The acidity of atmospheric aerosols influences fundamental physicochemical processes that affect climate and human health.We recently developed a novel and facilewater-probebased method for directly measuring of the p...The acidity of atmospheric aerosols influences fundamental physicochemical processes that affect climate and human health.We recently developed a novel and facilewater-probebased method for directly measuring of the pH for micrometer-size droplets,providing a promising technique to better understand aerosol acidity in the atmosphere.The complex chemical composition of fine particles in the ambient air,however,poses certain challenges to using a water-probe for pH measurement,including interference from interactions between compositions and the influence of similar compositions on water structure.To explore the universality of our method,it was employed to measure the pH of ammonium,nitrate,carbonate,sulfate,and chloride particles.The pH of particles covering a broad range(0–14)were accurately determined,thereby demonstrating that our method can be generally applied,even to alkaline particles.Furthermore,a standard spectral library was developed by integrating the standard spectra of common hydrated ions extracted through the waterprobe.The library can be employed to identify particle composition and overcome the spectral overlap problem resulting from similar effects.Using the spectral library,all ions were identified and their concentrations were determined,in turn allowing successful pH measurement of multicomponent(ammonium-sulfate-nitrate-chloride)particles.Insights into the synergistic effect of Cl^(–),NO_(3)^(–),and NH_(4)^(+)depletion obtained with our approach revealed the interplay between pH and volatile partitioning.Given the ubiquity of component partitioning and pH variation in particles,the water probemay provide a new perspective on the underlying mechanisms of aerosol aging and aerosol–cloud interaction.展开更多
The interstellar medium molecule thiocarbonyl thioketen,H_(2)CCS,has several stable isomers and has received considerable attention of as-tronomical observation in recent years.The positions of H,C,and S atoms of thre...The interstellar medium molecule thiocarbonyl thioketen,H_(2)CCS,has several stable isomers and has received considerable attention of as-tronomical observation in recent years.The positions of H,C,and S atoms of three isomers lead to di-verse dipole moments and spectro-scopic constants.The anharmonic force field and spectroscopic con-stants of thiocarbonyl thioketen and its isomers are calculated using MP2,B3LYP,and CCSD(T)methods employing correlation consistent basis sets.Molecule structures,rotational spectroscopic constants,and fundamental frequencies are compared with the available experimental data for thiocarbonyl thioketen.Ro-vibrational interaction constants,anharmonic constants,cubic and quartic force constants are predicted for thiocarbonyl thioketen.In addition,some rotational and vibrational spectroscopic parameters are predict-ed with the same level of theory for thioacetylene,HCCSH,and thiirene,(CH)_(2)S.The predic-tions of these spectroscopic constants are expected to guide the future astronomical observa-tion and high resolution experimental work for C_(2)H_(2)S isomers.展开更多
Semiconductor colloidal quantum wells(CQWs)with atomic-precision layer thickness are rapidly gaining attention for next-generation optoelectronic applications due to their tunable optical and electronic properties.In ...Semiconductor colloidal quantum wells(CQWs)with atomic-precision layer thickness are rapidly gaining attention for next-generation optoelectronic applications due to their tunable optical and electronic properties.In this study,we investigate the dielectric and optical characteristics of CdSe CQWs with monolayer numbers ranging from 2 to 7,synthesized via thermal injection and atomic layer(c-ALD)deposition techniques.Through a combination of spectroscopic ellipsometry(SE)and first-principles calculations,we demonstrate the significant tunability of the bandgap,refractive index,and extinction coefficient,driven by quantum confinement effects.Our results show a decrease in bandgap from 3.1 to 2.0 eV as the layer thickness increases.Furthermore,by employing a detailed analysis of the absorption spectra,accounting for exciton localization and asymmetric broadening,we precisely capture the relationship between monolayer number and exciton binding energy.These findings offer crucial insights for optimizing CdSe CQWs in optoelectronic device design by leveraging their layer-dependent properties.展开更多
The spectroscopic and transition properties of strontium chloride(SrCl)are investigated based on the theoretical approach of ab initio quantum chemistry.The calculation accuracy is improved by introducing Davidson cor...The spectroscopic and transition properties of strontium chloride(SrCl)are investigated based on the theoretical approach of ab initio quantum chemistry.The calculation accuracy is improved by introducing Davidson correction,core-valence correlation(CV),the scalar relativistic and spin–orbit coupling(SOC)effects.The results show that the spectroscopic constants of X^(2)S^(+)and A^(2)∏states are consistent with the experimental results.The spectroscopic and molecular constants of most highly excited electronic states are reported for the first time.The permanent dipole moment(PDMs)and the spin–orbit(SO)matrix element have a sudden change for the avoidance of crossing.The potential energy curves(PECs)of the 14 L–S states split into 30Ωstates.The splitting energy of A^(2)∏is 290.76 cm^(-1),which has a little difference from the experimental value 295.597 cm^(-1).Finally,the transition properties are given,including transition dipole moment(TDMs),Franck–Canton factor(FCFs)and radiation lifetime.It is found that the calculated radiation lifetime is in the order of 10 ns.The research will provide a theoretical reference for the feasibility of laser cooling of SrCl molecule.The dataset that supported the findings of this study is available in Science Data Bank,with the link https://www.doi.org/10.57760/sciencedb.j00113.00218.展开更多
To ensure the safety and efficacy of Chinese herbs,it is of great significance to conduct rapid quality detection of Chinese herbs at every link of their supply chain.Spectroscopic technology can reflect the overall c...To ensure the safety and efficacy of Chinese herbs,it is of great significance to conduct rapid quality detection of Chinese herbs at every link of their supply chain.Spectroscopic technology can reflect the overall chemical composition and structural characteristics of Chinese herbs,with the multi-component and multitarget characteristics of Chinese herbs.This review took the genus Paris as an example,and applications of spectroscopic technology with machine learning(ML)in supply chain of the genus Paris from seeds to medicinal materials were introduced.The specific contents included the confirmation of germplasm resources,identification of growth years,cultivar,geographical origin,and original processing and processing methods.The potential application of spectroscopic technology in genus Paris was pointed out,and the prospects of combining spectroscopic technology with blockchain were proposed.The summary and prospects presented in this paper will be beneficial to the quality control of the genus Paris in all links of its supply chain,so as to rationally use the genus Paris resources and ensure the safety and efficacy of medication.展开更多
[Objectives] To identify Pyrostegia venusta (Ker-Gawler.) Miers by microscope and ultraviolet spectrum. [Methods] The paraffin section, slide section and freehand section were used to make the cross section of the ste...[Objectives] To identify Pyrostegia venusta (Ker-Gawler.) Miers by microscope and ultraviolet spectrum. [Methods] The paraffin section, slide section and freehand section were used to make the cross section of the stem and leaf, and the surface of the leaf and the powder of the root, stem and leaf were made by the conventional method, which were observed under the optical microscope. Ultraviolet-visible spectrum identification was carried out according to a conventional method. [Results] The microscopic identification and ultraviolet-visible absorption characteristics of P. venusta (Ker-Gawler) Miers were described in detail. [Conclusions] This study is expected to provide a reference for the identification of P. venusta(KerGawler)Miers and the establishment of the related quality standard.展开更多
As part of the LAMOST medium-resolution spectroscopic survey,the LAMOST-MRS-O is a non-time domain survey that aims to perform medium-resolution spectral observations for member stars in the open cluster areas.This su...As part of the LAMOST medium-resolution spectroscopic survey,the LAMOST-MRS-O is a non-time domain survey that aims to perform medium-resolution spectral observations for member stars in the open cluster areas.This survey plans to obtain the spectroscopic parameters such as radial velocity and metal abundances of member stars and provide data support for further study on the chemical and dynamical characteristics and evolution of open clusters in combination with Gaia data.We have completed the observations on ten open cluster fields and obtained 235184 medium-resolution spectra of 133792 stars.Based on the data analyzed of LAMOST DR11v1.1,for some clusters of particular concern,it is found that the sampling ratio of members stars with Gmag<15 mag can reach 70%,which indicates that the LAMOST-MRS-O has reached our initial design goal.展开更多
The capacity to predict X-ray transition and K-edge energies in dense finite-temperatur plasmas with high precision is of primary importance for atomic physics of matter under extreme conditions.The dual characteristi...The capacity to predict X-ray transition and K-edge energies in dense finite-temperatur plasmas with high precision is of primary importance for atomic physics of matter under extreme conditions.The dual characteristics of bound and continuum states in dense matter are modeled by a valence-band-like structure in a generalized ion-sphere approach with states that are either bound,free,or mixed.The self-consistent combination of this model with the Dirac wave equations of multielectron bound states allows one to fully respect the Pauli principle and to take into account the exact nonlocal exchange terms.The generalized method allows very high precision without implication of calibration shifts and scaling parameters and therefore has predictive power.This leads to new insights in the analysis of various data.The simple ionization model representing the K-edge is generalized to excitation–ionization phenomena resulting in an advanced interpretation of ionization depression data in near-solid-density plasmas.The model predicts scaling relations along the isoelectronic sequences and the existence of bound M-states that are in excellent agreement with experimental data,whereas other methods have failed.The application to unexplained data from compound materials also gives good agreement without the need to invoke any additional assumptions in the generalized model,whereas other methods have lacked consistency.展开更多
AR Aur A+B is a close binary of astrophysical interest because dissimilar surface compositions are reported between similar late B-type dwarfs.A new spectroscopic study on this system was carried out based on the dise...AR Aur A+B is a close binary of astrophysical interest because dissimilar surface compositions are reported between similar late B-type dwarfs.A new spectroscopic study on this system was carried out based on the disentangled spectra,in order to determine their atmospheric parameters and elemental abundances.The effective temperature and microturbulence(determined from the equivalent widths of Fe II lines)turned out to be(11,150 K,0.9 km s^(-1))and(10,650 K,0.1 km s^(-1))for A and B,respectively.The chemical abundances of 28 elements were then derived while taking into account the non-LTE effect for Z≤15 elements(Z:atomic number).The following trends were elucidated for[X/H](abundance of X relative to the Sun):(1)Qualitatively,[X/H]shows a rough global tendency to increase with Z,with the gradient steeper for A than for B.(2)However,considerable dispersion is involved for A,since prominently large peculiarities are seen in specific elements reflecting the characteristics of HgMn stars(e.g.,very deficient N,Al,Sc,Ni;markedly overabundant P,Mn).(3)In contrast,the Z-dependence of[X/H]for B tends to be nearly linear with only a small dispersion.These observational facts may serve as a key to understanding the critical condition for the emergence of the chemical anomaly.展开更多
Due to their high electrical conductivity and layered structure,two dimensional MXene materials are re⁃garded as promising candidates for energy storage applications.However,the relatively low stability and specific c...Due to their high electrical conductivity and layered structure,two dimensional MXene materials are re⁃garded as promising candidates for energy storage applications.However,the relatively low stability and specific ca⁃pacity of MXene materials limit their further utilization.In this study,these issues are addressed using a heterostruc⁃ture strategy via a one-step selenization method to form Mo_(2)C@MoSe_(2).Synchrotron radiation X-ray spectroscopic and high-resolution transmission electron microscopy(HRTEM)characterizations revealed the heterostructure consisting of in-situ grown MoSe_(2)on Mo_(2)C MXene.Electrochemical tests proved the heterojunction electrode’s superior rate perfor⁃mance of 289.06 mAh·g^(-1)at a high current density of 5 A·g^(-1)and long cycling stability of 550 mAh·g^(-1)after 900 cycles at 1 A·g^(-1).This work highlights the useful X-ray spectroscopic analysis to directly elucidate the heterojunction structure,providing an effective reference method for probing heterostructures.展开更多
In the present work, a new semithiocarbazone ligand C3NH4CONHNC(CH3) C6H4OH H4L2 have been isolated and characterized by single-crystal X-ray diffraction. Compound H4L2 crystallizes in the monoclinic system space grou...In the present work, a new semithiocarbazone ligand C3NH4CONHNC(CH3) C6H4OH H4L2 have been isolated and characterized by single-crystal X-ray diffraction. Compound H4L2 crystallizes in the monoclinic system space group P21/n with a = 10.9328(9), b = 8.1700(6), c = 13.8095(11) Å, β = 93.7591(14)˚, V = 3671.57(9) Å3, Z = 16, Z’ = 2. Semithiocarbazone connected through NH···O and OH···O hydrogen bonds. In the crystal, the structure is organized in layer-like arrangements. Structural characterizations were completed by infrared and 1H, 13C{1H} spectroscopy and elemental analysis which corroborate the X-ray elucidations. In another case, this organic compound is submitted to antioxidant test. The test has been done by using Akhtar et al. methods [1] with some modifications. The tests are done with different concentration of solutions between 100 to 500 μM. The values of per cent of inhibition (5.18% - 25.90%) of the solution containing semithiocarbazone organic compound show a real difference compared to the values of the reference TROLOX. These results show that our organic ligand C3NH4CONHNC(CH3)C6H4OH is a good antioxidant compound.展开更多
The ground and the lowest-lying triplet excited state geometries, electronic structures, and spectroscopic properties of three mixed-ligand Ru(II) complexes [Ru(terpy)(phen)X]+ (terpy=2,2',6',2″-terpyridine...The ground and the lowest-lying triplet excited state geometries, electronic structures, and spectroscopic properties of three mixed-ligand Ru(II) complexes [Ru(terpy)(phen)X]+ (terpy=2,2',6',2″-terpyridine, phen=l,10-phenanthroline, and X=-C-=CH (1), X=Cl (2), X-CN (3)) were investigated theoretically using the density functional theory method. The ground and excited state geometries have been fully optimized at the B3LYP/LanL2DZ and UB3LYP/LanL2DZ levels, respectively. The absorption and emission spectra of the com- plexes in CHaCN solutions were calculated by time-dependent density functional theory with the PCM solvent model. The calculated bond lengths of Ru-C, Ru-N, and Ru-Cl in the ground state agree well with the corresponding experimental results. The highest occupied molecular orbital were dominantly localized on the Ru atom and monodentate X ligand for 1 and 2, Ru atom and terpy ligand for a, while the lowest unoccupied molecular orbital were π*(terpy) type orbital. Therefore, the lowest-energy absorptions of 1 and 2 at 688 and 631 nln are attributed to a dyz (Ru)+Tr/p(X)--π* (terpy) transition with MLCT/XLCT (metal-to-ligand charge transfer/X ligand to terpy ligand charge transfer) character, whereas that of 3 at 529 nm is related to a dyz (Ru)+π(terpy)-π* (terpy) transition with MLCT and ILCT transition character. The calculated phosphorescence of three complexes at 1011 nm (1), 913 nm (2), and 838 nm (3) have similar transition properties to that of the lowest-lying absorption. It is shown that the lowest lying absorptions and emissions transition character of these Ru(II) complexes can be tuned by changing the electron-withdrawing ability of the monodentate ligand.展开更多
Formic acid (HCOOH) decomposition at Pt film electrode has been studied by electrochem- ical in situ FTIR spectroscopy under attenuated-total-reflection configuration, in order to clarify whether bridge-bonded forma...Formic acid (HCOOH) decomposition at Pt film electrode has been studied by electrochem- ical in situ FTIR spectroscopy under attenuated-total-reflection configuration, in order to clarify whether bridge-bonded formate (HCOOD) is the reactive intermediate for COad for-mation from HCOOH molecules. When switching from HCOOH-free solution to HCOOH- containing solution at constant potential (E=0.4 V vs. RHE), we found that immediately upon solution switch COad formation rate is the highest, while surface coverage of formate is zero, then after COad formation rate decreases, while formate coverage reaches a steady state coverage quickly within ca. 1 s. Potential step experiment from E=0.75 V to 0.35 V, reveals that formate band intensity drops immediately right after the potential step, while the COad signal develops slowly with time. Both facts indicate that formate is not the reactive intermediate for formic acid dehydration to CO.展开更多
Dissolved organic matter (DOM) represents one of the most mobile and reactive organic compounds in ecosystem and plays an important role in the fate and transport of soil organic pollutants, nutrient cycling and mor...Dissolved organic matter (DOM) represents one of the most mobile and reactive organic compounds in ecosystem and plays an important role in the fate and transport of soil organic pollutants, nutrient cycling and more importantly global climate change. Electrochemical methods were first employed to evaluate DOM redox properties, and spectroscopic approaches were utilized to obtain information concerning its composition and structure. DOM was extracted from a forest soil profile with five horizons. Differential pulse voltammetry indicated that there were more redox-active moieties in the DOM from upper horizons than in that from lower horizons. Cyclic voltammetry further showed that these moieties were reversible in electron transfer. Chronoamperometry was employed to quantify the electron transfer capacity of DOM, including electron acceptor capacity and electron donor capacity, both of which decreased sharply with increasing depth. FT-IR, UV-Vis and fluorescence spectra results suggested that DOM from the upper horizons was enriched with aromatic and humic structures while that from the lower horizons was rich in aliphatic carbon, which supported the findings obtained by electrochemical approaches. Electrochemical approaches combined with spectroscopic methods were applied to evaluate the characteristics of DOM extracted along a forest soil profile. The electrochemical properties of DOM, which can be rapidly and simply obtained, provide insight into the migration and transformation of DOM along a soil profile and will aid in better understanding of the biogeochemical role of DOM in natural environments.展开更多
The basal levels of magnesium and copper in rat brain and flowering plum fruit dialysates, and the background concentration of calcium in pea dialysates have been determined with sensitive spectroscopic techniques inc...The basal levels of magnesium and copper in rat brain and flowering plum fruit dialysates, and the background concentration of calcium in pea dialysates have been determined with sensitive spectroscopic techniques including atomic absorption spectrometry and spectrophotometry based on amino G acid chlorophosphonazo. It is found that the magnesium level in flowering plum fruit dialysates is much lower than that in rat brain dialysates, indicating a considerable composition difference present between a plant dialysate and an animal one.展开更多
A large amount of wastewater containing various toxic organic contaminants is produced during coal-to-liquids process. In this study, several spectroscopic methods were used to monitor the transformation of organic po...A large amount of wastewater containing various toxic organic contaminants is produced during coal-to-liquids process. In this study, several spectroscopic methods were used to monitor the transformation of organic pollutants during an integrated chemical oxidation and biological process. The results showed that the hydrophobic acid fraction increased after Fenton oxidation, which was likely due to the production of small-molecule organic acids. Soluble microbial products were generated during biological treatment processes,which were degraded after ozonation; meanwhile, the hydrophilic base and acid components increased. Ultraviolet-visible spectroscopic analysis indicated that peaks at the absorption wavelengths of 280 and 254 nm, which are associated with aromatic substances, were detected in the raw water. The aromatic substances were gradually removed, becoming undetectable after biological aeration filter(BAF) treatment. Fourier transform infrared spectroscopy analysis revealed that the functional groups of phenols;benzene, toluene, ethylbenzene, and xylene(BTEX); aromatic hydrocarbons; aliphatic acids;aldehydes; and esters were present in raw wastewater. The organic substances were oxidized into small molecules after Fenton treatment. Aromatic hydrocarbons were effectively removed through bioadsorption and biodegradation after BAF process.Biodegradable organic matter was reduced and finally became undetectable after anoxic–oxic treatment in combination with a membrane bioreactor. Four fluorescent components were fractionated and obtained via excitation–emission matrix parallel factor analysis(EEM-PARAFAC). Dissolved organic matter fractionation in conjunction with EEM-PARAFAC was able to monitor more precisely the evolution of characteristic organic contaminants.展开更多
Ab initio VB calculations were used to determine the accurate spectroscopic parameters of the ground states of LiF and NaF. A set of potential energy curves corresponding to the ground states including ionic and cov...Ab initio VB calculations were used to determine the accurate spectroscopic parameters of the ground states of LiF and NaF. A set of potential energy curves corresponding to the ground states including ionic and covalent interactions, pure ionic interaction and covalent interaction were generated using the VBSCF method. Curve crossing in the dissociation processes of LiF and NaF was discussed. The optimized VB wave functions suggest that LiF and NaF are of high ionicity, and their ionic weights are 86 2% and 94 6%, respectively. NaF has a higher ionicity. The main difference between atom F and ion F - and the effect of the proper description of this difference on dissociation energies were investigated.展开更多
Repaglinide (RPG) regulates the amount of glucose by stimulating the pancreas to release insulin in the blood. In view of its biological importance, we have examined the interaction between RPG and a model protein, bo...Repaglinide (RPG) regulates the amount of glucose by stimulating the pancreas to release insulin in the blood. In view of its biological importance, we have examined the interaction between RPG and a model protein, bovine serum albumin (BSA) employing various spectroscopic, electrochemical and molecular docking methods. Fluorescence spectra of BSA were recorded in the presence and absence of RPG in phosphate buffer of pH 7.4. Fluorescence intensity of BSA was decreased upon the addition of increased concentrations of RPG, indicating the interaction between RPG and BSA. Stern-Volmer quenching analysis results revealed that RPG quenched the intensity of BSA through dynamic quenching mechanism. This was further confirmed from the time-resolved fluorescence measurements. The binding constant as calculated from the spectroscopic and voltammetric results was observed to be in the order of 104M-1 at 298 K, suggesting the moderate binding affinity between RPG and BSA. Competitive experimental results revealed that the primary binding site for RPG on BSA was site II. Absorption and circular dichroism studies indicated the changes in the secondary structure of BSA upon its interaction with RPG. Molecular simulation studies pointed out that RPG was bound to BSA in the hydrophobic pocket of site II.展开更多
Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface e...Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface energy and even leading to structure failure. This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure. Scanning electron microscopy(SEM), micro-Raman spectroscopy(MRS), and transmission electron microscopy(TEM) were applied to measure the geometric parameters of the multilayer structure. The relationship between the Raman spectrum and the stress/strain on the [100] and [110] crystal orientations was determined to enable surface and crosssection residual stress analyses, respectively. Based on the Raman mapping results, the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained.展开更多
This study demonstrates the Fourier transform infrared (FTIR) spectroscopic characterization of natural kaolinite from north-eastern India. The compositional and structural studies were carried out at room temperature...This study demonstrates the Fourier transform infrared (FTIR) spectroscopic characterization of natural kaolinite from north-eastern India. The compositional and structural studies were carried out at room temperature by using X-ray fluorescence (XRF), electron microprobe (EPMA) analyses and Fourier transform infrared (FTIR) spectroscopic techniques. The main peaks in the infrared spectra reflected Al-OH, Al-O and Si-O functional groups in the high frequency stretching and low frequency bending modes. Few peaks of infrared spectra inferred to the interference peaks for quartz as associated minerals. The present study demonstrates usefulness of the spectroscopic techniques in determining quality and crystalline nature of kaolinite from the Assam and Meghalaya, northeastern India.展开更多
基金supported by the National Natural Science Foundation of China(No.91844000)China Postdoctoral Science Foundation(No.2020M670048).
文摘The acidity of atmospheric aerosols influences fundamental physicochemical processes that affect climate and human health.We recently developed a novel and facilewater-probebased method for directly measuring of the pH for micrometer-size droplets,providing a promising technique to better understand aerosol acidity in the atmosphere.The complex chemical composition of fine particles in the ambient air,however,poses certain challenges to using a water-probe for pH measurement,including interference from interactions between compositions and the influence of similar compositions on water structure.To explore the universality of our method,it was employed to measure the pH of ammonium,nitrate,carbonate,sulfate,and chloride particles.The pH of particles covering a broad range(0–14)were accurately determined,thereby demonstrating that our method can be generally applied,even to alkaline particles.Furthermore,a standard spectral library was developed by integrating the standard spectra of common hydrated ions extracted through the waterprobe.The library can be employed to identify particle composition and overcome the spectral overlap problem resulting from similar effects.Using the spectral library,all ions were identified and their concentrations were determined,in turn allowing successful pH measurement of multicomponent(ammonium-sulfate-nitrate-chloride)particles.Insights into the synergistic effect of Cl^(–),NO_(3)^(–),and NH_(4)^(+)depletion obtained with our approach revealed the interplay between pH and volatile partitioning.Given the ubiquity of component partitioning and pH variation in particles,the water probemay provide a new perspective on the underlying mechanisms of aerosol aging and aerosol–cloud interaction.
基金supported by the Natural Science Foundation of Inner Mongolia(No.2020MS01023).
文摘The interstellar medium molecule thiocarbonyl thioketen,H_(2)CCS,has several stable isomers and has received considerable attention of as-tronomical observation in recent years.The positions of H,C,and S atoms of three isomers lead to di-verse dipole moments and spectro-scopic constants.The anharmonic force field and spectroscopic con-stants of thiocarbonyl thioketen and its isomers are calculated using MP2,B3LYP,and CCSD(T)methods employing correlation consistent basis sets.Molecule structures,rotational spectroscopic constants,and fundamental frequencies are compared with the available experimental data for thiocarbonyl thioketen.Ro-vibrational interaction constants,anharmonic constants,cubic and quartic force constants are predicted for thiocarbonyl thioketen.In addition,some rotational and vibrational spectroscopic parameters are predict-ed with the same level of theory for thioacetylene,HCCSH,and thiirene,(CH)_(2)S.The predic-tions of these spectroscopic constants are expected to guide the future astronomical observa-tion and high resolution experimental work for C_(2)H_(2)S isomers.
基金supported by the National Natural Science Foundation of China(62205180)the Natural Science Foundation of Shandong Province(ZR2022QF029)the Taishan Scholar Program of Shandong Province(Young Scientist).
文摘Semiconductor colloidal quantum wells(CQWs)with atomic-precision layer thickness are rapidly gaining attention for next-generation optoelectronic applications due to their tunable optical and electronic properties.In this study,we investigate the dielectric and optical characteristics of CdSe CQWs with monolayer numbers ranging from 2 to 7,synthesized via thermal injection and atomic layer(c-ALD)deposition techniques.Through a combination of spectroscopic ellipsometry(SE)and first-principles calculations,we demonstrate the significant tunability of the bandgap,refractive index,and extinction coefficient,driven by quantum confinement effects.Our results show a decrease in bandgap from 3.1 to 2.0 eV as the layer thickness increases.Furthermore,by employing a detailed analysis of the absorption spectra,accounting for exciton localization and asymmetric broadening,we precisely capture the relationship between monolayer number and exciton binding energy.These findings offer crucial insights for optimizing CdSe CQWs in optoelectronic device design by leveraging their layer-dependent properties.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11564019,11147158,and 12464032)the Department of Education Foundation of Jiangxi Province of China(Grant No.GJJ2401520).
文摘The spectroscopic and transition properties of strontium chloride(SrCl)are investigated based on the theoretical approach of ab initio quantum chemistry.The calculation accuracy is improved by introducing Davidson correction,core-valence correlation(CV),the scalar relativistic and spin–orbit coupling(SOC)effects.The results show that the spectroscopic constants of X^(2)S^(+)and A^(2)∏states are consistent with the experimental results.The spectroscopic and molecular constants of most highly excited electronic states are reported for the first time.The permanent dipole moment(PDMs)and the spin–orbit(SO)matrix element have a sudden change for the avoidance of crossing.The potential energy curves(PECs)of the 14 L–S states split into 30Ωstates.The splitting energy of A^(2)∏is 290.76 cm^(-1),which has a little difference from the experimental value 295.597 cm^(-1).Finally,the transition properties are given,including transition dipole moment(TDMs),Franck–Canton factor(FCFs)and radiation lifetime.It is found that the calculated radiation lifetime is in the order of 10 ns.The research will provide a theoretical reference for the feasibility of laser cooling of SrCl molecule.The dataset that supported the findings of this study is available in Science Data Bank,with the link https://www.doi.org/10.57760/sciencedb.j00113.00218.
基金funded by the Special Program for the Major Science and Technology Projects of Yunnan Province,China(Grant No.:202202AE090001).
文摘To ensure the safety and efficacy of Chinese herbs,it is of great significance to conduct rapid quality detection of Chinese herbs at every link of their supply chain.Spectroscopic technology can reflect the overall chemical composition and structural characteristics of Chinese herbs,with the multi-component and multitarget characteristics of Chinese herbs.This review took the genus Paris as an example,and applications of spectroscopic technology with machine learning(ML)in supply chain of the genus Paris from seeds to medicinal materials were introduced.The specific contents included the confirmation of germplasm resources,identification of growth years,cultivar,geographical origin,and original processing and processing methods.The potential application of spectroscopic technology in genus Paris was pointed out,and the prospects of combining spectroscopic technology with blockchain were proposed.The summary and prospects presented in this paper will be beneficial to the quality control of the genus Paris in all links of its supply chain,so as to rationally use the genus Paris resources and ensure the safety and efficacy of medication.
基金Supported by Scientific Research Program of Guangxi University of Chinese Medicine(P200246).
文摘[Objectives] To identify Pyrostegia venusta (Ker-Gawler.) Miers by microscope and ultraviolet spectrum. [Methods] The paraffin section, slide section and freehand section were used to make the cross section of the stem and leaf, and the surface of the leaf and the powder of the root, stem and leaf were made by the conventional method, which were observed under the optical microscope. Ultraviolet-visible spectrum identification was carried out according to a conventional method. [Results] The microscopic identification and ultraviolet-visible absorption characteristics of P. venusta (Ker-Gawler) Miers were described in detail. [Conclusions] This study is expected to provide a reference for the identification of P. venusta(KerGawler)Miers and the establishment of the related quality standard.
基金supported by the National Natural Science Foundation of China(NSFC)through grants 12090040,12090042,and 12073060the National Key R&D Program of China No.2019YFA0405501+2 种基金J.Z.acknowledges the Youth Innovation Promotion Association CASthe Science and Technology Commission of Shanghai Municipality(grant No.22dz1202400)the Program of Shanghai Academic/Technology Research Leader。
文摘As part of the LAMOST medium-resolution spectroscopic survey,the LAMOST-MRS-O is a non-time domain survey that aims to perform medium-resolution spectral observations for member stars in the open cluster areas.This survey plans to obtain the spectroscopic parameters such as radial velocity and metal abundances of member stars and provide data support for further study on the chemical and dynamical characteristics and evolution of open clusters in combination with Gaia data.We have completed the observations on ten open cluster fields and obtained 235184 medium-resolution spectra of 133792 stars.Based on the data analyzed of LAMOST DR11v1.1,for some clusters of particular concern,it is found that the sampling ratio of members stars with Gmag<15 mag can reach 70%,which indicates that the LAMOST-MRS-O has reached our initial design goal.
基金supported by the NSFC under Grant Nos.11374315 and 12074395the Invited Scientist Program of CNRS at Ecole Polytechnique,Palaiseau,France。
文摘The capacity to predict X-ray transition and K-edge energies in dense finite-temperatur plasmas with high precision is of primary importance for atomic physics of matter under extreme conditions.The dual characteristics of bound and continuum states in dense matter are modeled by a valence-band-like structure in a generalized ion-sphere approach with states that are either bound,free,or mixed.The self-consistent combination of this model with the Dirac wave equations of multielectron bound states allows one to fully respect the Pauli principle and to take into account the exact nonlocal exchange terms.The generalized method allows very high precision without implication of calibration shifts and scaling parameters and therefore has predictive power.This leads to new insights in the analysis of various data.The simple ionization model representing the K-edge is generalized to excitation–ionization phenomena resulting in an advanced interpretation of ionization depression data in near-solid-density plasmas.The model predicts scaling relations along the isoelectronic sequences and the existence of bound M-states that are in excellent agreement with experimental data,whereas other methods have failed.The application to unexplained data from compound materials also gives good agreement without the need to invoke any additional assumptions in the generalized model,whereas other methods have lacked consistency.
文摘AR Aur A+B is a close binary of astrophysical interest because dissimilar surface compositions are reported between similar late B-type dwarfs.A new spectroscopic study on this system was carried out based on the disentangled spectra,in order to determine their atmospheric parameters and elemental abundances.The effective temperature and microturbulence(determined from the equivalent widths of Fe II lines)turned out to be(11,150 K,0.9 km s^(-1))and(10,650 K,0.1 km s^(-1))for A and B,respectively.The chemical abundances of 28 elements were then derived while taking into account the non-LTE effect for Z≤15 elements(Z:atomic number).The following trends were elucidated for[X/H](abundance of X relative to the Sun):(1)Qualitatively,[X/H]shows a rough global tendency to increase with Z,with the gradient steeper for A than for B.(2)However,considerable dispersion is involved for A,since prominently large peculiarities are seen in specific elements reflecting the characteristics of HgMn stars(e.g.,very deficient N,Al,Sc,Ni;markedly overabundant P,Mn).(3)In contrast,the Z-dependence of[X/H]for B tends to be nearly linear with only a small dispersion.These observational facts may serve as a key to understanding the critical condition for the emergence of the chemical anomaly.
基金National Key Research and Development Program of China(2020YFA0405800)National Natural Science Foundation of China(12322515,U23A20121,12225508)+2 种基金Youth Innovation Promotion Association of CAS(2022457)National Postdoctoral Program for Innovative Talents(BX20230346)China Postdoctoral Science Foundation(2023M743365)。
文摘Due to their high electrical conductivity and layered structure,two dimensional MXene materials are re⁃garded as promising candidates for energy storage applications.However,the relatively low stability and specific ca⁃pacity of MXene materials limit their further utilization.In this study,these issues are addressed using a heterostruc⁃ture strategy via a one-step selenization method to form Mo_(2)C@MoSe_(2).Synchrotron radiation X-ray spectroscopic and high-resolution transmission electron microscopy(HRTEM)characterizations revealed the heterostructure consisting of in-situ grown MoSe_(2)on Mo_(2)C MXene.Electrochemical tests proved the heterojunction electrode’s superior rate perfor⁃mance of 289.06 mAh·g^(-1)at a high current density of 5 A·g^(-1)and long cycling stability of 550 mAh·g^(-1)after 900 cycles at 1 A·g^(-1).This work highlights the useful X-ray spectroscopic analysis to directly elucidate the heterojunction structure,providing an effective reference method for probing heterostructures.
文摘In the present work, a new semithiocarbazone ligand C3NH4CONHNC(CH3) C6H4OH H4L2 have been isolated and characterized by single-crystal X-ray diffraction. Compound H4L2 crystallizes in the monoclinic system space group P21/n with a = 10.9328(9), b = 8.1700(6), c = 13.8095(11) Å, β = 93.7591(14)˚, V = 3671.57(9) Å3, Z = 16, Z’ = 2. Semithiocarbazone connected through NH···O and OH···O hydrogen bonds. In the crystal, the structure is organized in layer-like arrangements. Structural characterizations were completed by infrared and 1H, 13C{1H} spectroscopy and elemental analysis which corroborate the X-ray elucidations. In another case, this organic compound is submitted to antioxidant test. The test has been done by using Akhtar et al. methods [1] with some modifications. The tests are done with different concentration of solutions between 100 to 500 μM. The values of per cent of inhibition (5.18% - 25.90%) of the solution containing semithiocarbazone organic compound show a real difference compared to the values of the reference TROLOX. These results show that our organic ligand C3NH4CONHNC(CH3)C6H4OH is a good antioxidant compound.
文摘The ground and the lowest-lying triplet excited state geometries, electronic structures, and spectroscopic properties of three mixed-ligand Ru(II) complexes [Ru(terpy)(phen)X]+ (terpy=2,2',6',2″-terpyridine, phen=l,10-phenanthroline, and X=-C-=CH (1), X=Cl (2), X-CN (3)) were investigated theoretically using the density functional theory method. The ground and excited state geometries have been fully optimized at the B3LYP/LanL2DZ and UB3LYP/LanL2DZ levels, respectively. The absorption and emission spectra of the com- plexes in CHaCN solutions were calculated by time-dependent density functional theory with the PCM solvent model. The calculated bond lengths of Ru-C, Ru-N, and Ru-Cl in the ground state agree well with the corresponding experimental results. The highest occupied molecular orbital were dominantly localized on the Ru atom and monodentate X ligand for 1 and 2, Ru atom and terpy ligand for a, while the lowest unoccupied molecular orbital were π*(terpy) type orbital. Therefore, the lowest-energy absorptions of 1 and 2 at 688 and 631 nln are attributed to a dyz (Ru)+Tr/p(X)--π* (terpy) transition with MLCT/XLCT (metal-to-ligand charge transfer/X ligand to terpy ligand charge transfer) character, whereas that of 3 at 529 nm is related to a dyz (Ru)+π(terpy)-π* (terpy) transition with MLCT and ILCT transition character. The calculated phosphorescence of three complexes at 1011 nm (1), 913 nm (2), and 838 nm (3) have similar transition properties to that of the lowest-lying absorption. It is shown that the lowest lying absorptions and emissions transition character of these Ru(II) complexes can be tuned by changing the electron-withdrawing ability of the monodentate ligand.
文摘Formic acid (HCOOH) decomposition at Pt film electrode has been studied by electrochem- ical in situ FTIR spectroscopy under attenuated-total-reflection configuration, in order to clarify whether bridge-bonded formate (HCOOD) is the reactive intermediate for COad for-mation from HCOOH molecules. When switching from HCOOH-free solution to HCOOH- containing solution at constant potential (E=0.4 V vs. RHE), we found that immediately upon solution switch COad formation rate is the highest, while surface coverage of formate is zero, then after COad formation rate decreases, while formate coverage reaches a steady state coverage quickly within ca. 1 s. Potential step experiment from E=0.75 V to 0.35 V, reveals that formate band intensity drops immediately right after the potential step, while the COad signal develops slowly with time. Both facts indicate that formate is not the reactive intermediate for formic acid dehydration to CO.
基金supported by the National Natural Science Foundation of China (No.41101211,41071157,41171205)the Foundation for Excellent Young Scientist in Guangdong Academy of Sciences (No.rcjj201101)
文摘Dissolved organic matter (DOM) represents one of the most mobile and reactive organic compounds in ecosystem and plays an important role in the fate and transport of soil organic pollutants, nutrient cycling and more importantly global climate change. Electrochemical methods were first employed to evaluate DOM redox properties, and spectroscopic approaches were utilized to obtain information concerning its composition and structure. DOM was extracted from a forest soil profile with five horizons. Differential pulse voltammetry indicated that there were more redox-active moieties in the DOM from upper horizons than in that from lower horizons. Cyclic voltammetry further showed that these moieties were reversible in electron transfer. Chronoamperometry was employed to quantify the electron transfer capacity of DOM, including electron acceptor capacity and electron donor capacity, both of which decreased sharply with increasing depth. FT-IR, UV-Vis and fluorescence spectra results suggested that DOM from the upper horizons was enriched with aromatic and humic structures while that from the lower horizons was rich in aliphatic carbon, which supported the findings obtained by electrochemical approaches. Electrochemical approaches combined with spectroscopic methods were applied to evaluate the characteristics of DOM extracted along a forest soil profile. The electrochemical properties of DOM, which can be rapidly and simply obtained, provide insight into the migration and transformation of DOM along a soil profile and will aid in better understanding of the biogeochemical role of DOM in natural environments.
文摘The basal levels of magnesium and copper in rat brain and flowering plum fruit dialysates, and the background concentration of calcium in pea dialysates have been determined with sensitive spectroscopic techniques including atomic absorption spectrometry and spectrophotometry based on amino G acid chlorophosphonazo. It is found that the magnesium level in flowering plum fruit dialysates is much lower than that in rat brain dialysates, indicating a considerable composition difference present between a plant dialysate and an animal one.
基金supported by the National Water Pollution Control and Treatment Science and Technology Major Project of China(No.2017ZX07402002)
文摘A large amount of wastewater containing various toxic organic contaminants is produced during coal-to-liquids process. In this study, several spectroscopic methods were used to monitor the transformation of organic pollutants during an integrated chemical oxidation and biological process. The results showed that the hydrophobic acid fraction increased after Fenton oxidation, which was likely due to the production of small-molecule organic acids. Soluble microbial products were generated during biological treatment processes,which were degraded after ozonation; meanwhile, the hydrophilic base and acid components increased. Ultraviolet-visible spectroscopic analysis indicated that peaks at the absorption wavelengths of 280 and 254 nm, which are associated with aromatic substances, were detected in the raw water. The aromatic substances were gradually removed, becoming undetectable after biological aeration filter(BAF) treatment. Fourier transform infrared spectroscopy analysis revealed that the functional groups of phenols;benzene, toluene, ethylbenzene, and xylene(BTEX); aromatic hydrocarbons; aliphatic acids;aldehydes; and esters were present in raw wastewater. The organic substances were oxidized into small molecules after Fenton treatment. Aromatic hydrocarbons were effectively removed through bioadsorption and biodegradation after BAF process.Biodegradable organic matter was reduced and finally became undetectable after anoxic–oxic treatment in combination with a membrane bioreactor. Four fluorescent components were fractionated and obtained via excitation–emission matrix parallel factor analysis(EEM-PARAFAC). Dissolved organic matter fractionation in conjunction with EEM-PARAFAC was able to monitor more precisely the evolution of characteristic organic contaminants.
文摘Ab initio VB calculations were used to determine the accurate spectroscopic parameters of the ground states of LiF and NaF. A set of potential energy curves corresponding to the ground states including ionic and covalent interactions, pure ionic interaction and covalent interaction were generated using the VBSCF method. Curve crossing in the dissociation processes of LiF and NaF was discussed. The optimized VB wave functions suggest that LiF and NaF are of high ionicity, and their ionic weights are 86 2% and 94 6%, respectively. NaF has a higher ionicity. The main difference between atom F and ion F - and the effect of the proper description of this difference on dissociation energies were investigated.
基金the University Grants Commission,New Delhi,for providing the financial support to carry out this work [F.No 43-205/2014(SR)dated 18-08-2015]the University Grants Commission,New Delhi,for awarding the Rajiv Gandhi National Fellowship(F1-17.1/ 2016-17/RGNF-2015-17-SC-KAR-11858 dated January 2016)
文摘Repaglinide (RPG) regulates the amount of glucose by stimulating the pancreas to release insulin in the blood. In view of its biological importance, we have examined the interaction between RPG and a model protein, bovine serum albumin (BSA) employing various spectroscopic, electrochemical and molecular docking methods. Fluorescence spectra of BSA were recorded in the presence and absence of RPG in phosphate buffer of pH 7.4. Fluorescence intensity of BSA was decreased upon the addition of increased concentrations of RPG, indicating the interaction between RPG and BSA. Stern-Volmer quenching analysis results revealed that RPG quenched the intensity of BSA through dynamic quenching mechanism. This was further confirmed from the time-resolved fluorescence measurements. The binding constant as calculated from the spectroscopic and voltammetric results was observed to be in the order of 104M-1 at 298 K, suggesting the moderate binding affinity between RPG and BSA. Competitive experimental results revealed that the primary binding site for RPG on BSA was site II. Absorption and circular dichroism studies indicated the changes in the secondary structure of BSA upon its interaction with RPG. Molecular simulation studies pointed out that RPG was bound to BSA in the hydrophobic pocket of site II.
基金supported by the National Basic Research Program of China (Grant 2012CB937500)the National Natural Science Foundation of China (Grants 11422219, 11227202, 11372217, 11272232)+1 种基金the Program for New Century Excellent Talents in University (Grant NCET-13)China Scholarship Council (201308120092)
文摘Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface energy and even leading to structure failure. This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure. Scanning electron microscopy(SEM), micro-Raman spectroscopy(MRS), and transmission electron microscopy(TEM) were applied to measure the geometric parameters of the multilayer structure. The relationship between the Raman spectrum and the stress/strain on the [100] and [110] crystal orientations was determined to enable surface and crosssection residual stress analyses, respectively. Based on the Raman mapping results, the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained.
文摘This study demonstrates the Fourier transform infrared (FTIR) spectroscopic characterization of natural kaolinite from north-eastern India. The compositional and structural studies were carried out at room temperature by using X-ray fluorescence (XRF), electron microprobe (EPMA) analyses and Fourier transform infrared (FTIR) spectroscopic techniques. The main peaks in the infrared spectra reflected Al-OH, Al-O and Si-O functional groups in the high frequency stretching and low frequency bending modes. Few peaks of infrared spectra inferred to the interference peaks for quartz as associated minerals. The present study demonstrates usefulness of the spectroscopic techniques in determining quality and crystalline nature of kaolinite from the Assam and Meghalaya, northeastern India.