期刊文献+
共找到5,430篇文章
< 1 2 250 >
每页显示 20 50 100
Femtosecond Laser Thermal Accumulation-Triggered Micro-/Nanostructures with Patternable and Controllable Wettability Towards Liquid Manipulating 被引量:6
1
作者 Kai Yin Lingxiao Wang +4 位作者 Qinwen Deng Qiaoqiao Huang Jie Jiang Guoqiang Li Jun He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第6期206-218,共13页
Versatile liquid manipulating surfaces combining patternable and controllable wettability have recently motivated considerable attention owing to their significant advantages in droplet-solid impacting behaviors,micro... Versatile liquid manipulating surfaces combining patternable and controllable wettability have recently motivated considerable attention owing to their significant advantages in droplet-solid impacting behaviors,microdroplet self-removal,and liquid–liquid interface reaction applications.However,developing a facile and efficient method to fabricate these versatile surfaces remains an enormous challenge.In this paper,a strategy for the fabrication of liquid manipulating surfaces with patternable and controllable wettability on Polyimide(PI)film based on femtosecond laser thermal accumulation engineering is proposed.Because of its controllable micro-/nanostructures and chemical composition through adjusting the local thermal accumulation,the wettability of PI film can be tuned from superhydrophilicity(~3.6°)to superhydrophobicity(~151.6°).Furthermore,three diverse surfaces with patternable and heterogeneous wettability were constructed and various applications were successfully realized,including water transport,droplet arrays,and liquid wells.This work may provide a facile strategy for achieving patternable and controllable wettability efficiently and developing multifunctional liquid steering surfaces. 展开更多
关键词 WETTABILITY Femtosecond laser micro-/nanostructures Thermal accumulation Liquid manipulating
在线阅读 下载PDF
Recent advances in electrochemiluminescence imaging analysis based on nanomaterials and micro-/nanostructures 被引量:3
2
作者 Yanhuan Liu Weiliang Guo Bin Su 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第9期1593-1599,共7页
Electrochemiluminescence(ECL) is a kind of luminescent phenomenon caused by electrochemical reactions. Based on the advantages of ECL including low background, high sensitivity, strong spatiotemporal controllability a... Electrochemiluminescence(ECL) is a kind of luminescent phenomenon caused by electrochemical reactions. Based on the advantages of ECL including low background, high sensitivity, strong spatiotemporal controllability and simple operation, ECL imaging is able to visualize the ECL process,which can additionally achieve high throughput, fast and visual analysis. With the development of optical imaging technique, ECL imaging at micro-or nanoscale has been successfully applied in immunoassay,cell imaging, biochemical analysis, single-nanoparticle detection and study of mechanisms and kinetics of reactions, which has attracted extensive attention. In this review, the basic principles and apparatus of ECL imaging were briefly introduced at first. Then several latest and representative applications of ECL imaging based on nanomaterials and micro-/nanostructures were overviewed. Finally, the superiorities and challenges in ECL imaging for further development were discussed. 展开更多
关键词 ELECTROCHEMILUMINESCENCE IMAGING analysis NANOMATERIALS micro-/nanostructures Single PARTICLES
原文传递
Twisted and screw dislocation-driven growth of MoSe_(2) nanostructures by chemical vapor transport
3
作者 Philip Putze Daniel Wolf +7 位作者 Paul Chekhonin Alexey APopov Tobias Ritschel Axel Lubk Jochen Geck Bernd Büchner Peer Schmidt Silke Hampel 《Nano Research》 2026年第1期713-722,共10页
Twisted multilayers of two-dimensional materials attract widespread research interest due to their intriguing electronic and optical properties related to their chiral symmetry breaking and moiréeffects.The two-d... Twisted multilayers of two-dimensional materials attract widespread research interest due to their intriguing electronic and optical properties related to their chiral symmetry breaking and moiréeffects.The two-dimensional transition metal dichalcogenide MoSe_(2) is a particularly promising material for twisted multilayers,capable of sustaining moiréexcitons.Here,we report on a rational bottomup synthesis approach for twisted MoSe_(2) flakes by chemical vapor transport(CVT).Screw dislocation-driven growth was forced by surface-fused SiO_(2)nanoparticles on the substrates that serve as potential nucleation points in low supersaturation condition.Thus,crystal growth by in-situ CVT under addition of MoCl_(5) leads to bulk 2H-MoSe_(2) in a temperature gradient from 900 to 820℃ with a dwell time of 96 h.Hexagonally shaped 2H-MoSe_(2) flakes were grown from 710 to 685℃ with a dwell time of 30 min on SiO_(2)@Al_(2)O_(3)(0001)substrates.Electron backscatter diffraction as well as electron microscopy reveals the screw dislocation-driven growth of triangular 3R-MoSe_(2) with individual step heights between 0.9 and 2.9 nm on SiO_(2)@Si(100)under the same conditions.Finally,twisted MoSe_(2) flakes exhibiting a twist angle of 19°with respect to the[010]zone axis could be synthesized. 展开更多
关键词 twisted MoSe_(2)nanostructures screw dislocation transition metal dichalcogenides chemical vapor transport(CVT) two-dimensional(2D)materials thermodynamic CVT simulation
原文传递
Intrinsic Peroxidase-like Activity of Porous CuO Micro-/nanostructures with Clean Surface 被引量:2
4
作者 Yuanjun Liu Guoxing Zhu +2 位作者 Chunlin Bao Aihua Yuan Xiaoping Shen 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2014年第2期151-156,共6页
Porous CuO micro-/nanostructures with clean surface,prepared through Cu_(2)(OH)_(2)CO_(3) precursor followed by calcination in air,were proven to be an effective peroxidase mimic.They can quickly catalyze oxidation of... Porous CuO micro-/nanostructures with clean surface,prepared through Cu_(2)(OH)_(2)CO_(3) precursor followed by calcination in air,were proven to be an effective peroxidase mimic.They can quickly catalyze oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine(TMB)in the presence of H_(2)O_(2),producing a blue color.The obtained porous CuO micro-/nanostructure have potential application in wastewater treatment.The apparent steady-state kinetic parameter was studied with TMB as the substrate.In addition,the potential application of the porous CuO in wastewater treatment was demonstrated with phenol-containing water as an example.Such investigation not only confirms the intrinsic peroxidase-like activity of micro-/nanostructured CuO,but also suggests its potential application in wastewater treatment. 展开更多
关键词 CuO 3 3' 5 5'-tetramethylbenzidine PEROXIDASE ENZYME porous micro-/nanostructures
原文传递
Ultrafast laser one-step construction of 3D micro-/nanostructures achieving high-performance zinc metal anodes 被引量:1
5
作者 Yanan Liu Ye Ding +8 位作者 Zeping Liu Xingchen Li Sichao Tian Lishuang Fan Jichang Xie Liangliang Xu Jinwoo Lee Jian Li Lijun Yang 《PhotoniX》 2024年第1期622-640,共19页
Aqueous zinc-ion batteries provide a most promising alternative to the existing lithium-ion batteries due to their high theoretical capacity,intrinsic safety,and low cost.However,commercializing aqueous zinc-ion batte... Aqueous zinc-ion batteries provide a most promising alternative to the existing lithium-ion batteries due to their high theoretical capacity,intrinsic safety,and low cost.However,commercializing aqueous zinc-ion batteries suffer from dendritic growth and side reactions on the surface of metallic zinc,resulting in poor reversibility.To overcome this critical challenge,here,we report a one-step ultrafast laser processing method for fabricating three-dimensional micro-/nanostructures on zinc anodes to optimize zinc nucleation and deposition processes.It is demonstrated that the three-dimensional micro-/nanostructure with increased specific surface area significantly reduces nucleation overpotential,as well as preferentially absorbs zinc ions to prevent dendritic protuberances and corrosion.As a result,the presence of threedimensional micro-/nanostructures on the zinc metal delivers stable zinc plating/stripping beyond 2500 h(2 mA cm-2/1 mAh cm-2)in symmetric cells,a high Coulombic efficiency(99.71%)in half cells,and moreover an improved capacity retention(71.8%)is also observed in full cells.Equally intriguingly,the pouch cell with three-dimensional micro-/nanostructures can operate across various bending states without severely compromising performance.This work provides an effective strategy to construct ultrafine and high-precision three-dimensional micro-/nanostructures achieving highperformance zinc metal anodes and is expected to be of immediate benefit to other metal-based electrodes. 展开更多
关键词 Ultrafast laser processing One-step manufacturing Zinc metal anode Three-dimensional micro-/nanostructures Dendrite-free
在线阅读 下载PDF
Unraveling electrochemical performance of magnesium vanadate-based nanostructures as advanced cathodes for rechargeable aqueous zinc-ion batteries
6
作者 R.Shanthappa Ashok Kumar Kakarla +2 位作者 Hari Bandi Wasim Akram Syed Jae Su Yu 《Journal of Magnesium and Alloys》 2025年第4期1660-1670,共11页
High-performance aqueous zinc(Zn)-ion batteries(AZIBs)have emerged as one of the greatest favorable candidates for next-generation energy storage systems because of their low cost,sustainability,high safety,and eco-fr... High-performance aqueous zinc(Zn)-ion batteries(AZIBs)have emerged as one of the greatest favorable candidates for next-generation energy storage systems because of their low cost,sustainability,high safety,and eco-friendliness.In this report,we prepared magnesium vanadate(MgVO)-based nanostructures by a facile single-step solvothermal method with varying experimental reaction times(1,3,and 6 h)and investigated the effect of the reaction time on the morphology and layered structure for MgVO-based compounds.The newly prepared MgVO-1 h,MgVO-3 h and MgVO-6 h samples were used as cathode materials for AZIBs.Compared to the MgVO-1 h and MgVO-6 h cathodes,the MgVO-3 h cathode showed a higher specific capacity of 492.74 mA h g^(-1) at 1 A g^(-1) over 500 cycles and excellent rate behavior(291.58 mA h g^(-1) at 3.75 A g^(-1))with high cycling stability(116%)over 2000 cycles at 5 A g^(-1).Moreover,the MgVO-3 h electrode exhibited good electrochemical performance owing to its fast Zn-ion diffusion kinetics.Additionally,various ex-situ analyses confirmed that the MgVO-3 h cathode displayed excellent insertion/extraction of Zn^(2+)ions during charge and discharge processes.This study offers an efficient method for the synthesis of nanostructured MgVO-based cathode materials for high-performance AZIBs. 展开更多
关键词 Magnesium vanadate Reaction time nanostructures Cathode Aqueous zinc-ion batteries
在线阅读 下载PDF
Introducing multi-layered nanostructures via pre-tensile training to improve plasticity in a TRIP-reinforced metallic glass composite
7
作者 Zi-Yan Zhao Yu-Shuo Wang +5 位作者 Yong-Kang Zhou Jun-Wei Tong Juan Mu Zheng-Wang Zhu Hai-Feng Zhang Yan-Dong Wang 《Rare Metals》 2025年第10期7818-7828,共11页
Metallic glass composites hold significant potential as structural materials.However,few methods are available to enhance their mechanical properties postcasting.In this study,simple pre-tensile training was applied t... Metallic glass composites hold significant potential as structural materials.However,few methods are available to enhance their mechanical properties postcasting.In this study,simple pre-tensile training was applied to a TRIP-reinforced metallic glass composite,resulting in a more than one-third increase in plasticity,while the reliability of plasticity was also enhanced.The deformation mechanism was further elucidated,revealing that pre-tension induced the formation of multilayered nanostructures at the dendrite-glass interface.This microstructural evolution facilitates the formation of finer martensite laths within the dendrites and multiple shear bands in the glass matrix during compression,thereby enabling more uniform plastic deformation.These findings suggest that simple preloading treatments may offer a viable approach to regulating the microstructure of as-cast metallic glass composites and optimizing their mechanical properties. 展开更多
关键词 Martensitic phase transformation Bulk metallic glass(BMG) Composites Mechanical properties nanostructurE
原文传递
Probing Interfacial Nanostructures of Electrochemical Energy Storage Systems by In-Situ Transmission Electron Microscopy
8
作者 Guisheng Liang Chang Zhang +10 位作者 Liting Yang Yihao Liu Minmin Liu Xuhui Xiong Chendi Yang Xiaowei Lv Wenbin You Ke Pei Chuan-Jian Zhong Han-Wen Cheng Renchao Che 《Nano-Micro Letters》 2025年第10期388-416,共29页
The ability to control the electrode interfaces in an electrochemical energy storage system is essential for achieving the desired electrochemical performance.However,achieving this ability requires an in-depth unders... The ability to control the electrode interfaces in an electrochemical energy storage system is essential for achieving the desired electrochemical performance.However,achieving this ability requires an in-depth understanding of the detailed interfacial nanostructures of the electrode under electrochemical operating conditions.In-situ transmission electron microscopy(TEM)is one of the most powerful techniques for revealing electrochemical energy storage mechanisms with high spatiotemporal resolution and high sensitivity in complex electrochemical environments.These attributes play a unique role in understanding how ion transport inside electrode nanomaterials and across interfaces under the dynamic conditions within working batteries.This review aims to gain an in-depth insight into the latest developments of in-situ TEM imaging techniques for probing the interfacial nanostructures of electrochemical energy storage systems,including atomic-scale structural imaging,strain field imaging,electron holography,and integrated differential phase contrast imaging.Significant examples will be described to highlight the fundamental understanding of atomic-scale and nanoscale mechanisms from employing state-of-the-art imaging techniques to visualize structural evolution,ionic valence state changes,and strain mapping,ion transport dynamics.The review concludes by providing a perspective discussion of future directions of the development and application of in-situ TEM techniques in the field of electrochemical energy storage systems. 展开更多
关键词 In-situ transmission electron microscopy Electrochemical energy storage Interfacial nanostructures Batteries ELECTRODES NANOMATERIALS
在线阅读 下载PDF
Copper-doped NiCo_(2)O_(4)nanostructures for efficient glycerol electrooxidation
9
作者 Zhong-Hai Fang Yuan Li +4 位作者 Xiao-Xiong Li Ran-Ran Dai Meng-Jie Niu Shi-Wei Lin Zhao-Hui Xiao 《Tungsten》 2025年第4期910-920,共11页
The development of highly active,low-cost,and durable electrocatalysts is crucial for the efficient glycerol oxidation reaction(GOR).Herein,a Cu-doped,self-supported NiCo_(2)O_(4)nanosheet array catalyst grown on nick... The development of highly active,low-cost,and durable electrocatalysts is crucial for the efficient glycerol oxidation reaction(GOR).Herein,a Cu-doped,self-supported NiCo_(2)O_(4)nanosheet array catalyst grown on nickel foam(Cu-NiCo_(2)O_(4)/NF)was fabricated through a simple electrodeposition method followed by thermal annealing.The resulting nanosheet arrays are uniformly anchored on the conductive NF substrate,forming a three-dimensional nanoflower-like architecture that offers abundant accessible active sites and enhanced electronic conductivity.Moreover,Cu doping effectively tailors the electronic structure of NiCo_(2)O_(4),optimizing the adsorption and transformation of key glycerol oxidation intermediates.This synergistic effect significantly lowers charge transfer resistance and promotes rapid electron transport.Benefiting from these structural and electronic advantages,the Cu-NiCo_(2)O_(4)/NF catalyst achieves a current density of 10 mA·cm^(-2)at a low overpotential of 1.22 V vs.reversible hydrogen electrode(RHE).It delivers a remarkable glycerol conversion rate of 90.4%with a formate Faradaic efficiency of 94.3%at 1.35 V vs.RHE.Furthermore,the catalyst exhibits excellent long-term electrochemical durability with sustained catalytic performance during extended operation.This work offers a promising strategy to boost the electrocatalytic activity of NiCo_(2)O_(4)through Cu doping,providing new insights into the design of efficient GOR electrocatalysts and contributing to the high-value utilization of biomass-derived molecules and the advancement of green electrochemic al energ y technologies. 展开更多
关键词 Glycerol electrooxidation Copper doping NiCo_(2)O_(4)nanostructure Nickel foam self-supported electrode ELECTROCATALYSIS
原文传递
Effect of gradient nanostructures induced by supersonic fine particle bombardment on microstructure and properties of Ni-W-Co-Ta medium-heavy alloy
10
作者 Yi XIONG Miao-miao YANG +5 位作者 Nan DU Yong LI Jin-jin TANG Kang-hao SHU Shu-bo WANG Feng-zhang REN 《Transactions of Nonferrous Metals Society of China》 2025年第6期1875-1889,共15页
The effects of gradient nanostructures induced by supersonic fine particle bombardment(SFPB)on the surface integrity,microstructural evolution,and mechanical properties of a Ni-W-Co-Ta medium-heavy alloy(MHA)were syst... The effects of gradient nanostructures induced by supersonic fine particle bombardment(SFPB)on the surface integrity,microstructural evolution,and mechanical properties of a Ni-W-Co-Ta medium-heavy alloy(MHA)were systematically investigated.The results show that gradient nanostructures are formed on the surface of Ni-W-Co-Ta MHA after SFPB treatment.At a gas pressure of 1.0 MPa and an impact time of 60 s,the ultimate tensile strength and yield strength of the alloy reached the maximum values of 1236 MPa and 758 MPa,respectively,which are 22.5%and 38.8%higher than those of the solid solution treated alloy,and the elongation(46.3%)is close to that of the solid solution treated alloy,achieving the optimal strength–ductility synergy.However,microcracks appear on the surface with excessive gas pressure and impact time,generating the relaxed residual stress and decreased strength.With the increase of the impact time and gas pressure,the depth of the deformation layer and the surface microhardness gradually increase,reaching the maximum values(29μm and HV 451)at 1.0 MPa and 120 s.The surface grain size is refined to a minimum of 11.67 nm.Notably,SFPB treatment has no obvious effect on elongation,and the fracture mode changes from the ductile fracture before treatment to ductile–brittle mixed fracture after treatment. 展开更多
关键词 supersonic fine particle bombardment gradient nanostructure Ni−W−Co−Ta medium-heavy alloy microstructure mechanical properties
在线阅读 下载PDF
Biomembrane nanostructure-driven potentiation of bacterial protein vaccines:Mechanisms,platforms,and immunotherapeutic advances
11
作者 Yuan-Yuan Chen Hui-Fen Qiang +2 位作者 Jie Gao Ting-Lin Zhang Yan Wu 《Infectious Diseases Research》 2026年第1期13-22,共10页
The global burden of bacterial infections,exacerbated by antimicrobial resistance(AMR),necessitates innovative strategies.Bacterial protein vaccines offer promise by eliciting targeted immunity while circumventing AMR... The global burden of bacterial infections,exacerbated by antimicrobial resistance(AMR),necessitates innovative strategies.Bacterial protein vaccines offer promise by eliciting targeted immunity while circumventing AMR.However,their clinical translation is hindered by their inherently low immunogenicity,often requiring potent adjuvants and advanced delivery systems.Biomembrane nanostructures(e.g.,liposomes,exosomes,and cell membrane-derived nanostructures),characterized by superior biocompatibility,intrinsic targeting ability,and immune-modulating properties,could serve as versatile platforms that potentiate vaccine efficacy by increasing antigen stability,enabling codelivery of immunostimulants,and facilitating targeted delivery to lymphoid tissues/antigen-presenting cells.This intrinsic immunomodulation promotes robust humoral and cellular immune responses to combat bacteria.This review critically reviews(1)key biomembrane nanostructure classes for bacterial protein antigens,(2)design strategies leveraging biomembrane nanostructures to enhance humoral and cellular immune responses,(3)preclinical efficacy against diverse pathogens,and(4)translational challenges and prospects.Biomembrane nanostructure-driven approaches represent a paradigm shift in the development of next-generation bacterial protein vaccines against resistant infections. 展开更多
关键词 biomembrane nanostructures bacterial protein vaccines antimicrobial resistance vaccine delivery IMMUNOMODULATION nanovaccines liposomes EXOSOMES cell membrane coating
暂未订购
Triangular Au-Ag framework nanostructures prepared by multi-stage replacement and their spectral properties 被引量:1
12
作者 易早 张建波 +5 位作者 陈艳 陈善俊 罗江山 唐永建 吴卫东 易有根 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期2049-2055,共7页
Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at... Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at room temperature. The morphological, compositional, and crystal structural changes involved with reaction steps were analyzed by using transmission electron microscopy(TEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction. TEM combined with EDX and selected area electron diffraction confirmed the replacement of Ag with Au. The in-plane dipolar surface plasmon resonance (SPR) absorption band of the Ag nanoplates locating initially at around 700 nm gradually redshifted to 1 100 nm via a multi-stage replacement manner after 7 stages. The adding amount of HAuCl4 per stage influenced the average redshift value per stage, thus enabled a fine tuning of the in-plane dipolar band. A proposed formation mechanism of the original Ag nanoplates developing pores while growing Au nanoparticles covering this underlying structure at more reaction steps was confirmed by exploiting surface-enhanced Raman scattering (SERS). 展开更多
关键词 triangular Au-Ag framework nanostructures multi-stage galvanic replacement reaction surface plasmon resonance surface-enhanced Raman scattering
在线阅读 下载PDF
Fabrication of Silicon Crystal-Facet-Dependent Nanostructures by Electron-Beam Lithography
13
作者 杨香 韩伟华 +2 位作者 王颖 张杨 杨富华 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第6期1057-1061,共5页
Silicon crystal-facet-dependent nanostructures have been successfully fabricated on a (100)-oriented silicon-oninsulator wafer using electron-beam lithography and the silicon anisotropic wet etching technique. This ... Silicon crystal-facet-dependent nanostructures have been successfully fabricated on a (100)-oriented silicon-oninsulator wafer using electron-beam lithography and the silicon anisotropic wet etching technique. This technique takes advantage of the large difference in etching properties for different crystallographic planes in alkaline solution. The minimum size of the trapezoidal top for those Si nanostructures can be reduced to less than 10nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations indicate that the etched nanostructures have controllable shapes and smooth surfaces. 展开更多
关键词 silicon nanostructure anisotropic wet etching electron-beam lithography
在线阅读 下载PDF
Controllable Electrochemical Synthesis of Silver Dendritic Nanostructures and Their SERS Properties 被引量:1
14
作者 洪勋 王冠中 +2 位作者 王颖 祝巍 沈小双 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第5期596-602,622,共8页
Ag dendritic nanostructures were synthesized on fluorine-doped tin oxide covered glass sub- strates by the electrodeposition method. Results demonstrate that the size, diameter, crys- tallinity, and branch density of ... Ag dendritic nanostructures were synthesized on fluorine-doped tin oxide covered glass sub- strates by the electrodeposition method. Results demonstrate that the size, diameter, crys- tallinity, and branch density of the Ag dendrites can be controlled by the applied potential, the surfactants and the concentration of AgNO3. Three kinds of typical silver dendrites were applied as substrates of the surface enhanced Raman scattering (SERS) and one of them was able to clearly detect rhodamine 6G concentrations up to 0.1 nmol/L. The differences of the SERS spectra at these Ag dendrites confirmed that the shapes and interparticle spacings have great effect on Raman enhancement, especially the interparticle spacings. 展开更多
关键词 SILVER Dendritic nanostructure ELECTRODEPOSITION Surface enhanced Raman scattering
在线阅读 下载PDF
Controlled synthesis of one-dimensional Au-Ag porous nanostructures 被引量:2
15
作者 杨立山 谷小虎 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1807-1812,共6页
The fabrication of a new type of one-dimensional Au-Ag porous nanotube(NPT) structure was presented based on a facile combination of nanocrystal growth and surface modification.Ag nanowires with various diameters we... The fabrication of a new type of one-dimensional Au-Ag porous nanotube(NPT) structure was presented based on a facile combination of nanocrystal growth and surface modification.Ag nanowires with various diameters were firstly served as the chemical plating templates via a polyol-process.Then,one-dimensional(1D) Au-Ag porous nanostructures with tailored structural features could be prepared by controlling the individual steps involved in this process,such as nanowire growth,surface modification,thermal diffusion,and dealloying.Structural characterizations reveal these Au-Ag porous nanotubes,non-porous nanotubes and porous nanowires possess novel nano-architectures with multimodal open porosity and excellent structural continuity and integrity,which make them particularly desirable as novel 1D nanocarriers for biomedical,drug delivery and sensing applications. 展开更多
关键词 ONE-DIMENSION Ag alloy thermal diffusion DEALLOYING porous nanostructure NANOTUBE
在线阅读 下载PDF
Fabrication and Photocatalysis of TiO2 Flower-like Nanostructures 被引量:1
16
作者 王延宗 洪勋 +1 位作者 王冠中 王晓平 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第6期559-562,共4页
TiO2 nanostructures were fabricated by a reaction of Ti foils in H2O2 solution at mild temperature, Porous TiO2 nanostructurcs, well adhered to Ti foil surfaces, were formed at 80 ℃ in 10 rain, and then flower- like ... TiO2 nanostructures were fabricated by a reaction of Ti foils in H2O2 solution at mild temperature, Porous TiO2 nanostructurcs, well adhered to Ti foil surfaces, were formed at 80 ℃ in 10 rain, and then flower- like and rod nanostructures formed in succession after a longer reaction time. Samples prepared at 80 ℃ for 4 h arc amorphous, and anatase-dominated crystal phase emerged in the sample prepared for as long as 10 h. Almost pure anatase phase were obtained in TiO2 nanostructures by annealing the samples at a temperature of 300 ℃. Photoeatalysis of the TiO2 nanostructures was characterized by the degradation of RhB dye molecules in an aqueous solution exposed to ultraviolet light. Results show a 7 cm^2 annealed TiO2 flower-like nanostrueture having the degradation rate of RhB as fast as 29.8 times that of the dye solution exposed to ultraviolet light alone. 展开更多
关键词 TiO2 nanostructure PHOTODEGRADATION RhB solution
在线阅读 下载PDF
Zinc Oxide Nanostructures for NO_2 Gas–Sensor Applications:A Review 被引量:19
17
作者 Rajesh Kumar O.Al-Dossary +1 位作者 Girish Kumar Ahmad Umar 《Nano-Micro Letters》 SCIE EI CAS 2015年第2期97-120,共24页
Because of the interesting and multifunctional properties,recently,ZnO nanostructures are considered as excellent material for fabrication of highly sensitive and selective gas sensors.Thus,ZnO nanomaterials are widel... Because of the interesting and multifunctional properties,recently,ZnO nanostructures are considered as excellent material for fabrication of highly sensitive and selective gas sensors.Thus,ZnO nanomaterials are widely used to fabricate efficient gas sensors for the detection of various hazardous and toxic gases.The presented review article is focusing on the recent developments of NO2gas sensors based on ZnO nanomaterials.The review presents the general introduction of some metal oxide nanomaterials for gas sensing application and finally focusing on the structure of ZnO and its gas sensing mechanisms.Basic gas sensing characteristics such as gas response,response time,recovery time,selectivity,detection limit,stability and recyclability,etc are also discussed in this article.Further,the utilization of various ZnO nanomaterials such as nanorods,nanowires,nano-micro flowers,quantum dots,thin films and nanosheets,etc for the fabrication of NO2gas sensors are also presented.Moreover,various factors such as NO2concentrations,annealing temperature,ZnO morphologies and particle sizes,relative humidity,operating temperatures which are affecting the NO2gas sensing properties are discussed in this review.Finally,the review article is concluded and future directions are presented. 展开更多
关键词 ZnO nanostructure Gas sensors Sensor parameters Sensor mechanism
在线阅读 下载PDF
Role of ZnO-CeO_2 Nanostructures as a Photo-catalyst and Chemi-sensor 被引量:10
18
作者 M. Faisal Sher Bahadar Khan +3 位作者 Mohammed M. Rahman Aslam Jamal Kalsoom Akhtar M.M. Abdullah 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第7期594-600,共7页
ZnO-CeO2 nanostructures were synthesized by simple and effcient low temperature method. The structure and morphology of the ZnO-CeO2 nanostructures were characterized by X-ray powder diffraction (XRD) and field emis... ZnO-CeO2 nanostructures were synthesized by simple and effcient low temperature method. The structure and morphology of the ZnO-CeO2 nanostructures were characterized by X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM), which revealed elongated shaped CeO2 nanoparticles with diameters of 40–90 nm distributed on the surface of elongated ZnO nanostructures with diameters of 50–200 nm (edge–centre). Further the structure of the synthesized ZnO-CeO2 nanostructure was supported by Raman spectra and Fourier transform infrared spectroscopy (FTIR). UV-vis absorption spectrum was used to confirm the optical properties of the CeO2 doped ZnO nanostructures. Photo-catalytic activity of CeO2 doped ZnO nanostructure was evaluated by degradation of acridine orange and methylene blue which degraded 84.55% and 48.65% in 170 min, respectively. ZnO-CeO2 nanostructures also showed good sensitivity (0.8331 μA·cm-2·(mol/l)-1) in short response time (10 s) by applying to chemical sensing using ethanol as a target compound by I-V technique. These degradation and chemical sensing properties of ZnO-CeO2 nanostructures are of great importance for the application of ZnO-CeO2 system as a photo-catalyst and chemical sensor. 展开更多
关键词 ZnO-CeO2 nanostructures Structural properties Optical properties Photocatalytic activity Ethanol sensing
原文传递
Hydrothermal synthesis of peony-like CuO micro/nanostructures for high-performance lithium-ion battery anodes 被引量:4
19
作者 Rui Dang Xilai Jia +3 位作者 Peng Wang Xiaowei Zhang Danni Wang Ge Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第12期2263-2268,共6页
The peony-like CuO micro/nanostructures were fabricated by a facile hydrothermal approach. The peony- like CuO micro/nanostructures about 3 -5μm in diameter were assembled by CuO nanoplates. These CuO nanoplates, as ... The peony-like CuO micro/nanostructures were fabricated by a facile hydrothermal approach. The peony- like CuO micro/nanostructures about 3 -5μm in diameter were assembled by CuO nanoplates. These CuO nanoplates, as the building block, were self-assembled into multilayer structures under the action of ethidene diamine, and then grew into uniform peony-like CuO architecture. The novel peony-like CuO micro/nanostructures exhibit a high cycling stability and improved rate capability. The peony-like CuO microJnanostructures electrodes show a high reversible capacity of 456 mAhJg after 200 cycles, much higher than that of the commercial CuO nanocrystals at a current 0.1 C. The excellent electrochemical performance of peony-like CuO micro/nanostructures might be ascribed to the unique assembly structure, which not only provide large electrode/electrolyte contact area to accelerate the lithiation reaction, but also the interval between the multilayer structures of CuO nanoplates electrode could provide enough interior space to accommodate the volume change during Li insertion and de-insertion process, 展开更多
关键词 CuO micro/nanostructure SELF-ASSEMBLY Hydrothermal method Hierarchical nanostructure Lithium-ion battery
原文传递
Synthesis and applications of MOF-derived porous nanostructures 被引量:15
20
作者 Min Hui Yap Kam Loon Fow George Zheng Chen 《Green Energy & Environment》 SCIE 2017年第3期218-245,共28页
Metal organic frameworks(MOFs) represent a class of porous material which is formed by strong bonds between metal ions and organic linkers. By careful selection of constituents, MOFs can exhibit very high surface area... Metal organic frameworks(MOFs) represent a class of porous material which is formed by strong bonds between metal ions and organic linkers. By careful selection of constituents, MOFs can exhibit very high surface area, large pore volume, and excellent chemical stability.Research on synthesis, structures and properties of various MOFs has shown that they are promising materials for many applications, such as energy storage, gas storage, heterogeneous catalysis and sensing. Apart from direct use, MOFs have also been used as support substrates for nanomaterials or as sacrificial templates/precursors for preparation of various functional nanostructures. In this review, we aim to present the most recent development of MOFs as precursors for the preparation of various nanostructures and their potential applications in energy-related devices and processes. Specifically, this present survey intends to push the boundaries and covers the literatures from the year 2013 to early 2017,on supercapacitors, lithium ion batteries, electrocatalysts, photocatalyst, gas sensing, water treatment, solar cells, and carbon dioxide capture.Finally, an outlook in terms of future challenges and potential prospects towards industrial applications are also discussed. 展开更多
关键词 Metal organic frameworks Porous nanostructures SUPERCAPACITORS Lithium ion batteries Heterogeneous catalyst
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部