A high pattern resolution is critical for fabricating roll-to-roll printed electronics(R2RPE)products.For enhanced overlay alignment accuracy,position errors between the printer and the substrate web must be eliminate...A high pattern resolution is critical for fabricating roll-to-roll printed electronics(R2RPE)products.For enhanced overlay alignment accuracy,position errors between the printer and the substrate web must be eliminated,particularly in inkjet printing applications.This paper proposes a novel five-degree-of-freedom(5-DOF)flexure-based alignment stage to adjust the posture of an inkjet printer head.The stage effectively compensates for positioning errors between the actuation mechanism and manipulated objects through a series-parallel combination of compliant substructures.Voice coil motors(VCMs)and linear motors serve as actuators to achieve the required motion.Theoretical models were established using a pseudo-rigid-body model(PRBM)methodology and were validated through finite element analysis(FEA).Finally,an alignment stage prototype was fabricated for an experiment.The prototype test results showed that the developed positioning platform attains 5-DOF motion capabilities with 335.1μm×418.9μm×408.1μm×3.4 mrad×3.29 mrad,with cross-axis coupling errors below 0.11%along y-and z-axes.This paper pro-poses a novel 5-DOF flexure-based alignment stage that can be used for error compensation in R2RPE and effectively improves the interlayer alignment accuracy of multi-layer printing.展开更多
An optimal topology design method for multiple inputs and multiple outputs compliant micro-manipulation system is presented. Firstly, the topology design problem is posed in terms of a multiple inputs load and several...An optimal topology design method for multiple inputs and multiple outputs compliant micro-manipulation system is presented. Firstly, the topology design problem is posed in terms of a multiple inputs load and several specified output deflections. The compliance and stiffness of the system are expressed by the mutual potential energy and strain energy, respectively, which can be controlled by a multi-critaria objective function. Secondly, based on the optimality criteria method, a model solution algorithm is presented. Finally, a numerical example is presented to show the validity oftbe presented technique. The optimal topology ofa 4 inputs and 4 outputs compliant mechanism is obtained by using the method, and the corresponding micro-positioning stage system is further designed.展开更多
基金Supported by Natural Science Research Project of Anhui Educational Committee(Grant No.2024AH040010).
文摘A high pattern resolution is critical for fabricating roll-to-roll printed electronics(R2RPE)products.For enhanced overlay alignment accuracy,position errors between the printer and the substrate web must be eliminated,particularly in inkjet printing applications.This paper proposes a novel five-degree-of-freedom(5-DOF)flexure-based alignment stage to adjust the posture of an inkjet printer head.The stage effectively compensates for positioning errors between the actuation mechanism and manipulated objects through a series-parallel combination of compliant substructures.Voice coil motors(VCMs)and linear motors serve as actuators to achieve the required motion.Theoretical models were established using a pseudo-rigid-body model(PRBM)methodology and were validated through finite element analysis(FEA).Finally,an alignment stage prototype was fabricated for an experiment.The prototype test results showed that the developed positioning platform attains 5-DOF motion capabilities with 335.1μm×418.9μm×408.1μm×3.4 mrad×3.29 mrad,with cross-axis coupling errors below 0.11%along y-and z-axes.This paper pro-poses a novel 5-DOF flexure-based alignment stage that can be used for error compensation in R2RPE and effectively improves the interlayer alignment accuracy of multi-layer printing.
基金This project is supported by National Natural Science Foundation of China (No. 50375051)Provincial Natural Science Foundation of Guangdong, China (No. 05006494)+2 种基金Guang-dong Province Technology Project, China (No. 2006A10401004)Guangzhou Municipal Technology Project, China (No. 053J208001)Teaching and Research Award Program for Outstanding Young Teacher in Higher Educa-tion Institutions of Ministry of Education of China
文摘An optimal topology design method for multiple inputs and multiple outputs compliant micro-manipulation system is presented. Firstly, the topology design problem is posed in terms of a multiple inputs load and several specified output deflections. The compliance and stiffness of the system are expressed by the mutual potential energy and strain energy, respectively, which can be controlled by a multi-critaria objective function. Secondly, based on the optimality criteria method, a model solution algorithm is presented. Finally, a numerical example is presented to show the validity oftbe presented technique. The optimal topology ofa 4 inputs and 4 outputs compliant mechanism is obtained by using the method, and the corresponding micro-positioning stage system is further designed.