Great strides have been made over the past decade to establish femtosecond lasers in advanced manufacturing systems for enabling new forms of non-contact processing of transparent materials.Research advances have show...Great strides have been made over the past decade to establish femtosecond lasers in advanced manufacturing systems for enabling new forms of non-contact processing of transparent materials.Research advances have shown that a myriad of additive and subtractive techniques is now possible for flexible 2D and 3D structuring of such materials with micro-and nano-scale precision.In this paper,these techniques have been refined and scaled up to demonstrate the potential for 3D writing of high-density optical packaging components,specifically addressing the major bottleneck for efficiently connecting optical fibres to silicon photonic(SiP)processors for use in telecom and data centres.An 84-channel fused silica interposer was introduced for high-density edge coupling of multicore fibres(MCFs)to a SiP chip.Femtosecond laser irradiation followed by chemical etching was further harnessed to open alignment sockets,permitting rapid assembly with precise locking of MCF positions for efficient coupling to laser written optical waveguides in the interposer.A 3D waveguide fanout design provided an attractive balancing of low losses,modematching,high channel density,compact footprint,and low crosstalk.The 3D additive and subtractive processes thus demonstrated the potential for higher scale integration and rapid photonic assembly and packaging of micro-optic components for telecom interconnects,with possible broader applications in integrated biophotonic chips or micro-displays.展开更多
In order to discover the causes of the abnormal noise of shock absorbers, it is necessary to identify the operating characteristics of the shock absorbers. A micro-process model for operation of the hydraulic shock ab...In order to discover the causes of the abnormal noise of shock absorbers, it is necessary to identify the operating characteristics of the shock absorbers. A micro-process model for operation of the hydraulic shock absorber was presented. A novel concept, which describes the process of hydraulic shock absorber by dividing it into smaller steps, was proposed. The dynamic model and the differential equations were established. The results of numerical simulation agree well with data obtained from the vibrostand test, indicating that the collision between the piston and the oil, the alternation of static friction and sliding friction acted between the piston and the cylinder, and the adherence between valve plate and piston result in impact on the piston head near the top dead center and the bottom dead center. Ultimately, the impact excites the high-frequency vibration of the piston structure, which can generate the abnormal noise in the hydraulic shock absorber after its transfer. And the maximum vibration acceleration on the piston head and the abnormal noise increase with the increase of the gap between the oil and piston rod head, the maximum static friction force and the adhering function, respectively.展开更多
Colorless and transparent thin films of collodion are prepared on silicon wafers and K9 optical glass substrates by using spin-coating technique.The visible light transmittance,IR absorption spectra and optical consta...Colorless and transparent thin films of collodion are prepared on silicon wafers and K9 optical glass substrates by using spin-coating technique.The visible light transmittance,IR absorption spectra and optical constants of collodion thin film are measured by UV-3501Spectrophotometer,Fourier transform infrared spectrometer(FTIR)and spectroscopic ellipsometry.The measured results show that its average visible light transmittance is 91.9%,and its average infrared absorptivity is better than 0.69/um.In the visible light region,the refractive index of collodion thin film changes in the range of 1.5—1.53,which accords with normal dispersion.The collodion films are etched using oxygen gas plasma.The surface morphology and thickness of etched thin film are measured by the polarizing microscope and MP-100S thickness measurement system,respectively.The results show that the collodion thin film is etched out in the oxygen gas plasma.展开更多
基金Financial support from Huawei Technologies Co.,Ltd,China(Project YB2016020025)is gratefully acknowledged.
文摘Great strides have been made over the past decade to establish femtosecond lasers in advanced manufacturing systems for enabling new forms of non-contact processing of transparent materials.Research advances have shown that a myriad of additive and subtractive techniques is now possible for flexible 2D and 3D structuring of such materials with micro-and nano-scale precision.In this paper,these techniques have been refined and scaled up to demonstrate the potential for 3D writing of high-density optical packaging components,specifically addressing the major bottleneck for efficiently connecting optical fibres to silicon photonic(SiP)processors for use in telecom and data centres.An 84-channel fused silica interposer was introduced for high-density edge coupling of multicore fibres(MCFs)to a SiP chip.Femtosecond laser irradiation followed by chemical etching was further harnessed to open alignment sockets,permitting rapid assembly with precise locking of MCF positions for efficient coupling to laser written optical waveguides in the interposer.A 3D waveguide fanout design provided an attractive balancing of low losses,modematching,high channel density,compact footprint,and low crosstalk.The 3D additive and subtractive processes thus demonstrated the potential for higher scale integration and rapid photonic assembly and packaging of micro-optic components for telecom interconnects,with possible broader applications in integrated biophotonic chips or micro-displays.
基金Project(200244) supported by the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission, Chongqing University
文摘In order to discover the causes of the abnormal noise of shock absorbers, it is necessary to identify the operating characteristics of the shock absorbers. A micro-process model for operation of the hydraulic shock absorber was presented. A novel concept, which describes the process of hydraulic shock absorber by dividing it into smaller steps, was proposed. The dynamic model and the differential equations were established. The results of numerical simulation agree well with data obtained from the vibrostand test, indicating that the collision between the piston and the oil, the alternation of static friction and sliding friction acted between the piston and the cylinder, and the adherence between valve plate and piston result in impact on the piston head near the top dead center and the bottom dead center. Ultimately, the impact excites the high-frequency vibration of the piston structure, which can generate the abnormal noise in the hydraulic shock absorber after its transfer. And the maximum vibration acceleration on the piston head and the abnormal noise increase with the increase of the gap between the oil and piston rod head, the maximum static friction force and the adhering function, respectively.
基金supported by Shaanxi Province Education Department Key Lab Project(2010JS003,1JS041)Chinese PLA General Armament Department Special Photoelectric Project(40405030104)Basic Research Project of National Defense(A0920110019)
文摘Colorless and transparent thin films of collodion are prepared on silicon wafers and K9 optical glass substrates by using spin-coating technique.The visible light transmittance,IR absorption spectra and optical constants of collodion thin film are measured by UV-3501Spectrophotometer,Fourier transform infrared spectrometer(FTIR)and spectroscopic ellipsometry.The measured results show that its average visible light transmittance is 91.9%,and its average infrared absorptivity is better than 0.69/um.In the visible light region,the refractive index of collodion thin film changes in the range of 1.5—1.53,which accords with normal dispersion.The collodion films are etched using oxygen gas plasma.The surface morphology and thickness of etched thin film are measured by the polarizing microscope and MP-100S thickness measurement system,respectively.The results show that the collodion thin film is etched out in the oxygen gas plasma.