Organic-rich shale is a significant potential source of oil and gas that requires development through in situ conversion technology.However,the evolution patterns of the internal three-dimensional(3D)pore structure an...Organic-rich shale is a significant potential source of oil and gas that requires development through in situ conversion technology.However,the evolution patterns of the internal three-dimensional(3D)pore structure and kerogen distribution at high temperatures are not well understood,making it difficult to microscopically explain the evolution of the flow conductivity in organic-rich shale at high temperatures.This study utilizes high-resolution X-ray computed tomography(micro-nano CT)to obtain the distribution of pores,kerogen,and inorganic matter at different temperatures.Combined with the pyrolysis results for the rock,the evolution of the pore structure at various temperatures is quantitatively analyzed.Based on three-phase segmentation technology,a model of kerogen distribution in organicrich shale is established by dividing the kerogen into clustered kerogen and dispersed kerogen stored in the inorganic matter and the pores into inorganic pores and organic pores within the kerogen skeleton.The results show that the inorganic pores in organic-rich shale evolve through three stages as the temperature increases:kerogen pyrolysis(200-400℃),clay mineral decomposition(400-600℃),and carbonate mineral decomposition(600-800℃).The inorganic pores porosity sequentially increases from 3%to 11.4%,13.1%,and 15.4%,and the roughness and connectivity of the inorganic pores gradually increase during this process.When the pyrolysis temperature reaches 400℃,the volume of clustered kerogen decreases from 25%to 12.5%.During this process,the relative density of kerogen decreases from9.5 g/cm^(3) in its original state to 5.4 g/cm^(3),while the kerogen skeleton density increases from 1.15 g/cm^(3) in its original state to 1.54 g/cm^(3).Correspondingly,7%-8%of organic pores develop within the clustered kerogen,accounting for approximately 50%of the volume of clustered kerogen.In addition,approximately 30%of the kerogen in organic-rich shale exists in the form of dispersed kerogen within inorganic matter,and its variation trend is similar to that of clustered kerogen,rapidly decreasing from 200 to 400℃ and stabilizing above 400℃.The results of this study provide an essential microscopic theoretical basis for the industrial development of organic-rich shale resources.展开更多
Micro-nano Earth Observation Satellite(MEOS)constellation has the advantages of low construction cost,short revisit cycle,and high functional density,which is considered a promising solution for serving rapidly growin...Micro-nano Earth Observation Satellite(MEOS)constellation has the advantages of low construction cost,short revisit cycle,and high functional density,which is considered a promising solution for serving rapidly growing observation demands.The observation Scheduling Problem in the MEOS constellation(MEOSSP)is a challenging issue due to the large number of satellites and tasks,as well as complex observation constraints.To address the large-scale and complicated MEOSSP,we develop a Two-Stage Scheduling Algorithm based on the Pointer Network with Attention mechanism(TSSA-PNA).In TSSA-PNA,the MEOS observation scheduling is decomposed into a task allocation stage and a single-MEOS scheduling stage.In the task allocation stage,an adaptive task allocation algorithm with four problem-specific allocation operators is proposed to reallocate the unscheduled tasks to new MEOSs.Regarding the single-MEOS scheduling stage,we design a pointer network based on the encoder-decoder architecture to learn the optimal singleMEOS scheduling solution and introduce the attention mechanism into the encoder to improve the learning efficiency.The Pointer Network with Attention mechanism(PNA)can generate the single-MEOS scheduling solution quickly in an end-to-end manner.These two decomposed stages are performed iteratively to search for the solution with high profit.A greedy local search algorithm is developed to improve the profits further.The performance of the PNA and TSSA-PNA on singleMEOS and multi-MEOS scheduling problems are evaluated in the experiments.The experimental results demonstrate that PNA can obtain the approximate solution for the single-MEOS scheduling problem in a short time.Besides,the TSSA-PNA can achieve higher observation profits than the existing scheduling algorithms within the acceptable computational time for the large-scale MEOS scheduling problem.展开更多
Flow boiling in open microchannels offers highly efficient heat transfer performance and has attracted increasing attention in the fields of heat transfer and thermalmanagement of electronic devices in recent years.Ho...Flow boiling in open microchannels offers highly efficient heat transfer performance and has attracted increasing attention in the fields of heat transfer and thermalmanagement of electronic devices in recent years.However,the continuous rise in power density of electronic components imposesmore stringent requirements on the heat transfer capability of microchannel flow boiling.HFE-7100,a dielectric coolant with favorable thermophysical properties,has become a focal point of research for enhancing flow boiling performance in open microchannels.The flow boiling heat transfer performance ofHFE-7100 was investigated in this study by fabricating micro-nano composite structures on the bottom surface of open microchannels using laser ablation technology.Based on visualization results,a comparative analysis was conducted on the bubble dynamics and flow pattern characteristics of HFE-7100 flow boiling in micronano structured open microchannels(MNSOMC)and smooth-surface open microchannels(SSOMC),to elucidate the enhancement mechanism of micro-nano structures on flow boiling heat transfer in open microchannels.The results indicate that the surface structures and strong wettability of MNSOMC accelerated bubble nucleation and departure.Moreover,bubbles in the channel tended to coalesce along the flow direction,forming elongated slug bubbles with high aspect ratios,which enabled efficient thin film evaporation in conjunction with intense nucleate boiling,thereby significantly enhancing flow boiling heat transfer.Under the experimental conditions of this study,the maximum enhancements in the heat transfer coefficient(HTC)and critical heat flux(CHF)of HFE-7100 inMNSOMC were 33.4%and 133.1%,respectively,with the CHF reaching up to 1542.3 kW⋅m^(−2).Furthermore,due to the superior wettability and capillary wicking capability of the micro-nano composite structures,the significant enhancement in flow boiling heat transfer was achieved without incurring a noticeable pressure drop penalty.展开更多
A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al−2Nb−2Cr−0.15B alloy at 1160−1220℃ for 30 min.The interfacial microstructure and formation mechanism of TiAl joints and the rel...A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al−2Nb−2Cr−0.15B alloy at 1160−1220℃ for 30 min.The interfacial microstructure and formation mechanism of TiAl joints and the relationships among brazing temperature,interfacial microstructure and joint strength were emphatically investigated.Results show that the TiAl joints brazed at 1160 and 1180℃ possess three interfacial layers and mainly consist of α_(2)-Ti_(3)Al,τ_(3)-Al_(3)NiTi_(2) and Ti_(2)Ni,but the brazing seams are no longer layered and Ti_(2)Ni is completely replaced by the uniformly distributed τ_(3)-Al_(3)NiTi_(2) at 1200 and 1220℃ due to the destruction of α_(2)-Ti_(3)Al barrier layer.This transformation at 1200℃ obviously improves the tensile strength of the joint and obtains a maximum of 343 MPa.Notably,the outward diffusion of Al atoms from the dissolution of TiAl substrate dominates the microstructure evolution and tensile strength of the TiAl joint at different brazing temperatures.展开更多
One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including ...One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development.展开更多
With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combine...With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combined process of micro-electrolysis+micro-nano bubbles coupled with peroxymonosulfate was constructed in this study,and the treatment effect and application value of this technology were explored with the actual rural domestic sewage as the treatment object.The experimental results showed that under the conditions of HRT of 120 min,PMS dosage of 0.15 mmol/L,pH=7,MBs air intake of 15 ml/min,current intensity of 15 A,and Fe/C mass ratio of 1:1,the removal rates of COD,ammonia nitrogen and total phosphorus can reach 88.55%,77.18%and 74.67%,respectively.Under the condition that the pH value of sewage was not adjusted,the non-biochemical simultaneous decarbonization,denitrification and phosphorus removal of rural domestic sewage can be achieved by micro-electrolysis and micro-nano bubbles coupled with peroxymonosulfate.The concentrations of effluent COD,ammonia nitrogen and total phosphorus met the requirements of the first level standard of the Discharge Standard of Water Pollutants for Rural Domestic Sewage Treatment Facilities(DB45T2413-2021).And the comprehensive operating cost was about 1.15 yuan/m 3.展开更多
Water-based rechargeable metal-air batteries play an important role in the storage and conversion of renewable electric energy.However,the sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution re...Water-based rechargeable metal-air batteries play an important role in the storage and conversion of renewable electric energy.However,the sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)have limited the practical application of rechargeable metal-air batteries.Most of reviews were focused on single functional electrocatalysts while few on bifunctional electrocatalysts.It is indispensable but challenging to design a bifunctional electrocatalyst that is active and stable to the two reactions.Recently,attempts to develop high active bifunctional electrocatalysts for both ORR and OER increase rapidly.Much work is focused on the micro-nano design of advanced structures to improve the performance of bifunctional electrocatalyst.Transition-metal materials,carbon materials and composite materials,and the methods developed to prepare micro-nano structures,such as electrochemical methods,chemical vapor deposition,hydrothermal methods and template methods are reported in literatures.Additionally,many strategies,such as adjustments of electronic structures,oxygen defects,metal-oxygen bonds,interfacial strain,nano composites,heteroatom doping etc.,have been used extensively to design bifunctional electrocatalysts.To well understand the achievements in the recent literatures,this review focuses on the micro-nano structural design of materials,and the related methods and strategies are classed into two groups for the improvement of intrinsic and apparent activities.The fine adjustment of nano structures and an in-depth understanding of the reaction mechanism are also discussed briefly.展开更多
A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidificatio...A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidification, carbonization and activation. Nitrogen adsorption and mercury porosimetry show that mixed nanopores and micropores coexist in MNC with a high specific surface area of 1978 m2·g-1 and a total pore volume of 0.99 cm3·g-1. In addition, the MNC is found to consist of EG and activated carbon with the latter deposited on the interior and the exterior surfaces of the EG pores. The thickness of the activated carbon layer is calculated to be about one hundred nanometers and is further confirmed by scanning electron microscope (SEM) and transmission election microscope (TEM). A maximum static phenol adsorption of 241.2 mg·g-1 was obtained by using MNC, slightly higher than that of 220.4 mg·g-1 by using commercial activated carbon (CAC). The phenol adsorption kinetics were investigated and the data fitted well to a pseudo-second-order model. Also, an intra-particle diffusion mechanism was proposed. Furthermore, it is found that the dynamic adsorption capacity of MNC is nearly three times that of CAC. The results suggest that the MNC is a more efficient adsorbent than CAC for the removal of phenol from aqueous solution.展开更多
The biological performance of Ti-6Al-4V implant is primarily determined by their surface properties.However,traditional surface modification methods,such as acid etching,hardly make improvement in their osseointegrati...The biological performance of Ti-6Al-4V implant is primarily determined by their surface properties.However,traditional surface modification methods,such as acid etching,hardly make improvement in their osseointegration ability and antibacterial capacity.In this study,we prepared a multi-scale composite structure coated with zinc oxide(ZnO)on Ti-6Al-4V implant by an innovative technology of two-step laser processing combined with solution-assistant.Compared with the acid etching method,the physicochemical properties of surface significantly improved.The in vitro results showed that the particular dimension of micro-nano structure and the multifaceted nature of ZnO synergistically affected MC3T3-E1 osteogenesis and bacterial activities:(1)The surface morphology showed a‘contact guidance'effect on cell arrangement,which was conducive to the adhesion of filopodia and cell spreading,and the osteogenesis level of MC3T3-E1 was enhanced due to the release of zinc ions(Zn^(2+));(2)the characterization of bacterial response revealed that periodic nanostructures and Zn^(2+)released could cause damage to the cell wall of E.coli and reduce the adhesion and aggregation of S.aureus.In conclusion,the modified surface showed a synergistic effect of physical topography and chemical composition,making this a promising method and providing new insight into bone defect repairment.展开更多
Solar interfacial evaporation has been considered as a promising method to alleviate fresh water re-sources shortage.The shortage of freshwater resources requires advanced materials that can accelerate the evaporation...Solar interfacial evaporation has been considered as a promising method to alleviate fresh water re-sources shortage.The shortage of freshwater resources requires advanced materials that can accelerate the evaporation of water by the sun.However,the simple structure of photothermal materials are vitally restricted by finite light absorption.Herein,this work presents a strategy for the synthesis of a spinel-type micro-nano hierarchical tower structure solar absorbent(Mn_(0.6)Ni_(1.4)Co_(2)O_(y))with the low forbidden band(=1.56 eV)and high absorption(97.88%).The products show great potential in solar-thermal energy conversion by creating a trapping effect.The prepared solar absorbent and epoxy resin are evenly mixed and then fully immersed in polyurethane(PU)sponge for water evaporation.The hydrophilic and porous Mn_(0.6)Ni_(1.4)Co_(2)O_(y)@PU sponge can quickly deliver water upwards,suppress the heat loss,and concentrate the absorbed heat on the evaporation of water.The products exhibited an excellent evaporation rate of 2.261 kg m^(-2) h^(-1) and an impressive evaporation efficiency of 156%under a single sun exposure.Besides,the samples also can maintain the stability and recycling performance for a long time.These findings show that Mn_(0.6)Ni_(1.4)Co_(2)O_(y) have great application prospects in the solar interfacial evaporation.展开更多
The oxygen vacancies and micro-nano structure can optimize the electron/Li+migration kinetics in anode materials for lithium batteries(LIBs).Here,porous micro-nano structured VNb_(9)O_(25)composites with rich oxygen v...The oxygen vacancies and micro-nano structure can optimize the electron/Li+migration kinetics in anode materials for lithium batteries(LIBs).Here,porous micro-nano structured VNb_(9)O_(25)composites with rich oxygen vacancies were reasonably prepared via a facile solvothermal method combined with annealing treatment at 800℃for 30 h(VNb_(9)O_(25)-30 h).This micro-nano structure can enhance the contact of active material/electrolyte,and shorten the Li+diffusion distance.The introduction of oxygen vacancies can further boosts the intrinsic conductivity of VNb_(9)O_(25)-30 h for achieving excellent LIB performance.The as-prepared VNb_(9)O_(25)-30 h anode showed advanced rate capability with reversible capacity of 122.2 m A h g^(-1)at 4 A g^(-1),and delivered excellent capacity retention of~100%after 2000 cycles.Meanwhile,VNb_(9)O_(25)-30 h provides unexpected long-cycle life(i.e.,reversible capacity of 165.7 m A h g^(-1)at 1 A g^(-1)with a high capacity retention of 85.6%even after 8000 cycles).Additionally,coupled with the Li Fe PO4 cathode,the Li Fe PO4//VNb_(9)O_(25)-30 h full cell delivers superior LIB properties with high reversible capacities of 91.6 m A h g^(-1)at 5 C for 1000 cycles.Thus,such reasonable construction method can assist in other high-performance niobium-based oxides in LIBs.展开更多
The wettability of materials used in the production of devices employed in various technological domains have attracted significant attentions.Therefore,it is important to design the surfaces of these materials such t...The wettability of materials used in the production of devices employed in various technological domains have attracted significant attentions.Therefore,it is important to design the surfaces of these materials such that they can provide the required surface free energy and simplify the interfacial structure.Herein,various Cu films with a highly controllable surface wettability and a wide range of contact angles ranging from 6°to 152°were fabricated,and the corresponding mechanism was discussed.A wide range of wettability was realized by controlling the surface structure of the Cu film.The nanogap structure of the vertical nanowire-array film led to a high surface free energy.Similarly,the oblique nanowirearray film increased the surface free energy;however,the surface free energy was dependent on the size of the nanowires rather than on the nanogaps owing to the crystallinity of the film.Additionally,cluster-nanowire-array films were designed to realize a wettability transition from hydrophilicity to hydrophobicity with a constant surface free energy.The Cu foam possessed a superhydrophilic surface owing to its high porosity,whereas the cluster-nanoparticle structure possessed a superhydrophobic surface.In addition,we noted that the structure-induced wettability played an important role in tuning the semiconductor and metal interfacial stress and simplifying the interfacial structure.Furthermore,the outstanding electrical conductivity of the Cu films indicates its promising potential as an electrode.The structure-induced wettability proposed in this study can be applied for a wide range of materials,particularly for films used for advanced applications.展开更多
Wettability and the light-trapping effect of FeSe2 particles with a micro-nano hierarchical structure have been inves- tigated. Particles are synthesized by an improved solvothermal method, wherein hexadecyl trimetbyl...Wettability and the light-trapping effect of FeSe2 particles with a micro-nano hierarchical structure have been inves- tigated. Particles are synthesized by an improved solvothermal method, wherein hexadecyl trimetbyl ammonium bromide (CTAB) is employed as a surfactant. After modifying the particles with heptadecafluorodecyltrimethoxy-silane (HTMS), we find that the water contact angle (WCA) of the FeSe2 particles increases by 6.1~ and the water sliding angle (WSA) decreases by 2.5~ respectively, and the diffuse reflectivity decreases 29.4% compared with similar FeSe2 particles synthe- sized by the conventional method. The growth process of the particles is analyzed and a growth scenario is given. Upon altering the PH values of the water, we observe that the superhydrophobic property is maintained quite consistently across a wide PH range of 1-14. Moreover, the modified particles were also found to be superoleophobic. To the best of our knowledge, there is no systematic research on the wettability of FeSe2 particles, so our research provides a reference for other researchers.展开更多
A practical and effective approach to increase the energy storage capacity of lithium ion batteries(LIBs)is to boost their areal capacity.Developing thick electrodes is one of the most crucial ways to achieve high are...A practical and effective approach to increase the energy storage capacity of lithium ion batteries(LIBs)is to boost their areal capacity.Developing thick electrodes is one of the most crucial ways to achieve high areal capacity but limited by sluggish ion/electron transport,poor mechanical stability,and high-cost manufacturing strategies.Here we address these constraints by engineering a unique hierarchical-networked 10 mm thick all-carbon electrode,providing a scalable strategy to produce high areal capacity LIB electrodes.The hierarchical-networked structure utilizes micrometer-sized carbon fibers(MCFs)as building blocks,nano-sized carbon nanotubes(CNTs)as good continuous network with excellent electrical conductivity,and pyrolytic carbon as the binder and active material with excellent storage capacity.The combination of the above features endows our HNT-MCF/CNT/PC electrode with excellent performance including high reversible capacity of 15.44 mAh cm^(-2) at 2.0 mA cm^(-2) and exhibits excellent rate capability of 2.50 mAh cm^(-2) under 10.0 mA cm^(-2) current density.The Li-ion storage mechanism in HNT-MCF/CNT/PC involves dual-storage mechanism including intercalation and surface adsorption(pseudocapacitance)confirmed by the cyclic voltammetry and symmetric cell analysis.This work provides insights into the construction of high mechanical stability thick electrode for the next generation high areal capacity LIBs and beyond.展开更多
The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons gr...The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons grating(Au substrate grating),and pure electric conductor(PEC)substrate with Au ribbons grating(Au ribbons grating).And the characteristics of the Smith-Purcell radiation in these structures were presented.Simulation results show that SPPs are excited on the bottom surface of Au substrate grating grooves and LSP is stimulated on the upper surface both of Au ribbons grating grooves and Au grating grooves.Owing to the irreconcilable contradiction between optimizing the grating diffraction radiation efficiency and optimizing the SPPs excitation efficiency in the Au substrate grating,only 40-times enhancement of the radiation intensity was obtained by excited SPPs.However,the LSP enhanced structure overcomes the above problem and gains much better radiation enhancement ability,with about 200-times enhancement obtained in the Au ribbons grating and more than 500-times enhancement obtained in the Au grating.The results presented here provide a way of developing miniature,integratable,tunable,high-power-density radiation sources from visible light to ultraviolet rays at room temperature.展开更多
Micro-nano structured Li Fe(1-x)MnxPO4/C(0≤x≤0.05)cathodes were prepared by spray drying,followed by calcination at 700°C.The spherical Li Fe(1-x)MnxPO4/C(0≤x≤0.05)particles with the size of 0.5 to5.0...Micro-nano structured Li Fe(1-x)MnxPO4/C(0≤x≤0.05)cathodes were prepared by spray drying,followed by calcination at 700°C.The spherical Li Fe(1-x)MnxPO4/C(0≤x≤0.05)particles with the size of 0.5 to5.0μm are composed of lots of nanoparticles of 20 to 30 nm,and have the well-developed interconnected pore structure.In contrast,when Mn doping content is 3 mol%(x=0.03),the Li Fe(0.97)Mn(0.03)PO4/C demonstrates maximum specific surface area of 31.30 m^2/g,more uniform pore size and relatively better electrochemical performance.The initial discharge capacities are 161.59,157.04 and 153.13 m Ah/g at a discharge rate of 0.2,0.5 and 1 C,respectively.Meanwhile,the discharge capacity retentions are~100%after 120 cycles.The improved electrochemical performance should be attributed to higher specific surface,smaller polarization voltage,and a high Li~+diffusion rate due to the micro-nano porous structure and lattice expansion produced by Mn doping.展开更多
The hydrophobicity of the lotus leaf is mainly due to its surface micro-nano composite structure. In order to mimic the lotus structure, ZnO micro-nano composite hydrophobic films were prepared via the three-step meth...The hydrophobicity of the lotus leaf is mainly due to its surface micro-nano composite structure. In order to mimic the lotus structure, ZnO micro-nano composite hydrophobic films were prepared via the three-step method. On thin buffer films of SiO2, which were first fabricated on glass substrates by the so,gel dip-coating method, a ZnO seed layer was deposited via RF magnetron sputtering. Then two different ZnO films, micro-nano and micro-only flowerlike structures, were grown by the hydrothermal method. The prepared films have different hydrophobic properties after surface modification. The structures of the obtained ZnO films were characterized using x-ray diffraction and field-emission scanning electron microscopy. A conclusion that a micro-nano composite structure is more beneficial to hydrophobicity than a micro-only structure was obtained through research into the effect of structure on hydrophobic properties.展开更多
Fe–Fe2O3–MnO2–sucrose–epoxy resin and O2 as reaction system and feed gas,separately,were used to prepare micro-nano hollow multiphase ceramic microspheres containing MnFe2O4absorbent by self-reactive quenching met...Fe–Fe2O3–MnO2–sucrose–epoxy resin and O2 as reaction system and feed gas,separately,were used to prepare micro-nano hollow multiphase ceramic microspheres containing MnFe2O4absorbent by self-reactive quenching method which is integrated with flame jet,selfpropagating high-temperature synthesis(SHS),and rapidly solidification.The morphologies and phase compositions of hollow microspheres were studied by scanning electron microscope(SEM),transmission electron microscope(TEM),X-ray diffraction(XRD),and energy dispersive spectroscopy.The results show that the quenching products are regular spherical substantially with hollow structure,particle size is between few hundreds nanometers and 5 lm.Phase compositions are diphase of Fe3O4,Mn3O4,and MnFe2O4,and the spinel soft magnetic ferrite MnFe2O4 with microwave magnetic properties is in majority.Collisions with each other,burst as well as‘‘refinement’’of agglomerate powders in flame field may be the main reasons for the formation of micro-nano hollow multiphase ceramic microspheres containing MnFeOabsorbent.展开更多
This work describes a bifunctional oxygen catalyst made of cobalt disulfide encapsulated in N,S codoped mesoporous carbon with a novel three-dimensional micro-nano crosslinking structure.The proposed composite materia...This work describes a bifunctional oxygen catalyst made of cobalt disulfide encapsulated in N,S codoped mesoporous carbon with a novel three-dimensional micro-nano crosslinking structure.The proposed composite materials exhibit promising oxygen electrocatalytic activity and stability.The composite assembled rechargeable zinc-air battery can achieve a high power density of 208.9 m W/cm^(2),and can be stably cycled for more than 160 h.Additionally,the all-solid zinc-air battery assembled with the electrocatalyst also performs admirably.The micro-nano crosslinking and high porosity structure,as well as the large number of active sites generated by the synergy of N,S doping and the close interface between carbon matrix and CoS_(2),contribute to the composite's exceptional electrochemical performance.This study's rational strategy lays the path for the development of other high-performance bifunctional electrocatalysts.展开更多
Appropriate materials collaborated with reasonable structure can significantly increase the separator performance for lithium-ion batteries.In this work,taking the advantages of microfibrous and nanofibrous membranes ...Appropriate materials collaborated with reasonable structure can significantly increase the separator performance for lithium-ion batteries.In this work,taking the advantages of microfibrous and nanofibrous membranes and compensating for their defects,we developed a composited separator(GOPPH)with excellent overall performance by first wetting-modifying the polyethylene terephthalate microfibers and then laminating a polyvinylidene fluoride-hexafluoropropylene nanofiber layer.Such a combination not only offers the GOPPH separator,from the perspective of structure,with high porosity and hierarchical structure in terms of fiber diameter and pore size,but also provides satisfactory features including wettability,mechanical strength and thermal shutdown function that benefit from the selected materials.Meanwhile,as determined by experimental and theoretical approaches,the obtained GOPPH separator exhibits considerably enhanced lithium ion transport ability with a high lithium ion transference number and transport rate,which thereby endowing the cell with superior cycling stability with a capacity retention of 93%after 200 cycles at 1 C.Therefore,considering battery safety and performance,the GOPPH fibrous membrane could be a promising separator candidate for lithium-ion batteries.展开更多
基金the financial support offered by the National Oil Shale Exploitation R&D Center Open Fund Project(Grant No.33550000-24-ZC0613-0055)National Key R&D Program of China(Grant No.2019YFA0705502,Grant No.2019YFA0705501)+1 种基金Science and technology research project of Education Department of Jilin Province(Grant No.JJKH20231185K)the National Natural Science Fund project of China(Grant No.4210020395,51974334)。
文摘Organic-rich shale is a significant potential source of oil and gas that requires development through in situ conversion technology.However,the evolution patterns of the internal three-dimensional(3D)pore structure and kerogen distribution at high temperatures are not well understood,making it difficult to microscopically explain the evolution of the flow conductivity in organic-rich shale at high temperatures.This study utilizes high-resolution X-ray computed tomography(micro-nano CT)to obtain the distribution of pores,kerogen,and inorganic matter at different temperatures.Combined with the pyrolysis results for the rock,the evolution of the pore structure at various temperatures is quantitatively analyzed.Based on three-phase segmentation technology,a model of kerogen distribution in organicrich shale is established by dividing the kerogen into clustered kerogen and dispersed kerogen stored in the inorganic matter and the pores into inorganic pores and organic pores within the kerogen skeleton.The results show that the inorganic pores in organic-rich shale evolve through three stages as the temperature increases:kerogen pyrolysis(200-400℃),clay mineral decomposition(400-600℃),and carbonate mineral decomposition(600-800℃).The inorganic pores porosity sequentially increases from 3%to 11.4%,13.1%,and 15.4%,and the roughness and connectivity of the inorganic pores gradually increase during this process.When the pyrolysis temperature reaches 400℃,the volume of clustered kerogen decreases from 25%to 12.5%.During this process,the relative density of kerogen decreases from9.5 g/cm^(3) in its original state to 5.4 g/cm^(3),while the kerogen skeleton density increases from 1.15 g/cm^(3) in its original state to 1.54 g/cm^(3).Correspondingly,7%-8%of organic pores develop within the clustered kerogen,accounting for approximately 50%of the volume of clustered kerogen.In addition,approximately 30%of the kerogen in organic-rich shale exists in the form of dispersed kerogen within inorganic matter,and its variation trend is similar to that of clustered kerogen,rapidly decreasing from 200 to 400℃ and stabilizing above 400℃.The results of this study provide an essential microscopic theoretical basis for the industrial development of organic-rich shale resources.
基金supported by the National Natural Science Foundation of China(No.62101587)the National Funded Postdoctoral Researcher Program of China(No.GZC20233578)。
文摘Micro-nano Earth Observation Satellite(MEOS)constellation has the advantages of low construction cost,short revisit cycle,and high functional density,which is considered a promising solution for serving rapidly growing observation demands.The observation Scheduling Problem in the MEOS constellation(MEOSSP)is a challenging issue due to the large number of satellites and tasks,as well as complex observation constraints.To address the large-scale and complicated MEOSSP,we develop a Two-Stage Scheduling Algorithm based on the Pointer Network with Attention mechanism(TSSA-PNA).In TSSA-PNA,the MEOS observation scheduling is decomposed into a task allocation stage and a single-MEOS scheduling stage.In the task allocation stage,an adaptive task allocation algorithm with four problem-specific allocation operators is proposed to reallocate the unscheduled tasks to new MEOSs.Regarding the single-MEOS scheduling stage,we design a pointer network based on the encoder-decoder architecture to learn the optimal singleMEOS scheduling solution and introduce the attention mechanism into the encoder to improve the learning efficiency.The Pointer Network with Attention mechanism(PNA)can generate the single-MEOS scheduling solution quickly in an end-to-end manner.These two decomposed stages are performed iteratively to search for the solution with high profit.A greedy local search algorithm is developed to improve the profits further.The performance of the PNA and TSSA-PNA on singleMEOS and multi-MEOS scheduling problems are evaluated in the experiments.The experimental results demonstrate that PNA can obtain the approximate solution for the single-MEOS scheduling problem in a short time.Besides,the TSSA-PNA can achieve higher observation profits than the existing scheduling algorithms within the acceptable computational time for the large-scale MEOS scheduling problem.
基金funded by the National Natural Science Foundation of China(Grant No.52276047)the Open Fund of NationalKey Laboratory of SpacecraftThermal Control(Grant No.NKLST-JJ-202401011)the Beijing Municipal Science&Technology Commission(Grant No.Z231100006123010).
文摘Flow boiling in open microchannels offers highly efficient heat transfer performance and has attracted increasing attention in the fields of heat transfer and thermalmanagement of electronic devices in recent years.However,the continuous rise in power density of electronic components imposesmore stringent requirements on the heat transfer capability of microchannel flow boiling.HFE-7100,a dielectric coolant with favorable thermophysical properties,has become a focal point of research for enhancing flow boiling performance in open microchannels.The flow boiling heat transfer performance ofHFE-7100 was investigated in this study by fabricating micro-nano composite structures on the bottom surface of open microchannels using laser ablation technology.Based on visualization results,a comparative analysis was conducted on the bubble dynamics and flow pattern characteristics of HFE-7100 flow boiling in micronano structured open microchannels(MNSOMC)and smooth-surface open microchannels(SSOMC),to elucidate the enhancement mechanism of micro-nano structures on flow boiling heat transfer in open microchannels.The results indicate that the surface structures and strong wettability of MNSOMC accelerated bubble nucleation and departure.Moreover,bubbles in the channel tended to coalesce along the flow direction,forming elongated slug bubbles with high aspect ratios,which enabled efficient thin film evaporation in conjunction with intense nucleate boiling,thereby significantly enhancing flow boiling heat transfer.Under the experimental conditions of this study,the maximum enhancements in the heat transfer coefficient(HTC)and critical heat flux(CHF)of HFE-7100 inMNSOMC were 33.4%and 133.1%,respectively,with the CHF reaching up to 1542.3 kW⋅m^(−2).Furthermore,due to the superior wettability and capillary wicking capability of the micro-nano composite structures,the significant enhancement in flow boiling heat transfer was achieved without incurring a noticeable pressure drop penalty.
基金the National Natural Science Foundation of China(No.51865012)the Natural Science Foundation of Jiangxi Province,China(No.20202BABL204040)+3 种基金the Open Foundation of National Engineering Research Center of Near-net-shape Forming for Metallic Materials,China(No.2016005)the Science Foundation of Educational Department of Jiangxi Province,China(No.GJJ170372)the GF Basic Scientific Research Project,China(No.JCKY2020205C002)the Civil Population Supporting Planning and Development Project,China(No.JPPT125GH038).
文摘A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al−2Nb−2Cr−0.15B alloy at 1160−1220℃ for 30 min.The interfacial microstructure and formation mechanism of TiAl joints and the relationships among brazing temperature,interfacial microstructure and joint strength were emphatically investigated.Results show that the TiAl joints brazed at 1160 and 1180℃ possess three interfacial layers and mainly consist of α_(2)-Ti_(3)Al,τ_(3)-Al_(3)NiTi_(2) and Ti_(2)Ni,but the brazing seams are no longer layered and Ti_(2)Ni is completely replaced by the uniformly distributed τ_(3)-Al_(3)NiTi_(2) at 1200 and 1220℃ due to the destruction of α_(2)-Ti_(3)Al barrier layer.This transformation at 1200℃ obviously improves the tensile strength of the joint and obtains a maximum of 343 MPa.Notably,the outward diffusion of Al atoms from the dissolution of TiAl substrate dominates the microstructure evolution and tensile strength of the TiAl joint at different brazing temperatures.
基金supported by National Natural Science Foundation of China (52275551)Shanxi Scholarship Council of China (2021-117)。
文摘One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development.
基金Supported by Research Foundation Ability Enhancement Project for Young and Middle-aged Teachers in Guangxi Universities(2023KY2049).
文摘With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combined process of micro-electrolysis+micro-nano bubbles coupled with peroxymonosulfate was constructed in this study,and the treatment effect and application value of this technology were explored with the actual rural domestic sewage as the treatment object.The experimental results showed that under the conditions of HRT of 120 min,PMS dosage of 0.15 mmol/L,pH=7,MBs air intake of 15 ml/min,current intensity of 15 A,and Fe/C mass ratio of 1:1,the removal rates of COD,ammonia nitrogen and total phosphorus can reach 88.55%,77.18%and 74.67%,respectively.Under the condition that the pH value of sewage was not adjusted,the non-biochemical simultaneous decarbonization,denitrification and phosphorus removal of rural domestic sewage can be achieved by micro-electrolysis and micro-nano bubbles coupled with peroxymonosulfate.The concentrations of effluent COD,ammonia nitrogen and total phosphorus met the requirements of the first level standard of the Discharge Standard of Water Pollutants for Rural Domestic Sewage Treatment Facilities(DB45T2413-2021).And the comprehensive operating cost was about 1.15 yuan/m 3.
基金the financial supports from the National Natural Science Foundation of China(91545202,U1508203)the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS)(XDB17000000)+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciencesthe Liaoning Revitalization Talents Program(XLYC1807066)~~
文摘Water-based rechargeable metal-air batteries play an important role in the storage and conversion of renewable electric energy.However,the sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)have limited the practical application of rechargeable metal-air batteries.Most of reviews were focused on single functional electrocatalysts while few on bifunctional electrocatalysts.It is indispensable but challenging to design a bifunctional electrocatalyst that is active and stable to the two reactions.Recently,attempts to develop high active bifunctional electrocatalysts for both ORR and OER increase rapidly.Much work is focused on the micro-nano design of advanced structures to improve the performance of bifunctional electrocatalyst.Transition-metal materials,carbon materials and composite materials,and the methods developed to prepare micro-nano structures,such as electrochemical methods,chemical vapor deposition,hydrothermal methods and template methods are reported in literatures.Additionally,many strategies,such as adjustments of electronic structures,oxygen defects,metal-oxygen bonds,interfacial strain,nano composites,heteroatom doping etc.,have been used extensively to design bifunctional electrocatalysts.To well understand the achievements in the recent literatures,this review focuses on the micro-nano structural design of materials,and the related methods and strategies are classed into two groups for the improvement of intrinsic and apparent activities.The fine adjustment of nano structures and an in-depth understanding of the reaction mechanism are also discussed briefly.
基金financially supported by the Fundamental Research Funds for the National Natural Science Foundation of China(Nos.21071107,21277094,and21103119)Production and Research Collaborative Innovation Project of Jiangsu Province(No.BY2012123)+9 种基金Natural Science Foundation of Jiangsu Province(No.BK2012167)Scienceand Technology Pillar Program(Industry)of Jiangsu Province(No.BE2012101)Collegiate Natural Science Fund of Jiangsu Province(Nos.12KJA430005,09KJB30003,and11KJB430012)Key Laboratory for Environment Functional Materials of Suzhou(No.SZS201008)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Applied Basic Research Project of Suzhou(No.SYG201242)Industrial Surport Project of Suzhou(No.SG201138)Jiangsu Key Laboratory of Material Tribology(No.Kjsmcx2011001)Jiangsu Key Laboratory for Photon Manufacturing(No.GZ201111)Jiangsu Provincial Key Laboratory for Interventional Medical Devices(No.Jr1210)Creative Project of Postgraduate of Jiangsu Province(No.CXZZ11_0954)
文摘A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidification, carbonization and activation. Nitrogen adsorption and mercury porosimetry show that mixed nanopores and micropores coexist in MNC with a high specific surface area of 1978 m2·g-1 and a total pore volume of 0.99 cm3·g-1. In addition, the MNC is found to consist of EG and activated carbon with the latter deposited on the interior and the exterior surfaces of the EG pores. The thickness of the activated carbon layer is calculated to be about one hundred nanometers and is further confirmed by scanning electron microscope (SEM) and transmission election microscope (TEM). A maximum static phenol adsorption of 241.2 mg·g-1 was obtained by using MNC, slightly higher than that of 220.4 mg·g-1 by using commercial activated carbon (CAC). The phenol adsorption kinetics were investigated and the data fitted well to a pseudo-second-order model. Also, an intra-particle diffusion mechanism was proposed. Furthermore, it is found that the dynamic adsorption capacity of MNC is nearly three times that of CAC. The results suggest that the MNC is a more efficient adsorbent than CAC for the removal of phenol from aqueous solution.
基金supported by the National Natural Science Foundation of China(51975336)Key Research and Development Program of Shandong Province(2020JMRH0202)+1 种基金the National Natural Science Foundation of China(52172282)China Postdoctoral Science Foundation(2021M690106)。
文摘The biological performance of Ti-6Al-4V implant is primarily determined by their surface properties.However,traditional surface modification methods,such as acid etching,hardly make improvement in their osseointegration ability and antibacterial capacity.In this study,we prepared a multi-scale composite structure coated with zinc oxide(ZnO)on Ti-6Al-4V implant by an innovative technology of two-step laser processing combined with solution-assistant.Compared with the acid etching method,the physicochemical properties of surface significantly improved.The in vitro results showed that the particular dimension of micro-nano structure and the multifaceted nature of ZnO synergistically affected MC3T3-E1 osteogenesis and bacterial activities:(1)The surface morphology showed a‘contact guidance'effect on cell arrangement,which was conducive to the adhesion of filopodia and cell spreading,and the osteogenesis level of MC3T3-E1 was enhanced due to the release of zinc ions(Zn^(2+));(2)the characterization of bacterial response revealed that periodic nanostructures and Zn^(2+)released could cause damage to the cell wall of E.coli and reduce the adhesion and aggregation of S.aureus.In conclusion,the modified surface showed a synergistic effect of physical topography and chemical composition,making this a promising method and providing new insight into bone defect repairment.
基金financially supported by the National Science Foundation of China(Nos.51971111 and52273247)the Innovation Project of Nanjing University of Aeronautics and Astronautics(No.xcxjh20210604).
文摘Solar interfacial evaporation has been considered as a promising method to alleviate fresh water re-sources shortage.The shortage of freshwater resources requires advanced materials that can accelerate the evaporation of water by the sun.However,the simple structure of photothermal materials are vitally restricted by finite light absorption.Herein,this work presents a strategy for the synthesis of a spinel-type micro-nano hierarchical tower structure solar absorbent(Mn_(0.6)Ni_(1.4)Co_(2)O_(y))with the low forbidden band(=1.56 eV)and high absorption(97.88%).The products show great potential in solar-thermal energy conversion by creating a trapping effect.The prepared solar absorbent and epoxy resin are evenly mixed and then fully immersed in polyurethane(PU)sponge for water evaporation.The hydrophilic and porous Mn_(0.6)Ni_(1.4)Co_(2)O_(y)@PU sponge can quickly deliver water upwards,suppress the heat loss,and concentrate the absorbed heat on the evaporation of water.The products exhibited an excellent evaporation rate of 2.261 kg m^(-2) h^(-1) and an impressive evaporation efficiency of 156%under a single sun exposure.Besides,the samples also can maintain the stability and recycling performance for a long time.These findings show that Mn_(0.6)Ni_(1.4)Co_(2)O_(y) have great application prospects in the solar interfacial evaporation.
基金supported by a grant from Fujian Natural Science Foundation for Distinguished Young Scholars(Grant No.2020J06042)Natural Science Foundations of China(No.61574037)+1 种基金Natural Science Foundation of Fujian Province(Grant No.2020J01193)Cultivation plan of outstanding young scientific research talents of Fujian Education Department(Grant No.YDR01323)。
文摘The oxygen vacancies and micro-nano structure can optimize the electron/Li+migration kinetics in anode materials for lithium batteries(LIBs).Here,porous micro-nano structured VNb_(9)O_(25)composites with rich oxygen vacancies were reasonably prepared via a facile solvothermal method combined with annealing treatment at 800℃for 30 h(VNb_(9)O_(25)-30 h).This micro-nano structure can enhance the contact of active material/electrolyte,and shorten the Li+diffusion distance.The introduction of oxygen vacancies can further boosts the intrinsic conductivity of VNb_(9)O_(25)-30 h for achieving excellent LIB performance.The as-prepared VNb_(9)O_(25)-30 h anode showed advanced rate capability with reversible capacity of 122.2 m A h g^(-1)at 4 A g^(-1),and delivered excellent capacity retention of~100%after 2000 cycles.Meanwhile,VNb_(9)O_(25)-30 h provides unexpected long-cycle life(i.e.,reversible capacity of 165.7 m A h g^(-1)at 1 A g^(-1)with a high capacity retention of 85.6%even after 8000 cycles).Additionally,coupled with the Li Fe PO4 cathode,the Li Fe PO4//VNb_(9)O_(25)-30 h full cell delivers superior LIB properties with high reversible capacities of 91.6 m A h g^(-1)at 5 C for 1000 cycles.Thus,such reasonable construction method can assist in other high-performance niobium-based oxides in LIBs.
基金financially supported by the National Natural Science Foundation of China(No.61704006)Beijing Nova Programme Interdisciplinary Cooperation Project(No.Z191100001119013)+2 种基金the Scientific Research Project of Beijing Educational Committee(No.KM202111232015)the Supplementary and Supportive Project for Teachers at Beijing Information Science and Technology University(2019-2021)(No.5029011103)the Key Research and Cultivation Project at Beijing Information Science and Technology University。
文摘The wettability of materials used in the production of devices employed in various technological domains have attracted significant attentions.Therefore,it is important to design the surfaces of these materials such that they can provide the required surface free energy and simplify the interfacial structure.Herein,various Cu films with a highly controllable surface wettability and a wide range of contact angles ranging from 6°to 152°were fabricated,and the corresponding mechanism was discussed.A wide range of wettability was realized by controlling the surface structure of the Cu film.The nanogap structure of the vertical nanowire-array film led to a high surface free energy.Similarly,the oblique nanowirearray film increased the surface free energy;however,the surface free energy was dependent on the size of the nanowires rather than on the nanogaps owing to the crystallinity of the film.Additionally,cluster-nanowire-array films were designed to realize a wettability transition from hydrophilicity to hydrophobicity with a constant surface free energy.The Cu foam possessed a superhydrophilic surface owing to its high porosity,whereas the cluster-nanoparticle structure possessed a superhydrophobic surface.In addition,we noted that the structure-induced wettability played an important role in tuning the semiconductor and metal interfacial stress and simplifying the interfacial structure.Furthermore,the outstanding electrical conductivity of the Cu films indicates its promising potential as an electrode.The structure-induced wettability proposed in this study can be applied for a wide range of materials,particularly for films used for advanced applications.
基金Project supported by the Natural Science Foundation of Anhui Province, China (Grant No, 12010202035) and the National Natural Science Foundation of China (Grant No. 51272246).
文摘Wettability and the light-trapping effect of FeSe2 particles with a micro-nano hierarchical structure have been inves- tigated. Particles are synthesized by an improved solvothermal method, wherein hexadecyl trimetbyl ammonium bromide (CTAB) is employed as a surfactant. After modifying the particles with heptadecafluorodecyltrimethoxy-silane (HTMS), we find that the water contact angle (WCA) of the FeSe2 particles increases by 6.1~ and the water sliding angle (WSA) decreases by 2.5~ respectively, and the diffuse reflectivity decreases 29.4% compared with similar FeSe2 particles synthe- sized by the conventional method. The growth process of the particles is analyzed and a growth scenario is given. Upon altering the PH values of the water, we observe that the superhydrophobic property is maintained quite consistently across a wide PH range of 1-14. Moreover, the modified particles were also found to be superoleophobic. To the best of our knowledge, there is no systematic research on the wettability of FeSe2 particles, so our research provides a reference for other researchers.
基金The National Natural Science Foundation of China(21875292)the Fundamental Research Funds for the Central Universities+1 种基金Guangxi Key Laboratory of Information Materials&Guilin University of Electronic Technology,China(191014K)the Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy(2020CB1007).
文摘A practical and effective approach to increase the energy storage capacity of lithium ion batteries(LIBs)is to boost their areal capacity.Developing thick electrodes is one of the most crucial ways to achieve high areal capacity but limited by sluggish ion/electron transport,poor mechanical stability,and high-cost manufacturing strategies.Here we address these constraints by engineering a unique hierarchical-networked 10 mm thick all-carbon electrode,providing a scalable strategy to produce high areal capacity LIB electrodes.The hierarchical-networked structure utilizes micrometer-sized carbon fibers(MCFs)as building blocks,nano-sized carbon nanotubes(CNTs)as good continuous network with excellent electrical conductivity,and pyrolytic carbon as the binder and active material with excellent storage capacity.The combination of the above features endows our HNT-MCF/CNT/PC electrode with excellent performance including high reversible capacity of 15.44 mAh cm^(-2) at 2.0 mA cm^(-2) and exhibits excellent rate capability of 2.50 mAh cm^(-2) under 10.0 mA cm^(-2) current density.The Li-ion storage mechanism in HNT-MCF/CNT/PC involves dual-storage mechanism including intercalation and surface adsorption(pseudocapacitance)confirmed by the cyclic voltammetry and symmetric cell analysis.This work provides insights into the construction of high mechanical stability thick electrode for the next generation high areal capacity LIBs and beyond.
基金supported by the National Key Research and Development Program of China under Grants No.2017YFA0701000,No.2018YFF01013001,and No.2020YFA0714001the Natural Science Foundation of China under Grants No.61988102,No.61921002,and No.62071108。
文摘The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons grating(Au substrate grating),and pure electric conductor(PEC)substrate with Au ribbons grating(Au ribbons grating).And the characteristics of the Smith-Purcell radiation in these structures were presented.Simulation results show that SPPs are excited on the bottom surface of Au substrate grating grooves and LSP is stimulated on the upper surface both of Au ribbons grating grooves and Au grating grooves.Owing to the irreconcilable contradiction between optimizing the grating diffraction radiation efficiency and optimizing the SPPs excitation efficiency in the Au substrate grating,only 40-times enhancement of the radiation intensity was obtained by excited SPPs.However,the LSP enhanced structure overcomes the above problem and gains much better radiation enhancement ability,with about 200-times enhancement obtained in the Au ribbons grating and more than 500-times enhancement obtained in the Au grating.The results presented here provide a way of developing miniature,integratable,tunable,high-power-density radiation sources from visible light to ultraviolet rays at room temperature.
基金financially supported by the Department of Education of Liaoning Province of China
文摘Micro-nano structured Li Fe(1-x)MnxPO4/C(0≤x≤0.05)cathodes were prepared by spray drying,followed by calcination at 700°C.The spherical Li Fe(1-x)MnxPO4/C(0≤x≤0.05)particles with the size of 0.5 to5.0μm are composed of lots of nanoparticles of 20 to 30 nm,and have the well-developed interconnected pore structure.In contrast,when Mn doping content is 3 mol%(x=0.03),the Li Fe(0.97)Mn(0.03)PO4/C demonstrates maximum specific surface area of 31.30 m^2/g,more uniform pore size and relatively better electrochemical performance.The initial discharge capacities are 161.59,157.04 and 153.13 m Ah/g at a discharge rate of 0.2,0.5 and 1 C,respectively.Meanwhile,the discharge capacity retentions are~100%after 120 cycles.The improved electrochemical performance should be attributed to higher specific surface,smaller polarization voltage,and a high Li~+diffusion rate due to the micro-nano porous structure and lattice expansion produced by Mn doping.
基金supported by the Science Fund of Anhui Province,China(Grant No 070414187)the National Fund for Fostering Talents in Basic Science of China(Grant No J0630319/J0103)
文摘The hydrophobicity of the lotus leaf is mainly due to its surface micro-nano composite structure. In order to mimic the lotus structure, ZnO micro-nano composite hydrophobic films were prepared via the three-step method. On thin buffer films of SiO2, which were first fabricated on glass substrates by the so,gel dip-coating method, a ZnO seed layer was deposited via RF magnetron sputtering. Then two different ZnO films, micro-nano and micro-only flowerlike structures, were grown by the hydrothermal method. The prepared films have different hydrophobic properties after surface modification. The structures of the obtained ZnO films were characterized using x-ray diffraction and field-emission scanning electron microscopy. A conclusion that a micro-nano composite structure is more beneficial to hydrophobicity than a micro-only structure was obtained through research into the effect of structure on hydrophobic properties.
基金supported by the ational Natural Science Foundation of China (No. 51172282)
文摘Fe–Fe2O3–MnO2–sucrose–epoxy resin and O2 as reaction system and feed gas,separately,were used to prepare micro-nano hollow multiphase ceramic microspheres containing MnFe2O4absorbent by self-reactive quenching method which is integrated with flame jet,selfpropagating high-temperature synthesis(SHS),and rapidly solidification.The morphologies and phase compositions of hollow microspheres were studied by scanning electron microscope(SEM),transmission electron microscope(TEM),X-ray diffraction(XRD),and energy dispersive spectroscopy.The results show that the quenching products are regular spherical substantially with hollow structure,particle size is between few hundreds nanometers and 5 lm.Phase compositions are diphase of Fe3O4,Mn3O4,and MnFe2O4,and the spinel soft magnetic ferrite MnFe2O4 with microwave magnetic properties is in majority.Collisions with each other,burst as well as‘‘refinement’’of agglomerate powders in flame field may be the main reasons for the formation of micro-nano hollow multiphase ceramic microspheres containing MnFeOabsorbent.
基金supported by the National Natural Science Foundation of China(Nos.52104301,52171207,52072120)the Scientific Research Fund of Hunan Provincial Education Department,China(Nos.21A0392,19A203,21B0591)+1 种基金the Open-End Fund for Hubei Key Laboratory of Pollutant Analysis&Reuse Technology(Hubei Normal University)(No.PA190102)the Guangxi Key Laboratory of Low Carbon Energy Material(No.2020GXKLLCEM03)。
文摘This work describes a bifunctional oxygen catalyst made of cobalt disulfide encapsulated in N,S codoped mesoporous carbon with a novel three-dimensional micro-nano crosslinking structure.The proposed composite materials exhibit promising oxygen electrocatalytic activity and stability.The composite assembled rechargeable zinc-air battery can achieve a high power density of 208.9 m W/cm^(2),and can be stably cycled for more than 160 h.Additionally,the all-solid zinc-air battery assembled with the electrocatalyst also performs admirably.The micro-nano crosslinking and high porosity structure,as well as the large number of active sites generated by the synergy of N,S doping and the close interface between carbon matrix and CoS_(2),contribute to the composite's exceptional electrochemical performance.This study's rational strategy lays the path for the development of other high-performance bifunctional electrocatalysts.
基金the National Science Foundation of Jiangsu Province,China(No.BK20190223)Jiangsu Advanced Textile Engineering Technology Center(No.XJFZ/2021/15)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.22KJA480004).
文摘Appropriate materials collaborated with reasonable structure can significantly increase the separator performance for lithium-ion batteries.In this work,taking the advantages of microfibrous and nanofibrous membranes and compensating for their defects,we developed a composited separator(GOPPH)with excellent overall performance by first wetting-modifying the polyethylene terephthalate microfibers and then laminating a polyvinylidene fluoride-hexafluoropropylene nanofiber layer.Such a combination not only offers the GOPPH separator,from the perspective of structure,with high porosity and hierarchical structure in terms of fiber diameter and pore size,but also provides satisfactory features including wettability,mechanical strength and thermal shutdown function that benefit from the selected materials.Meanwhile,as determined by experimental and theoretical approaches,the obtained GOPPH separator exhibits considerably enhanced lithium ion transport ability with a high lithium ion transference number and transport rate,which thereby endowing the cell with superior cycling stability with a capacity retention of 93%after 200 cycles at 1 C.Therefore,considering battery safety and performance,the GOPPH fibrous membrane could be a promising separator candidate for lithium-ion batteries.