期刊文献+
共找到41,447篇文章
< 1 2 250 >
每页显示 20 50 100
A water probe for direct pH measurement of individual particles via micro-Raman spectroscopy
1
作者 Xiaoyu Cui Mingjin Tang Tong Zhu 《Journal of Environmental Sciences》 2025年第3期200-208,共9页
The acidity of atmospheric aerosols influences fundamental physicochemical processes that affect climate and human health.We recently developed a novel and facilewater-probebased method for directly measuring of the p... The acidity of atmospheric aerosols influences fundamental physicochemical processes that affect climate and human health.We recently developed a novel and facilewater-probebased method for directly measuring of the pH for micrometer-size droplets,providing a promising technique to better understand aerosol acidity in the atmosphere.The complex chemical composition of fine particles in the ambient air,however,poses certain challenges to using a water-probe for pH measurement,including interference from interactions between compositions and the influence of similar compositions on water structure.To explore the universality of our method,it was employed to measure the pH of ammonium,nitrate,carbonate,sulfate,and chloride particles.The pH of particles covering a broad range(0–14)were accurately determined,thereby demonstrating that our method can be generally applied,even to alkaline particles.Furthermore,a standard spectral library was developed by integrating the standard spectra of common hydrated ions extracted through the waterprobe.The library can be employed to identify particle composition and overcome the spectral overlap problem resulting from similar effects.Using the spectral library,all ions were identified and their concentrations were determined,in turn allowing successful pH measurement of multicomponent(ammonium-sulfate-nitrate-chloride)particles.Insights into the synergistic effect of Cl^(–),NO_(3)^(–),and NH_(4)^(+)depletion obtained with our approach revealed the interplay between pH and volatile partitioning.Given the ubiquity of component partitioning and pH variation in particles,the water probemay provide a new perspective on the underlying mechanisms of aerosol aging and aerosol–cloud interaction. 展开更多
关键词 Particle pH Water probe Standard spectral library micro-raman spectroscopy Direct measurement
原文传递
Measurement of residual stress in a multi-layer semiconductor heterostructure by micro-Raman spectroscopy 被引量:15
2
作者 Wei Qiu Cui-Li Cheng +7 位作者 Ren-Rong Liang Chun-Wang Zhao Zhen-Kun Lei Yu-Cheng Zhao Lu-Lu Ma Jun Xu Hua-Jun Fang Yi-Lan Kang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第5期805-812,共8页
Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface e... Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface energy and even leading to structure failure. This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure. Scanning electron microscopy(SEM), micro-Raman spectroscopy(MRS), and transmission electron microscopy(TEM) were applied to measure the geometric parameters of the multilayer structure. The relationship between the Raman spectrum and the stress/strain on the [100] and [110] crystal orientations was determined to enable surface and crosssection residual stress analyses, respectively. Based on the Raman mapping results, the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained. 展开更多
关键词 Residual stress Multi-layer semiconductor heterostructure micro-raman spectroscopy(MRS) Strained silicon Germanium silicon
在线阅读 下载PDF
Development of in-situ Micro-Raman spectroscopy system for autoclave experimental apparatus 被引量:1
3
作者 Lin Chen Heping Li +3 位作者 Shengbin Li Liping Xu Sen Lin Hongbin Zhou 《Acta Geochimica》 EI CAS CSCD 2020年第4期445-450,共6页
We developed a set of in-situ Micro-Raman spectroscopy system for autoclave experimental apparatus because of the scientific significance of in-situ Micro-Raman spectroscopy system under the high-pressure hydrothermal... We developed a set of in-situ Micro-Raman spectroscopy system for autoclave experimental apparatus because of the scientific significance of in-situ Micro-Raman spectroscopy system under the high-pressure hydrothermal condition.We used this system to measure the Raman spectrum of water-fluid and quartz crystal at the temperature ranging from 125 to 420℃.The signal-tonoise ratio of the Raman signal is good. 展开更多
关键词 micro-raman Hydrothermal system IN-SITU AUTOCLAVE
在线阅读 下载PDF
Identification of motor and sensory fascicles in peripheral nerve trunk using micro-Raman spectroscopy
4
作者 Hu Wang Dongxin Liu +2 位作者 Feiyu Ma Xuedong Li Shixin Du 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第7期547-551,共5页
BACKGROUND: A variety of methods have been used to identify and distinguish motor and sensory nerves. However, their application is limited clinically due to the complex operation, time consumption, and subjectivity.... BACKGROUND: A variety of methods have been used to identify and distinguish motor and sensory nerves. However, their application is limited clinically due to the complex operation, time consumption, and subjectivity. Raman spectroscopy is a minimally invasive method that provides information about molecular structure and constitutions and has been frequently used for tissue identification. OBJECTIVE: To explore a time-efficient method of identifying motor and sensory fascicles in peripheral nerve trunk using laser micro-Raman spectroscopy.DESIGN, TIME AND SETTING: A comparative observation was performed at the Key Laboratory of Excited States Physics in Chinese Academy of Science, Changchun Branch, from October 2004 to October 2005. MATERIALS: JY-HR800 laser confocal micro-Raman spectrometer was purchased from Jobin-Yvon France; 2060-10 argon ion laser was purchased from Spectra-Physics, USA. METHODS: A total of 32 New Zealand rabbits were selected and sacrificed. The roots of spinal nerves were exposed under an operating microscope, and the anterior and posterior roots, approximately 3-5 mm, were dissociated, and frozen as transverse sections of 30 μm thickness. The sections were examined by micro-Raman spectroscopy. MAIN OUTCOME MEASURES: The specific spectral features of motor and sensory fascicles in the Raman spectra. RESULTS: Sections of the same type of nerve fascicle showed reproducibility with similar spectral features. Significant differences in the spectral properties, such as the intensity and breadth of the peak, were found between motor and sensory fascicles in the frequency regions of 1 088, 1 276, 1 439, 1 579, and 1 659 cm^-1. With the peak intensity ratio of 1.06 (/1276//1439) as a standard, we could identify motor fascicles with a sensitivity of 88%, specificity of 94 %, positive predictive value of 93% and negative predictive value of 88%. In the range of 2 700-3 500 cm^-1, the half-peak width of the motor fascicles was narrow and sharp, while that of the sensory fascicles was relatively wider. A total of 91% of the peak features were in accordance with the identification standard. CONCLUSION: Motor and sensory fascicles exhibit different characteristics in Raman spectra, which are constant and reliable. Therefore, it is an effective method to identify nerve fascicles according to the specific spectrum. 展开更多
关键词 spectroscopy RAMAN spinal nerve root RABBIT
在线阅读 下载PDF
Micro-Raman Spectroscopy for Stress Evaluation of 3C-SiC Epitaxially Grown on Si Substrate by Hot Wall CVD
5
作者 ZHUWen-liang ZHUJi-liang PEZZOTTIGiuseppe 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第05B期803-806,共4页
A series of cubic SiC single crystals were heteroepitaxially grown by the hot-wall chemical vapor deposition (CVD) using a HMDS-C3H8-H2 system on 2 inch silicon substrates with the orientations of (100), (111), (110) ... A series of cubic SiC single crystals were heteroepitaxially grown by the hot-wall chemical vapor deposition (CVD) using a HMDS-C3H8-H2 system on 2 inch silicon substrates with the orientations of (100), (111), (110) and (211), respectively. Even though an initial carbonization was carried out to reduce the large lattice mismatch, residual stress could not be completely relieved, partly also due to the difference of their thermal expansion coefficients. Raman scattering studies for the specimens were performed to estimate the internal stress in the SiC epilayer and the substrate. Raman spectra were mapped out on the sample surface as well as on the cross section using an automated x-y stage with a spatial resolution capable of 100 nm. For all the samples, two Raman peaks corresponding to the transverse optical (TO) and longitudinal optical (LO) phonon modes were observed, even though the intensity varied with the polarization configurations. In the SiC epilayers, tensile stresses decrease away from the interface, while compressive stresses exist in the substrate, with the magnitudes dependent on the growth orientation. The lattice strains were discussed in terms of the elastic deformation theory for the comparison. 展开更多
关键词 显微喇曼光谱学 应力测定 3C-SIC 热壁CVD 外延生长
在线阅读 下载PDF
Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork 被引量:1
6
作者 Runqiu Wang Shunda Qiao +1 位作者 Ying He Yufei Ma 《Opto-Electronic Advances》 2025年第4期6-16,共11页
In this paper,a novel four-prong quartz tuning fork(QTF)was designed with enlarged deformation area,large prong gap,and low resonant frequency to improve its performance in laser spectroscopy sensing.A theoretical sim... In this paper,a novel four-prong quartz tuning fork(QTF)was designed with enlarged deformation area,large prong gap,and low resonant frequency to improve its performance in laser spectroscopy sensing.A theoretical simulation model was established to optimize the design of the QTF structure.In the simulation of quartz-enhanced photoacoustic spectroscopy(QEPAS)technology,the maximum stress and the surface charge density of the four-prong QTF demonstrated increases of 11.1-fold and 15.9-fold,respectively,compared to that of the standard two-prong QTF.In the simulation of light-induced thermoelastic spectroscopy(LITES)technology,the surface temperature difference of the four-prong QTF was found to be 11.4 times greater than that of the standard QTF.Experimental results indicated that the C_(2)H_(2)-QEPAS system based on this innovative design improved the signal-to-noise-ratio(SNR)by 4.67 times compared with the standard QTF-based system,and the SNR could increase up to 147.72 times when the four-prong QTF was equipped with its optimal acoustic micro-resonator(AmR).When the average time of the system reached 370 s,the system achieved a MDL as low as 21 ppb.The four-prong QTF-based C_(2)H_(2)-LITES system exhibited a SNR improvement by a factor of 4.52,and a MDL of 96 ppb was obtained when the average time of the system reached 100 s.The theoretical and experimental results effectively demonstrated the superiority of the four-prong QTF in the field of laser spectroscopy sensing. 展开更多
关键词 four-prong quartz tuning fork C2H2 detection quartz-enhanced photoacoustic spectroscopy light-induced thermoelastic spectroscopy
在线阅读 下载PDF
Value of Magnetic Resonance Spectroscopy for Examining Fetal Brain Development in Mid-to Late Pregnancy 被引量:1
7
作者 Dejuan Shan Yi Zhang +3 位作者 Maobo Wang Yanyan Liu Yudong Wang Lianxiang Xiao 《iRADIOLOGY》 2025年第3期209-213,共5页
Background:Magnetic resonance spectroscopy(MRS)represents a significant advancement in the noninvasive assessment of brain metabolism.MRS can provide valuable metabolic information and facilitate more accurate diagnos... Background:Magnetic resonance spectroscopy(MRS)represents a significant advancement in the noninvasive assessment of brain metabolism.MRS can provide valuable metabolic information and facilitate more accurate diagnoses of intrauterine fetal brain development than was previously possible.To obtain information regarding normal intrauterine fetal brain metabolism and to establish gestational age-specific reference values for normal fetal brain metabolites for subsequent use in MRS,we conducted MRS scans of normal fetal brains during mid-to late-term pregnancies,along with related processing.Methods:In this prospective study,MRS scans were conducted on 109 fetuses,with a total of 54 normal fetal brains enrolled on the basis of specific inclusion and exclusion criteria.We analyzed metabolic ratios,including the sum of N-acetylaspartate(NAA)and total N-acetylaspartate(tNAA),total choline(tCho),inositol(Ins),and total creatine(tCr),in relation to gestational age.Results:Gestational age was significantly correlated with specific metabolic ratios(Ins/tCr:r=-0.75,p<0.0001;tCho/tCr:r=-0.50,p<0.0001),especially tNAA/tCho(tNAA/tCho:r=0.54,p<0.0001)and tNAA/Ins(r=0.56,p<0.0001),providing a baseline for fetal brain metabolic assessment.Linear regression analysis was used to calculate regression lines for fetal brain metabolite ratios.Slopes were tested at p of 0.05.Conclusions:The current findings confirmed a significant correlation between fetal brain metabolites and gestational age,supporting the feasibility of establishing standard values for these metabolites in fetal brain assessment. 展开更多
关键词 CHOLINE CREATINE fetal brain metabolism magnetic resonance spectroscopy N-ACETYLASPARTATE
暂未订购
Development and Application of Cavity-based Absorption Spectroscopy in Atmospheric Chemistry:Recent Progress 被引量:1
8
作者 Weixiong ZHAO Nana YANG +6 位作者 Renzhi HU Bo FANG Jiacheng ZHOU Chuan LIN Feihu CHENG Pinhua XIE Weijun ZHANG 《Advances in Atmospheric Sciences》 2025年第4期605-622,共18页
Atmospheric chemistry research and atmospheric measurement techniques have mutually promoted each other and developed rapidly in China in recent years.Cavity-based absorption spectroscopy,which uses a high-finesse cav... Atmospheric chemistry research and atmospheric measurement techniques have mutually promoted each other and developed rapidly in China in recent years.Cavity-based absorption spectroscopy,which uses a high-finesse cavity to achieve very long absorption path-length,thereby achieving ultra-high detection sensitivity,plays an extremely important role in atmospheric chemistry research.Based on the Beer–Lambert law,this technology has the unique advantages of being non-destructive,chemical-free,and highly selective.It does not require any sample preparation and can quantitatively analyze atmospheric trace gases in real time and in situ.In this paper,we review the following:(1)key technological advances in different cavity-based absorption spectroscopy techniques,including cavity ring-down spectroscopy,cavityenhanced absorption spectroscopy,cavity attenuated phase shift spectroscopy,and their extensions;and(2)applications of these techniques in the detection of atmospheric reactive species,such as total peroxy radical,formaldehyde,and reactive nitrogen(e.g.,NOx,HONO,peroxy nitrates,and alkyl nitrates).The review systematically introduces cavity-based absorption spectroscopy techniques and their applications in atmospheric chemistry,which will help promote further communication and cooperation in the fields of laser spectroscopy and atmospheric chemistry. 展开更多
关键词 cavity-based absorption spectroscopy atmospheric chemistry atmospheric reactive species
在线阅读 下载PDF
Coulomb attraction driven spontaneous molecule-hotspot pairing enables universal,fast,and large-scale uniform single-molecule Raman spectroscopy 被引量:1
9
作者 Lihong Hong Haiyao Yang +2 位作者 Jianzhi Zhang Zihan Gao Zhi-Yuan Li 《Opto-Electronic Advances》 2025年第7期37-49,共13页
Raman spectroscopy offers a great power to detect,analyze and identify molecules,and monitor their temporal dynamics and evolution when combined with single-molecule surface-enhanced Raman scattering(SM-SERS)substrate... Raman spectroscopy offers a great power to detect,analyze and identify molecules,and monitor their temporal dynamics and evolution when combined with single-molecule surface-enhanced Raman scattering(SM-SERS)substrates.Here we present a SM-SERS scheme that involves simultaneously giant chemical enhancement from WS22D materials,giant electromagnetic enhancement from plasmonic nanogap hot spot,and inhibition of molecular fluorescence influence under near-infrared laser illumination.Remarkably we find Coulomb attraction between analyte and gold nanoparticle can trigger spontaneous formation of molecule-hotspot pairing with high precision,stability and robustness.The scheme has enabled realization of universal,robust,fast,and large-scale uniform SM-SERS detection for three Raman molecules of rhodamine B,rhodamine 6G,and crystal violet with a very low detection limit of 10−16 M and at a very fast spectrum acquisition time of 50 ms. 展开更多
关键词 single-molecule Raman spectroscopy Coulomb attractions electromagnetic enhancement chemical enhancement near-infrared laser illumination
在线阅读 下载PDF
Development and prospect of near-infrared spectroscopy-assisted schizophrenia diagnosis based on bibliometrics
10
作者 Yan Zhang Hao-Yu Xing Juan Yan 《World Journal of Psychiatry》 SCIE 2025年第1期7-11,共5页
In this editorial,we comment on the recent article by Fei et al exploring the field of near-infrared spectroscopy(NIRS)research in schizophrenia from a bibliometrics perspective.In recent years,NIRS has shown unique a... In this editorial,we comment on the recent article by Fei et al exploring the field of near-infrared spectroscopy(NIRS)research in schizophrenia from a bibliometrics perspective.In recent years,NIRS has shown unique advantages in the auxiliary diagnosis of schizophrenia,and the introduction of bibliometrics has provided a macro perspective for research in this field.Despite the opportunities brought about by these technological developments,remaining challenges require multidi-sciplinary approach to devise a reliable and accurate diagnosis system for schizo-phrenia.Nonetheless,NIRS-assisted technology is expected to contribute to the division of methods for early intervention and treatment of schizophrenia. 展开更多
关键词 BIBLIOMETRICS SCHIZOPHRENIA Near-infrared spectroscopy Diagnostic technique Data analysis
暂未订购
Infrared spectroscopic analysis of O-H bond dynamics in one-dimensional confined water and bulk water
11
作者 ZHANG Lei WANG Tian-Qi FAN Yan-Ping 《红外与毫米波学报》 北大核心 2025年第1期78-85,共8页
In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are c... In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water molecules.Therefore,it is crucial to analyze the relationship between these two aspects.In this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics simulations.The results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency peaks.Further analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H bonds.Finally,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly revealed.These findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology. 展开更多
关键词 one-dimensional confined water infrared spectroscopy hydrogen bonds
在线阅读 下载PDF
Unveiling solid-solid contact states in all-solid-state lithium batteries:An electrochemical impedance spectroscopy viewpoint 被引量:1
12
作者 Jin-Liang Li Liang Shen +9 位作者 Zi-Ning Cheng Jun-Dong Zhang Ling-Xuan Li Yu-Tong Zhang Yan-Bin Gao Chunli Guo Xiang Chen Chen-Zi Zhao Rui Zhang Qiang Zhang 《Journal of Energy Chemistry》 2025年第2期16-22,I0002,共8页
All-solid-state lithium batteries(ASSLBs)are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety.The solid-solid contact between lithium metal and solid... All-solid-state lithium batteries(ASSLBs)are strongly considered as the next-generation energy storage devices for their high energy density and intrinsic safety.The solid-solid contact between lithium metal and solid electrolyte plays a vital role in the performance of working ASSLBs,which is challenging to investigate quantitatively by experimental approach.This work proposed a quantitative model based on the finite element method for electrochemical impedance spectroscopy simulation of different solid-solid contact states in ASSLBs.With the assistance of an equivalent circuit model and distribution of relaxation times,it is discovered that as the number of voids and the sharpness of cracks increase,the contact resistance Rcgrows and ultimately dominates the battery impedance.Through accurate fitting,inverse proportional relations between contact resistance Rcand(1-porosity)as well as crack angle was disclosed.This contribution affords a fresh insight into clarifying solid-solid contact states in ASSLBs. 展开更多
关键词 Electrochemical impedance spectroscopy All-solid-state lithium batteries Solid-solid contacts Finite element method Equivalent circuit model Distribution of relaxation times
在线阅读 下载PDF
Optical Spectroscopy Methods for Determining Semiconductor Bandgaps
13
作者 ZHANG Yong 《发光学报》 北大核心 2025年第7期1271-1282,共12页
Although there are numerous optical spectroscopy techniques and methods that have been used to extract the fundamental bandgap of a semiconductor,most of them belong to one of these three approaches:(1)the excitonic a... Although there are numerous optical spectroscopy techniques and methods that have been used to extract the fundamental bandgap of a semiconductor,most of them belong to one of these three approaches:(1)the excitonic absorption,(2)modulation spectroscopy,and(3)the most widely used Tauc-plot.The excitonic absorption is based on a many-particle theory,which is physically the most correct approach,but requires more stringent crystalline quality and appropriate sample preparation and experimental implementation.The Tauc-plot is based on a single-particle theo⁃ry that neglects the many-electron effects.Modulation spectroscopy analyzes the spectroscopy features in the derivative spectrum,typically,of the reflectance and transmission under an external perturbation.Empirically,the bandgap ener⁃gy derived from the three approaches follow the order of E_(ex)>E_(MS)>E_(TP),where three transition energies are from exci⁃tonic absorption,modulation spectroscopy,and Tauc-plot,respectively.In principle,defining E_(g) as the single-elec⁃tron bandgap,we expect E_(g)>E_(ex),thus,E_(g)>E_(TP).In the literature,E_(TP) is often interpreted as E_(g),which is conceptual⁃ly problematic.However,in many cases,because the excitonic peaks are not readily identifiable,the inconsistency be⁃tween E_(g) and E_(TP) becomes invisible.In this brief review,real world examples are used(1)to illustrate how excitonic absorption features depend sensitively on the sample and measurement conditions;(2)to demonstrate the differences between E_(ex),E_(MS),and E_(TP) when they can be extracted simultaneously for one sample;and(3)to show how the popular⁃ly adopted Tauc-plot could lead to misleading results.Finally,it is pointed out that if the excitonic absorption is not ob⁃servable,the modulation spectroscopy can often yield a more useful and reasonable bandgap than Tauc-plot. 展开更多
关键词 semiconductor material bandgap excitonic absorption modulation spectroscopy Tauc plot
在线阅读 下载PDF
Oxidative Degradation of Plastic Bottle Tops in an Arid, Terrestrial Environment—Identifying Oxidative Degradation by Infrared Spectroscopy
14
作者 Mahra Al Kaabi Vijo Poulose Thies Thiemann 《Journal of Environmental Protection》 2025年第2期66-86,共21页
This communication looks at the photo-oxidation of polythene and polypropylene plastic bottle tops that are placed on soil in a hot arid environment. The degree of oxidation of the plastic is monitored by FT-IR spectr... This communication looks at the photo-oxidation of polythene and polypropylene plastic bottle tops that are placed on soil in a hot arid environment. The degree of oxidation of the plastic is monitored by FT-IR spectroscopy. It is noted that while different bottle top types photo-oxidize at different rates, all show an appreciable level of oxidation after half a year of exposure to the environment. The oxidation leads to brittleness of the plastic, which leads to fissure formation in bottle tops of little thickness. This leads to fragmentation of the material upon impact, making plastic bottle tops an appreciable source of microplastics. 展开更多
关键词 PLASTICS Polythene POLYPROPYLENE Plastic Bottle Tops FRAGMENTATION Microplastics Infrared spectroscopy Oxidation Index
在线阅读 下载PDF
Dynamic surface-enhanced Raman spectroscopy-based metabolic profiling:A novel pathway to overcoming antifungal resistance
15
作者 Hao Li Hanzhi Lu +4 位作者 Linlin Hu Xueli Zhang Hua Shao Fulun Li Yanfei Shen 《Chinese Chemical Letters》 2025年第7期217-221,共5页
Antifungal resistance is the leading cause of antifungal treatment failure in invasive candidiasis.Metabolic rewiring could become a new insight to account for antifungal resistance as to find innovative clinical ther... Antifungal resistance is the leading cause of antifungal treatment failure in invasive candidiasis.Metabolic rewiring could become a new insight to account for antifungal resistance as to find innovative clinical therapies.Here,we show that dynamic surface-enhanced Raman spectroscopy is a promising tool to identify the metabolic differences between fluconazole(Diflucan)-resistant and fluconazole(Diflucan)-sensitive Candida albicans through the signatures of biochemical components and complemented with machine learning algorithms and two-dimensional correlation spectroscopy,an underlying resistance mechanism,that is,the change of purine metabolites induced the resistance of Candida albicans has been clarified yet never reported anywhere.We hope the integrated methodology introduced in this work could be beneficial for the interpretation of cellular regulation,propelling the development of targeted antifungal therapies and diagnostic tools for more efficient management of severe antifungal resistance. 展开更多
关键词 Antifungal resistance Metabolic rewiring Dynamic surface-enhanced Raman spectroscopy Machine learning Two-dimensional correlation spectroscopy
原文传递
Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy
16
作者 Manyu Zhu Fei Liang +4 位作者 Lie Wu Zihao Li Chen Wang Shule Liu Xiue Jiang 《Chinese Chemical Letters》 2025年第2期433-436,共4页
Revealing the factors that affect the vibrational frequency of Stark probe at interface is a pre-requirement for evaluating the absolute interfacial electric field.Here using surface-enhanced infrared absorption(SEIRA... Revealing the factors that affect the vibrational frequency of Stark probe at interface is a pre-requirement for evaluating the absolute interfacial electric field.Here using surface-enhanced infrared absorption(SEIRA)spectroscopy,attenuated total reflection(ATR)spectroscopy and molecular dynamics(MD),we reveal the assembled C≡N at gold nanofilm exhibits a reduced Stark tuning rate(STR)referring to the vibrational frequency shift in response to electric field comparing with the bulk which was regulated by the electron transfer between S and Au.These findings lead to a deeper understanding of the vibrational Stark effect at the interface and provide guidance for improving the interface electric field theory. 展开更多
关键词 Surface-enhanced infrared spectroscopy Attenuated total reflection spectroscopy Vibrational stark effect Stark tuning rate Cyano group
原文传递
An economical and flexible chip using surface-enhanced infrared absorption spectroscopy for pharmaceutical detection:Combining qualitative analysis and quantitative detection
17
作者 Jikai Wang Pengfei Zeng +3 位作者 Haitao Xie Suisui He Xilin Xiao Cuiyun Yu 《Journal of Pharmaceutical Analysis》 2025年第2期474-476,共3页
Infrared(IR)spectroscopy,a technique within the realm of molecular vibrational spectroscopy,furnishes distinctive chemical signatures pivotal for both structural analysis and compound identification.A notable challeng... Infrared(IR)spectroscopy,a technique within the realm of molecular vibrational spectroscopy,furnishes distinctive chemical signatures pivotal for both structural analysis and compound identification.A notable challenge emerges from the misalignment between the mid-IR light wavelength range and molecular dimensions,culminating in a constrained absorption cross-section and diminished vibrational absorption coefficients(Supplementary data). 展开更多
关键词 pharmaceutical detection quantitative detection structural analysis surface enhanced infrared absorption spectroscopy qualitative analysis chemical signatures infrared spectroscopy molecular vibrational spectroscopyfurnishes
在线阅读 下载PDF
Determination of the kidney stone composition using infrared spectroscopy in Iran at a national referral center during 2019-2023
18
作者 Abbas Basiri Azin Tahvildari +2 位作者 Mohammad Naji Pardis Ziaeefar Amir H.Kashi 《Asian Journal of Urology》 2025年第1期72-78,共7页
Objective The national lifetime prevalence of urolithiasis is estimated at 6.6%in Iran.However,reports on the composition of kidney stones have been based on imprecise methods like the chemical analysis.No prior large... Objective The national lifetime prevalence of urolithiasis is estimated at 6.6%in Iran.However,reports on the composition of kidney stones have been based on imprecise methods like the chemical analysis.No prior large-scale study has reported the composition of kidney stones based on the gold-standard methods(X-ray diffraction or infrared spectroscopy)in Iran.This study aimed to provide the composition of kidney stones based on Fourier transform infrared spectroscopy.Methods This is a cross-sectional study assessing urinary stone composition from various cities in Iran at a referral center using infrared spectroscopy from February 2019 to March 2023.Results This study determined the stone composition of 1092 patients from 10 cities in Iran.Overall,the majority of stones were composed of calcium oxalate(n=498;45.6%)and uric acid(UA,n=488;44.7%)followed by cystine(n=49;4.5%)and struvite(n=28;2.6%).Stone composition in Shiraz and Isfahan was roughly similar with a higher percentage of UA stones(53.4%and 53.6%,respectively)while the capital city of Iran(Tehran)had less frequent UA stones(39.9%)with a higher percentage of calcium oxalate stones.The percentage of UA stones increased with age as it was 11.1%in children,42.7%in adults,and 83.3%in geriatric patients(p<0.001).About 29.6%of cystine stones were observed in children.Conclusion The most frequent stone composition among kidney stones in Iran was calcium oxalate and UA stones.This relative frequency of UA stones is considerably higher than many international reports from neighboring as well as distant countries.More cystine stones were observed in children and women.Geriatric patients’stones were mostly composed of UA. 展开更多
关键词 Kidney stone UROLITHIASIS Infrared spectroscopy Stone composition
暂未订购
High-precision quantitative analysis of 3-nitro-1,2,4-triazol-5-one(NTO)concentration based on ATR-FTIR spectroscopy and machine learning
19
作者 Zhe Zhang Zhuowei Sun +4 位作者 Haoming Zou Xijuan Lv Ziyang Guo Shuai Zhao Qinghai Shu 《Defence Technology(防务技术)》 2025年第10期131-141,共11页
3-Nitro-1,2,4-triazol-5-one(NTO)is a typical high-energy,low-sensitivity explosive,and accurate concentration monitoring is critical for crystallization process control.In this study,a high-precision quantitative anal... 3-Nitro-1,2,4-triazol-5-one(NTO)is a typical high-energy,low-sensitivity explosive,and accurate concentration monitoring is critical for crystallization process control.In this study,a high-precision quantitative analytical model for NTO concentration in ethanol solutions was developed by integrating real-time ATR-FTIR spectroscopy with chemometric and machine learning techniques.Dynamic spectral data were obtained by designing multi-concentration gradient heating-cooling cycle experiments,abnormal samples were eliminated using the isolation forest algorithm,and the effects of various preprocessing methods on model performance were systematically evaluated.The results show that partial least squares regression(PLSR)exhibits superior generalization ability compared to other models.Vibrational bands corresponding to C=O and–NO_(2)were identified as key predictors for concentration estimation.This work provides an efficient and reliable solution for real-time concentration monitoring during NTO crystallization and holds significant potential for process analytical applications in energetic material manufacturing. 展开更多
关键词 ATR-FTIR spectroscopy Machine learning Quantitative analysis
在线阅读 下载PDF
Unveiling nano-scale chemical inhomogeneity in surface oxide films formed on V-and N-containing martensite stainless steel by synchrotron X-ray photoelectron emission spectroscopy/microscopy and microscopic X-ray absorption spectroscopy
20
作者 Xiaoqi Yue Dihao Chen +11 位作者 Anantha Krishnan Isac Lazar Yuran Niu Evangelos Golias Carsten Wiemann Andrei Gloskovskii Christoph Schlueter Arno Jeromin Thomas F.Keller Haijie Tong Sebastian Ejnermark Jinshan Pan 《Journal of Materials Science & Technology》 2025年第2期191-203,共13页
Nano-scale chemical inhomogeneity in surface oxide films formed on a V-and N-containing martensite stainless steel and tempering heating induced changes are investigated by a combination of synchrotron-based hard X-ra... Nano-scale chemical inhomogeneity in surface oxide films formed on a V-and N-containing martensite stainless steel and tempering heating induced changes are investigated by a combination of synchrotron-based hard X-ray Photoelectron emission spectroscopy(HAXPES)and microscopy(HAXPEEM)as well as microscopic X-ray absorption spectroscopy(μ-XAS)techniques.The results reveal the inhomogeneity in the oxide films on the micron-sized Cr_(2)N-and VN-type particles,while the inhomogeneity on the martensite matrix phase exists due to localised formation of nano-sized tempering nitride particles at 600℃.The oxide film formed on Cr_(2)N-type particles is rich in Cr_(2)O_(3) compared with that on the martensite matrix and VN-type particles.With the increase of tempering temperature,Cr_(2)O_(3) formation is faster for the oxidation of Cr in the martensite matrix than the oxidation of Cr nitride-rich particles. 展开更多
关键词 Synchrotron X-ray photoelectron emission microscopy Hard X-ray photoelectron emission spectroscopy Synchrotron microscopic X-ray absorption spectroscopy Martensite stainless steel Surface oxide film
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部