Understanding the mechanical behavior of diagenetic mineral granules and interfaces in granite provides essential experimental references for constructing micromechanical models of granite.The micromechanical behavior...Understanding the mechanical behavior of diagenetic mineral granules and interfaces in granite provides essential experimental references for constructing micromechanical models of granite.The micromechanical behavior of Yanshanian granite is investigated using scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS)and nanoindentation tests.The results demonstrate transitional mechanical properties at mineral interfaces.The elastic modulus and hardness exhibit intermediate values between adjacent mineral phases.The higher plasticity indices at the interfaces suggest higher plastic deformation capacity of hard-phase minerals in these regions.Additionally,fracture toughness measurements of minerals and interfaces were obtained,with interfacial values ranging from 0.90 to 1.63 MPa·m^(0.5).The analysis of mechanical property relationships shows a significant positive linear correlation between rock-scale elastic modulus and fracture toughness.However,this correlation is substantially lower at the mineral scale,demonstrating a scale effect in the relationship of different mechanical properties.展开更多
基金funded by the National Natural Science Foundation of China(Nos.52422403 and U22A20166)the Deep Earth Probe and Mineral Resources Exploration-National Science and Technology Major Project(No.2024ZD1003903)+1 种基金the Department of Science and Technology of Guangdong Province(No.2019ZT08G315)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515012654).
文摘Understanding the mechanical behavior of diagenetic mineral granules and interfaces in granite provides essential experimental references for constructing micromechanical models of granite.The micromechanical behavior of Yanshanian granite is investigated using scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS)and nanoindentation tests.The results demonstrate transitional mechanical properties at mineral interfaces.The elastic modulus and hardness exhibit intermediate values between adjacent mineral phases.The higher plasticity indices at the interfaces suggest higher plastic deformation capacity of hard-phase minerals in these regions.Additionally,fracture toughness measurements of minerals and interfaces were obtained,with interfacial values ranging from 0.90 to 1.63 MPa·m^(0.5).The analysis of mechanical property relationships shows a significant positive linear correlation between rock-scale elastic modulus and fracture toughness.However,this correlation is substantially lower at the mineral scale,demonstrating a scale effect in the relationship of different mechanical properties.