Able to precisely control and manipulate materials'states at micro/nano-scale level,femtosecond(fs)laser micro/nano processing technology has undergone tremendous development over the past three decades.Free-formi...Able to precisely control and manipulate materials'states at micro/nano-scale level,femtosecond(fs)laser micro/nano processing technology has undergone tremendous development over the past three decades.Free-forming three-dimensional(3D)microscale functional devices and inducing fascinating and unique physical or chemical phenomena have granted this technology powerful versatility that no other technology can match.As this technology advances rapidly in various fields of application,some key challenges have emerged and remain to be urgently addressed.This review firstly introduces the fundamental principles for understanding how fs laser pulses interact with materials and the associated unique phenomena in section 2.Then micro/nano-fabrication in transparent materials by fs laser processing is presented in section 3.Thereafter,several high efficiency/throughput fabrication methods as well as pulse-shaping techniques are listed in sections 4 and 5 reviews four-dimensional(4D)and nanoscale printing realized by fs laser processing technology.Special attention is paid to the heterogeneous integration(HI)of functional materials enabled by fs laser processing in section 6.Several intriguing examples of 3D functional micro-devices created by fs laser-based manufacturing methods such as microfluidics,lab-on-chip,micro-optics,micro-mechanics,micro-electronics,micro-bots and micro-biodevices are reviewed in section 7.Finally,a summary of the review and a perspective are proposed to explore the challenges and future opportunities for further betterment of fs laser micro/nano processing technology.展开更多
Correction to:Nano-Micro Letters(2025)17:191 https://doi.org/10.1007/s40820-025-01702-7 Following the publication of the original article[1],the authors reported an error in Fig.3(b),and the figure legend was reversed...Correction to:Nano-Micro Letters(2025)17:191 https://doi.org/10.1007/s40820-025-01702-7 Following the publication of the original article[1],the authors reported an error in Fig.3(b),and the figure legend was reversed.The correct Fig.3 has been provided in this orrection.展开更多
Over the past three decades,micro/nano science and technology have experienced rapid advancements as new materials and advanced devices have increasingly evolved towards high levels of integration and miniaturization....Over the past three decades,micro/nano science and technology have experienced rapid advancements as new materials and advanced devices have increasingly evolved towards high levels of integration and miniaturization.In this context,mechanical properties have emerged as critical parameters for evaluating the operational performance and longevity of materials and devices at the micro/nanoscale.展开更多
At present, the most common micro/nano-scale fabri ca tion processes include the plane silicon process based on IC technology, stereo silicon process, LIGA, quasi-LIGA based on near ultra violet deep lithography, MEMS...At present, the most common micro/nano-scale fabri ca tion processes include the plane silicon process based on IC technology, stereo silicon process, LIGA, quasi-LIGA based on near ultra violet deep lithography, MEMS, energy beam etching and micro/nano-machining, etc. A common problem for t hese processes is the difficulty to fabricate arbitrary form for 3-dimensional micro/nano-parts, devices or mechanisms. To develop advanced MEMS manufacturin g technology, and to achieve fabrication of true 3-dimensional parts, devices or mechanisms, this paper proposes a nanofabrication technology for rapid proto typing of 3-dimensional parts, using plasma chemical vapor deposition (PCVD). This process can be describes as follows: A laser beam is produced by a low power, quasi molecule laser. It enters the vac uum chamber through a window, and is focused on with the substrate surface. A ga s in the chamber is ionized by the laser beam to produce PCVD on the substrate s urface, and forms a particle of the size of Ф100 nm (its thickness is about 100 nm). When the laser beam moves along X-axis, many particles form a line. Then the laser beam moves one step in Y-axis to form a new line. A plane is complete d by many lines. Then the substrate moves in Z-axis to form new plane. Eventu ally, many planes form a 3-dimensional component. Using available CAD/CAM softw are with this process, rapid prototyping of complex components can be achieved. A nanometer precision linear motor, such as that described in Chinese national p atent (patent No. ZL 98 2 16753.9), can be used to obtain the nanometer precisio n movements in the process. The process does not require mask, can be used for v arious rapid prototyping materials, to obtain high fabrication precision (its sc ale precision is 15 nm), and larger ratio of height to width of micro/nano-stru cture. It can find widespread applications in the fabrication of micro-mechani sm, trimming IC, and fabricating minilens, etc.展开更多
Nanofibrous membrane has great advantages in many fields,of which the microstructural analysis and optimization are the key to the industrial application.The U-Net multiclassifier based on network structure together w...Nanofibrous membrane has great advantages in many fields,of which the microstructural analysis and optimization are the key to the industrial application.The U-Net multiclassifier based on network structure together with the Jaccard-Lovasz extension loss function was proposed to classify the pixels of the nanofiber SEM image into three categories.A Conditional Random Field(CRF)network was utilized to post-process the segmentation results.Porosities of the filter membranes and the radii of the nanofibers were calculated based on the segmentation results.Experimental results show that the proposed U-Net multiclassifier can be used to deal with overlapped nanofibers and the corresponding segmentation results can retain important details of the SEM image.The technique is beneficial to the subsequent numerical simulation,which is of great academic and practical significance for the subsequent film performance improvement and application promotion.展开更多
The previous research of precision grinding optical glasses with electrolytic in process dressing (ELID) technology mainly concentrated on the action of ELID and machining parameters when grinding, which aim at gene...The previous research of precision grinding optical glasses with electrolytic in process dressing (ELID) technology mainly concentrated on the action of ELID and machining parameters when grinding, which aim at generating very "smoothed" surfaces and reducing the subsurface damage. However, when grinding spectrosil 2000 and BK7 glass assisted with ELID technology, a deeply comparative study on material removal mechanism and the wheel wear behaviors have not been given yet. In this paper, the micro/nano indentation technique is initially applied for investigating the mechanical properties of optical glasses, whose results are then refereed to evaluate the machinability. In single grit diamond scratching on glasses, the scratching traces display four kinds of scratch characteristics according to different material removal modes. In normal grinding experiments, the result shows BK7 glass has a better machinability than that of spectrosil 2000, corresponding to what the micro/nano indentation vent revealed. Under the same grinding depth parameters, the smaller amplitude of acoustic emission (AE) raw signals, grinding force and grinding force ratio correspond to a better surface quality. While for these two kinds of glasses, with the increasing of grinding depth, the variation trends of the surface roughness, the force ratio, and the AE raw signals are contrary, which should be attributed to different material removal modes. Moreover, the SEM micrographs of used wheels surface indicate that diamond grains on the wheel surface after grinding BK7 glass are worn more severely than that of spectrosil 2000. The proposed research analyzes what happened in the grinding process with different material removal patterns, which can provide a basis for producing high-quality optical glasses and comprehensively evaluate the surface and subsurface integrity of optical glasses.展开更多
The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development...The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given.展开更多
Ultrafast laser processing technology has offered a wide range of opportunities in micro/nano fabrication and other fields such as nanotechnology,biotechnology,energy science,and photonics due to its controllable proc...Ultrafast laser processing technology has offered a wide range of opportunities in micro/nano fabrication and other fields such as nanotechnology,biotechnology,energy science,and photonics due to its controllable processing precision,diverse processing capabilities,and broad material adaptability.The processing abilities and applications of the ultrafast laser still need more exploration.In the field of material processing,controlling the atomic scale structure in nanomaterials is challenging.Complex effects exist in ultrafast laser surface/interface processing,making it difficult to modulate the nanostructure and properties of the surface/interface as required.In the ultrafast laser fabrication of micro functional devices,the processing ability needs to be improved.Here,we review the research progress of ultrafast laser micro/nano fabrication in the areas of material processing,surface/interface controlling,and micro functional devices fabrication.Several useful ultrafast laser processing methods and applications in these areas are introduced.With various processing effects and abilities,the ultrafast laser processing technology has demonstrated application values in multiple fields from science to industry.展开更多
In this study,the possibility of obtaining micro and nano-scaled Co/Ni bi-layered films by use of the electrochemical method was investigated.The electrodeposition process was performed with presence and absence of a ...In this study,the possibility of obtaining micro and nano-scaled Co/Ni bi-layered films by use of the electrochemical method was investigated.The electrodeposition process was performed with presence and absence of a uniform external magnetic field up to 1T to examine its influence on structure and morphology of the obtained thin films. Afterwards,each sample was annealed under high magnetic field with strength up to 12 T at 623 K,what allowed compare and determine the changes in morphology and structure,before and after heat treatment.The Co/Ni bi-layered thin films were deposited onto an indium-doped tin oxide(ITO)-coated conducting glass substrate from sulfate baths with boric acid as an additive.The results show drastic changes in the morphology between macro and nano-scaled films which were strongly affected by an introduction of the magnetic field to the electrodeposition process.The annealing process allowed to determine the nucleus transition and showed that under the high temperature treatment it is possible to control the growth mode as well as the phase composition changes.展开更多
基金supported by National Key R&D Program of China(Grant Nos.2021YFB2802000 and 2022YFB2804300)Science and Technology Commission of Shanghai Municipality(Grant No.21DZ1100500)+3 种基金Shanghai Municipal Science and Technology Major Projectthe Shanghai Frontiers Science Center Program(2021-2025 No.20)National Natural Science Foundation of China(Grant No.61975123)Shanghai Scienceand Technology Innovation Action Plan(Grant No.23JC1403100)。
文摘Able to precisely control and manipulate materials'states at micro/nano-scale level,femtosecond(fs)laser micro/nano processing technology has undergone tremendous development over the past three decades.Free-forming three-dimensional(3D)microscale functional devices and inducing fascinating and unique physical or chemical phenomena have granted this technology powerful versatility that no other technology can match.As this technology advances rapidly in various fields of application,some key challenges have emerged and remain to be urgently addressed.This review firstly introduces the fundamental principles for understanding how fs laser pulses interact with materials and the associated unique phenomena in section 2.Then micro/nano-fabrication in transparent materials by fs laser processing is presented in section 3.Thereafter,several high efficiency/throughput fabrication methods as well as pulse-shaping techniques are listed in sections 4 and 5 reviews four-dimensional(4D)and nanoscale printing realized by fs laser processing technology.Special attention is paid to the heterogeneous integration(HI)of functional materials enabled by fs laser processing in section 6.Several intriguing examples of 3D functional micro-devices created by fs laser-based manufacturing methods such as microfluidics,lab-on-chip,micro-optics,micro-mechanics,micro-electronics,micro-bots and micro-biodevices are reviewed in section 7.Finally,a summary of the review and a perspective are proposed to explore the challenges and future opportunities for further betterment of fs laser micro/nano processing technology.
基金supported in part by STI 2030-Major Projects under Grant 2022ZD0209200in part by Beijing Natural Science Foundation-Xiaomi Innovation Joint Fund (L233009)+4 种基金in part by National Natural Science Foundation of China under Grant No. 62374099in part by the Tsinghua-Toyota Joint Research Fundin part by the Daikin Tsinghua Union Programin part by Independent Research Program of School of Integrated Circuits,Tsinghua Universitysponsored by CIE-Tencent Robotics X Rhino-Bird Focused Research Program
文摘Correction to:Nano-Micro Letters(2025)17:191 https://doi.org/10.1007/s40820-025-01702-7 Following the publication of the original article[1],the authors reported an error in Fig.3(b),and the figure legend was reversed.The correct Fig.3 has been provided in this orrection.
文摘Over the past three decades,micro/nano science and technology have experienced rapid advancements as new materials and advanced devices have increasingly evolved towards high levels of integration and miniaturization.In this context,mechanical properties have emerged as critical parameters for evaluating the operational performance and longevity of materials and devices at the micro/nanoscale.
文摘At present, the most common micro/nano-scale fabri ca tion processes include the plane silicon process based on IC technology, stereo silicon process, LIGA, quasi-LIGA based on near ultra violet deep lithography, MEMS, energy beam etching and micro/nano-machining, etc. A common problem for t hese processes is the difficulty to fabricate arbitrary form for 3-dimensional micro/nano-parts, devices or mechanisms. To develop advanced MEMS manufacturin g technology, and to achieve fabrication of true 3-dimensional parts, devices or mechanisms, this paper proposes a nanofabrication technology for rapid proto typing of 3-dimensional parts, using plasma chemical vapor deposition (PCVD). This process can be describes as follows: A laser beam is produced by a low power, quasi molecule laser. It enters the vac uum chamber through a window, and is focused on with the substrate surface. A ga s in the chamber is ionized by the laser beam to produce PCVD on the substrate s urface, and forms a particle of the size of Ф100 nm (its thickness is about 100 nm). When the laser beam moves along X-axis, many particles form a line. Then the laser beam moves one step in Y-axis to form a new line. A plane is complete d by many lines. Then the substrate moves in Z-axis to form new plane. Eventu ally, many planes form a 3-dimensional component. Using available CAD/CAM softw are with this process, rapid prototyping of complex components can be achieved. A nanometer precision linear motor, such as that described in Chinese national p atent (patent No. ZL 98 2 16753.9), can be used to obtain the nanometer precisio n movements in the process. The process does not require mask, can be used for v arious rapid prototyping materials, to obtain high fabrication precision (its sc ale precision is 15 nm), and larger ratio of height to width of micro/nano-stru cture. It can find widespread applications in the fabrication of micro-mechani sm, trimming IC, and fabricating minilens, etc.
基金supported by the National Natural Science Foundation of China (52275575)the Development and Reform Commission of Shenzhen Municipality (JSGG20220831094600002)Natural Science Foundation of Guangdong Province (2022A1515010923, 2022A1515010949)。
文摘Nanofibrous membrane has great advantages in many fields,of which the microstructural analysis and optimization are the key to the industrial application.The U-Net multiclassifier based on network structure together with the Jaccard-Lovasz extension loss function was proposed to classify the pixels of the nanofiber SEM image into three categories.A Conditional Random Field(CRF)network was utilized to post-process the segmentation results.Porosities of the filter membranes and the radii of the nanofibers were calculated based on the segmentation results.Experimental results show that the proposed U-Net multiclassifier can be used to deal with overlapped nanofibers and the corresponding segmentation results can retain important details of the SEM image.The technique is beneficial to the subsequent numerical simulation,which is of great academic and practical significance for the subsequent film performance improvement and application promotion.
基金supported by National Key Science and Technology Projects of China (Grant No. 2009ZX04001-101, Grant No. 2009ZX01001-151)New Century Excellent Talents in University of China (Grant No. NCET-07-0246)Pre-Research Project of General Armament Department of China (Grant No. 9140A18070209HT0138)
文摘The previous research of precision grinding optical glasses with electrolytic in process dressing (ELID) technology mainly concentrated on the action of ELID and machining parameters when grinding, which aim at generating very "smoothed" surfaces and reducing the subsurface damage. However, when grinding spectrosil 2000 and BK7 glass assisted with ELID technology, a deeply comparative study on material removal mechanism and the wheel wear behaviors have not been given yet. In this paper, the micro/nano indentation technique is initially applied for investigating the mechanical properties of optical glasses, whose results are then refereed to evaluate the machinability. In single grit diamond scratching on glasses, the scratching traces display four kinds of scratch characteristics according to different material removal modes. In normal grinding experiments, the result shows BK7 glass has a better machinability than that of spectrosil 2000, corresponding to what the micro/nano indentation vent revealed. Under the same grinding depth parameters, the smaller amplitude of acoustic emission (AE) raw signals, grinding force and grinding force ratio correspond to a better surface quality. While for these two kinds of glasses, with the increasing of grinding depth, the variation trends of the surface roughness, the force ratio, and the AE raw signals are contrary, which should be attributed to different material removal modes. Moreover, the SEM micrographs of used wheels surface indicate that diamond grains on the wheel surface after grinding BK7 glass are worn more severely than that of spectrosil 2000. The proposed research analyzes what happened in the grinding process with different material removal patterns, which can provide a basis for producing high-quality optical glasses and comprehensively evaluate the surface and subsurface integrity of optical glasses.
基金Sponsored by National Natural Science Foundation of China (21231002,21276026,21271023,21173021,91022006,11202193,11172276,and 11072225)the 111 Project ( B07012)+1 种基金the Program of Cooperation of the Beijing Education Commission ( 20091739006)Specialized Research Fund for the Doctoral Program of Higher Education ( 20101101110031)
文摘The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given.
基金supported by the National Natural Science Foundation of China(No.52075289)the Tsinghua-Jiangyin Innovation Special Fund(TJISF,No.2023JYTH0104).
文摘Ultrafast laser processing technology has offered a wide range of opportunities in micro/nano fabrication and other fields such as nanotechnology,biotechnology,energy science,and photonics due to its controllable processing precision,diverse processing capabilities,and broad material adaptability.The processing abilities and applications of the ultrafast laser still need more exploration.In the field of material processing,controlling the atomic scale structure in nanomaterials is challenging.Complex effects exist in ultrafast laser surface/interface processing,making it difficult to modulate the nanostructure and properties of the surface/interface as required.In the ultrafast laser fabrication of micro functional devices,the processing ability needs to be improved.Here,we review the research progress of ultrafast laser micro/nano fabrication in the areas of material processing,surface/interface controlling,and micro functional devices fabrication.Several useful ultrafast laser processing methods and applications in these areas are introduced.With various processing effects and abilities,the ultrafast laser processing technology has demonstrated application values in multiple fields from science to industry.
基金Item Sponsored by National Natural Science Foundation of China(51061130557,51101032)French ANR,Champagne-Ardenne Region Council and Pole MATERALIA(Programme COMAGNET,Grant No.2010-INTB-903-01)
文摘In this study,the possibility of obtaining micro and nano-scaled Co/Ni bi-layered films by use of the electrochemical method was investigated.The electrodeposition process was performed with presence and absence of a uniform external magnetic field up to 1T to examine its influence on structure and morphology of the obtained thin films. Afterwards,each sample was annealed under high magnetic field with strength up to 12 T at 623 K,what allowed compare and determine the changes in morphology and structure,before and after heat treatment.The Co/Ni bi-layered thin films were deposited onto an indium-doped tin oxide(ITO)-coated conducting glass substrate from sulfate baths with boric acid as an additive.The results show drastic changes in the morphology between macro and nano-scaled films which were strongly affected by an introduction of the magnetic field to the electrodeposition process.The annealing process allowed to determine the nucleus transition and showed that under the high temperature treatment it is possible to control the growth mode as well as the phase composition changes.