research examines how drivers'perceived risk changes during car following under different adverse weather conditions by using driving simulation experiment.An expressway road scenario was built in a driving simulator.Eleven types of weather conditions,including clear sky,four levels of fog,four levels of rain and two levels of snow,were designed.Furthermore,to simulate the carfollowing behavior,three car-following situations were designed according to the motion of the lead car.Seven car-following indicators were extracted based on risk homeostasis theory.Then,the entropy weight method was used to integrate the selected indicators into an index to represent the drivers'perceived risk.Multiple linear regression was applied to measure the influence of adverse weather conditions on perceived risk,and the coefficients were considered as indicators.The results demonstrate that both the weather conditions and road type have significant effects on car-following behavior.Drivers'perceived risk tends to increase with the worsening weather conditions.Under conditions of extremely poor visibility,such as heavy dense fog,the measured drivers'perceived risk is low due to the difficulties in vehicle operation and limited visibility.
基金support received from the National Basic Research Program of China (No2007CB209400)the National Natural Science Foundation of China (No50774085)the Young Scientists Fund of the School Science Foundation of CUMT (No2008A046)
文摘Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we used a coincident-loop and central loop type of configuration, where the coil plane l) vertical to and 2) parallel to the working face. A SIROTEM instrument at different locations was used to observe the transient electromagnetic responses of the excavator and to analyze the response amplitudes. The result shows that the tunneling machine affects the advanced detection data and is related to the way the coil is coupled. When the excavator is 6 m from the observatory, the interference of tunneling machine can be ignored.
基金supported by the National Nature Science Foundation(U1664263)National Key R&D Program of China(2016YFB0101102)。
文摘In this paper,a kind of lateral stability control strategy is put forward about the four wheel independent drive electric vehicle.The design of control system adopts hierarchical structure.Unlike the previous control strategy,this paper introduces a method which is the combination of sliding mode control and optimal allocation algorithm.According to the driver’s operation commands(steering angle and speed),the steady state responses of the sideslip angle and yaw rate are obtained.Based on this,the reference model is built.Upper controller adopts the sliding mode control principle to obtain the desired yawing moment demand.Lower controller is designed to satisfy the desired yawing moment demand by optimal allocation of the tire longitudinal forces.Firstly,the optimization goal is built to minimize the actuator cost.Secondly,the weighted least-square method is used to design the tire longitudinal forces optimization distribution strategy under the constraint conditions of actuator and the friction oval.Beyond that,when the optimal allocation algorithm is not applied,a method of axial load ratio distribution is adopted.Finally,Car Sim associated with Simulink simulation experiments are designed under the conditions of different velocities and different pavements.The simulation results show that the control strategy designed in this paper has a good following effect comparing with the reference model and the sideslip angle is controlled within a small rang at the same time.Beyond that,based on the optimal distribution mode,the electromagnetic torque phase of each wheel can follow the trend of the vertical force of the tire,which shows the effectiveness of the optimal distribution algorithm.
基金This project is supported by National Natural Science Foundation of China(No.90207003) and Returnee Foundation of Dalian.
文摘Lead zirconate titanium solid-solution (PZT) thin films with variousthickness are synthesized on titanium substrates by repeated hydrothermal treatments. Young modulus,electric-field-induced displacement and the density of the PZT film are measured respectively.Bimorph- type bending actuators are fabricated using these films. The model, which is used toanalyze the driving ability of bimorph-type bending actuators by hydrothermal method, is set up. Itcan be seen that the driving ability of bimorph-type bending actuators can be greatly improved byoptimizing the thickness of PZT thin film and substrate from the theoretical analysis results. Themeasured values are expected to agree with the theoretical values calculated by the above model.
文摘This paper describes the robust optimum design which combines the geometrical optimization method proposed by Hashimoto and statistical method. Recently, 2.5″ hard disk drives (HDDs) are widely used for mobile devices such as laptops, video cameras and car navigation systems. In mobile applications, high durability towards external vibrations and shocks are essentials to the bearings of HDD spindle motor. In addition, the bearing characteristics are influenced by manufacturing error because of small size of the bearings of HDD. In this paper, the geometrical optimization is carried out to maximize the bearing stiffness using sequential quadratic programming to improve vibration characteristics. Additionally, the bearing stiffness is analyzed considering dimensional tolerance of the bearing using statistical method. The dimensional tolerance is assumed to distribute according to the Gaussian distribution, and then the bearing stiffness is estimated by combining the expectation and standard deviation. As a result, in the robust optimum design, new groove geometry of bearing can be obtained in which the bearing stiffness is four times higher than the stiffness of conventional spiral groove bearing. Moreover, the bearing has lower variability compared with the result of optimum design neglecting dimensional tolerance.
文摘Torsional vibration of roller oscillating tooth gear drive (ROTGD) is studied in this paper. On the basis of conservation law for kinetic energy and potential energy, the mathematical expressions are developed which describe transformation of moment of inertia of inertial components into input shaft. Also, the formula is derived which expresses transformation of contact stiffness of elastic components into input shaft torsional stiffness. Besides, torsional vibration model of ROTGD is presented by using the transfer matrix method, and natural frequencies and vibration mode shapes are determined. Eventually, an example is given.
基金Beijing Postdoctoral Research Activity Funding Project,Grant/Award Number:2022-ZZ-097Beijing Municipal Natural Science Foundation,Grant/Award Number:8182048。
文摘During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata.
基金supported by the National Natural Science Foundation of China(42377354)the Natural Science Foundation of Hubei province(2024AFB951)the Chunhui Plan Cooperation Research Project of the Chinese Ministry of Education(202200199).
文摘Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.
基金Supported by the China National Science and Technology Major Project(2016ZX05027)。
文摘To describe the complex phase transformation in the process of depletion exploitation of volatile oil reservoir,four fluid phases are defined,and production and remaining volume of these phases are calculated based on the principle of surface volume balance,then the recovery prediction method of volatile oil reservoir considering the influence of condensate content in released solution gas and the correction method of multiple degassing experiments data are established.Taking three typical kinds of crude oil(black oil,medium-weak volatile oil,strong volatile oil)as examples,the new improved method is used to simulate constant volume depletion experiments based on the corrected data of multiple degassing experiment to verify the reliability of the modified method.By using"experimental data and traditional method","corrected data and traditional method"and"corrected data and modified method",recovery factors of these three typical kinds of oil are calculated respectively.The source of parameters and the calculation methods have little effect on the recovery of typical black oil.However,with the increase of crude oil volatility,the oil recovery will be seriously underestimated by using experimental data or traditional method.The combination of"corrected data and modified method"considers the influence of condensate in gas phase in both experimental parameters and calculation method,and has good applicability to typical black oil and volatile oil.The strong shrinkage of volatile oil makes more"liquid oil"convert to"gaseous oil",so volatile oil reservoir can reach very high oil recovery by depletion drive.
文摘Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recognition System(TSRS)is one of themost important components ofADAS.Among the challengeswith TSRS is being able to recognize road signs with the highest accuracy and the shortest processing time.Accordingly,this paper introduces a new real time methodology recognizing Speed Limit Signs based on a trio of developed modules.Firstly,the Speed Limit Detection(SLD)module uses the Haar Cascade technique to generate a new SL detector in order to localize SL signs within captured frames.Secondly,the Speed Limit Classification(SLC)module,featuring machine learning classifiers alongside a newly developed model called DeepSL,harnesses the power of a CNN architecture to extract intricate features from speed limit sign images,ensuring efficient and precise recognition.In addition,a new Speed Limit Classifiers Fusion(SLCF)module has been developed by combining trained ML classifiers and the DeepSL model by using the Dempster-Shafer theory of belief functions and ensemble learning’s voting technique.Through rigorous software and hardware validation processes,the proposedmethodology has achieved highly significant F1 scores of 99.98%and 99.96%for DS theory and the votingmethod,respectively.Furthermore,a prototype encompassing all components demonstrates outstanding reliability and efficacy,with processing times of 150 ms for the Raspberry Pi board and 81.5 ms for the Nano Jetson board,marking a significant advancement in TSRS technology.
文摘Recently, linear motors can have high speed control, high acceleration-deceleration. So linear motors are widely used in industrial applications such as precision machine tools. In our laboratory focusing on transport system, we propose parallel synchronous drive of used the PM-LSM (permanent magnet linear synchronous motor). It can pass luggage without having to stop the working. When you establish "parallel synchronous drive", a motor follows the other motor. In our laboratory, one of the motors is called "master motor" and the other motor called "slave motor". The master motor's speed and position pass slave motor then establish parallel synchronous drive. Therefore, slave motor requires high-responsive and precision that follows the master motor. This paper focuses on the control of the slave motor.
基金Project supported by the National Natural Science Foundation of China (No. 10472038);the Science Foundation of the Ministry of Education of China for Ph.D. Programme (No. 20050730016);the National Science Foundation of China for 0utstanding Young Researchers (No. 10025208).
文摘Based on generalized the variation method, by introducing Hamilton function and Lagrange multiplier, this paper proposed a linear quadratic optimal control strategy for an incomplete controllable system with fixed terminal state and time. Applying the proposed optimal control to the simple two-input dual-stage actuator magnetic head positioning system with three degrees-of-freedom, the simulation results show that the system has no residual vibration at the terminal position and time, which can reduce the total access time during head positioning process. To verify the validation of the optimal control strategy of three degrees-of-freedom spring-mass models in actual magnetic head positioning of hard disk drives, a finite element model of an actual magnetic head positioning system is presented. Substituting the optimal control force from simple three degrees-of-freedom spring-mass models into the finite element model, the simulation results show that the magnetic head also has no residual vibration at the end of track-to-track travel. That is to say, the linear quadratic optimal control technique based on simple two-input dual- stage actuator system with three degrees-of-freedom proposed in this paper is of high reliability for the industrial application of an actual magnetic head positioning system.
基金Supported by the National Natural Science Foundations of China under Grant Nos.61202051,11272132the Special Fund for Basic Scientific Research of Central CollegesChina University of Geosciences Wuhan under Grant Nos.CUG110828 and CUG130416
文摘Suppression of spiral wave and turbulence in the complex Cinzburg-Landau equation (CCLE) plays a prominent role in nonlinear science and complex dynamical system. In this paper, the nonlinear behavior of the proposed drive-response system, which consists of two coupled OGLEs, is investigated and controlled by a state error feedback controller with the lattice Boltzmann method. First, spiral wave appropriate parameters of the response system under the no-flux and turbulence are, respectively, generated by selecting boundary and perpendicular gradient initial conditions. Then, based on the random initial condition, the target wave yielded by introducing spatially localized inhomogeneity into the drive system is applied on the above response system. The numerical simulation results show that the spiral wave and turbulence existing in the response system could be successfully eliminated by the target wave in the drive system during a short evolution time. Furthermore, it turns out that the transient time for the drive course is related to the control intensity imposed on the whole media.
基金Supported by the National High Technology Research and Development Program of China(No.SQ2010AA0401265006)
文摘The control of nuclear fuel manipulator crane (MC) drive system is essential for its running and other systems are designed surrounding the drive system.This paper gives a brief introduction to the composition and function of MC,analyses its drive mode and control method and applies PLC to control its frequency transducer directly to help the motor work more stable.Based on the control requirements of bridge,trolley,Hoist,the control system of bridge applies a drive mode with 2-drag2 drive model on both sides and a multi-control method to realize simultaneous runningof two sides,1-drag-1 model on through-going axes and closed loop control method finish the precise location of trolley,and the using of 1-drag-1 model drive mode and closed loop control method solves the protect control difficulty of hoist which stops/starts repeatedly and changes speed.