Able to precisely control and manipulate materials'states at micro/nano-scale level,femtosecond(fs)laser micro/nano processing technology has undergone tremendous development over the past three decades.Free-formi...Able to precisely control and manipulate materials'states at micro/nano-scale level,femtosecond(fs)laser micro/nano processing technology has undergone tremendous development over the past three decades.Free-forming three-dimensional(3D)microscale functional devices and inducing fascinating and unique physical or chemical phenomena have granted this technology powerful versatility that no other technology can match.As this technology advances rapidly in various fields of application,some key challenges have emerged and remain to be urgently addressed.This review firstly introduces the fundamental principles for understanding how fs laser pulses interact with materials and the associated unique phenomena in section 2.Then micro/nano-fabrication in transparent materials by fs laser processing is presented in section 3.Thereafter,several high efficiency/throughput fabrication methods as well as pulse-shaping techniques are listed in sections 4 and 5 reviews four-dimensional(4D)and nanoscale printing realized by fs laser processing technology.Special attention is paid to the heterogeneous integration(HI)of functional materials enabled by fs laser processing in section 6.Several intriguing examples of 3D functional micro-devices created by fs laser-based manufacturing methods such as microfluidics,lab-on-chip,micro-optics,micro-mechanics,micro-electronics,micro-bots and micro-biodevices are reviewed in section 7.Finally,a summary of the review and a perspective are proposed to explore the challenges and future opportunities for further betterment of fs laser micro/nano processing technology.展开更多
Enzyme-powered micro/nanomotors(MNMs)(EMNMs)use natural enzymes to facilitate the decomposition of fuels,including hydrogen peroxide(H2O2),glucose,triglycerides,and urea to provide power.EMNMs can achieve self-propuls...Enzyme-powered micro/nanomotors(MNMs)(EMNMs)use natural enzymes to facilitate the decomposition of fuels,including hydrogen peroxide(H2O2),glucose,triglycerides,and urea to provide power.EMNMs can achieve self-propulsion through the in situ utilization of biofuels without additional fuels,exhibiting excellent biocompatibility and significant potential for application in the biomedical field.Compared with H_(2)O_(2),which may cause oxidative damage to the body,urea exhibits superior biosafety characteristics.Presently,urease-powered MNMs(UMNMs)have made notable progress in their applications in the biomedical field and have garnered considerable attention from researchers.In this review,we present the latest advancements in the biomedical field of UMNMs,primarily focusing on:1)diverse materials used for constructing the fundamental framework of motors;2)control of motor movement through the regulation of enzymatic reaction rates;and 3)research directions for the clinical application of motors,including in vivo imaging,biomarker detection,cancer treatment,optical therapy,overcoming biological barriers,antibacterial interventions,antithrombotic strategies,and gastric disease management.Despite showing immense potential in biomedical applications,there are still several challenges impeding its practical implementation,such as maintaining activity in the in vivo environment while accurately targeting specific sites to achieve the desired clinical therapeutic effects.展开更多
Micro/nanorobots have exhibited excellent application potential in the biomedical field,such as drug delivery,minimally invasive surgery,and bio-sensing.Furthermore,in order to achieve practical application,it is esse...Micro/nanorobots have exhibited excellent application potential in the biomedical field,such as drug delivery,minimally invasive surgery,and bio-sensing.Furthermore,in order to achieve practical application,it is essential for swimming micro/nanorobots to navigate towards specific targets or adjust their speed and morphology in complete environments.The navigation of swimming micro/nanorobots with temporal and spatial precision is critical for fulfilling the demand of applications.Here,we introduced a fully integrated wearable control system for micro/nanorobots navigation and manipulation,which is composed of a multifunctional sensor array,an artificial intelligence(AI)planner,and a magnetic field generator.The sensor array could perceive real-time changes in gestures,wrist rotation,and acoustic signals.AI planner based on machine learning offers adaptive path planning in response to dynamically changing signals to generate magnetic fields for the on-demand manipulation of micro/nanorobots.Such a novel,feasible control strategy was validated in the biological experiment in which cancer cells were targeted and killed by photothermal therapy using micro/nanorobots and integrated control platform.This wearable control system could play a crucial role in future intelligent medical applications and could be easily reconfigured toward other medical robots’control.展开更多
The designing and manufacturing of micro/nanoscale tools for delivery,diagnostic,and therapeutic are essential for their multiscale integration in the precision medicine field.Conventional three-dimensional(3D)printin...The designing and manufacturing of micro/nanoscale tools for delivery,diagnostic,and therapeutic are essential for their multiscale integration in the precision medicine field.Conventional three-dimensional(3D)printing approaches are not suitable for such kind of tools due to the accuracy limitation.Multiphoton polymerization(MPP)-based micro/nanomanufacturing is a noncontact,high-precision molding technology that has been widely used in the micro/nano field is a promising tool for micro/nanoscale related precision medicine.In this article the fundamentals of MPP-based technology and the required materials in precision medicine are overviewed.The biomedical applications in various scenarios are then summarized and categorized as delivery systems,microtissue modeling,surgery,and diagnosis.Finally,the existing challenges and future perspectives on MPP-based micro/nanomanufacturing for precision medicine are discussed,focusing on material design,process optimization,and practical applications to overcome its current limitations.展开更多
Sn-based solder is a widely used interconnection material in the field of electronic packaging;however,the performance requirements for these solders are becoming increasingly demanding owing to the rapid development ...Sn-based solder is a widely used interconnection material in the field of electronic packaging;however,the performance requirements for these solders are becoming increasingly demanding owing to the rapid development in this area.In recent years,the addition of micro/nanoreinforcement phases to Sn-based solders has provided a solution to improve the intrinsic properties of the solders.This paper reviews the progress in Sn-based micro/nanoreinforced composite solders over the past decade.The types of reinforcement particles,preparation methods of the composite solders,and strengthening effects on the microstructure,wettability,melting point,mechanical properties,and corrosion resistance under different particle-addition levels are discussed and summarized.The mechanisms of performance enhancement are summarized based on material-strengthening effects such as grain refinement and second-phase dispersion strengthening.In addition,we discuss the current shortcomings of such composite solders and possible future improvements,thereby establishing a theoretical foundation for the future development of Sn-based solders.展开更多
Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hie...Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hierarchical micro/nanograting structures is important for these applications.In this study,a strategy for machining hierarchical micro/nanograting structures is developed by controlling the tool movement trajectory.A coupling Euler-Lagrange finite element model is established to simulate the machining process.The effect of the machining methods on the nanograting formation is demonstrated,and a suitable machining method for reducing the cutting force is obtained.The height of the nanograting decreases with an increase in the tool edge radius.Furthermore,optical variable devices(OVDs)are machined using an array overlap machining approach.Coding schemes for the parallel column unit crossover and column unit in the groove crossover are designed to achieve high-quality machining of OVDs.The coloring of the logo of the Harbin Institute of Technology and the logo of the centennial anniversary of the Harbin Institute of Technology on the surface of metal samples,such as aluminum alloys,is realized.The findings of this study provide a method for the fabrication of hierarchical micro/nanograting structures that can be used to prepare OVDs.展开更多
Over the past three decades,micro/nano science and technology have experienced rapid advancements as new materials and advanced devices have increasingly evolved towards high levels of integration and miniaturization....Over the past three decades,micro/nano science and technology have experienced rapid advancements as new materials and advanced devices have increasingly evolved towards high levels of integration and miniaturization.In this context,mechanical properties have emerged as critical parameters for evaluating the operational performance and longevity of materials and devices at the micro/nanoscale.展开更多
The rapid evolution of laser micro/nano-manufacturing techniques has transformed precision manufacturing,enabling the creation of complex micro/nano-structures.These techniques are crucial for multiple industries,incl...The rapid evolution of laser micro/nano-manufacturing techniques has transformed precision manufacturing,enabling the creation of complex micro/nano-structures.These techniques are crucial for multiple industries,including electronics,photonics,and biomedical engineering,owing to their unmatched precision and versatility.The ability to manipulate materials at such scales has unlocked new possibilities for innovation,thereby facilitating the development of advanced components and devices with enhanced performance and functionalities.展开更多
The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of...The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.展开更多
The high-strength Basalt Carbon Fiber Reinforced Polymer(BCFRP)composites had been manufactured by guiding Imitating Tree-root Micro/Nano Aramid Short Fiber(ITMNASF)into the interlayer of Basalt Fiber(BF)and Carbon Fi...The high-strength Basalt Carbon Fiber Reinforced Polymer(BCFRP)composites had been manufactured by guiding Imitating Tree-root Micro/Nano Aramid Short Fiber(ITMNASF)into the interlayer of Basalt Fiber(BF)and Carbon Fiber(CF)plies to form thin interleaving,and various mass proportions of IT-MNASF were designed to discuss the reinforcing effect on the BCFRP heterogeneous composites.The results of three points bending tests showed that flexural strength and energy absorption of 4wt%IT-MNASF reinforced BCFRP heterogeneous composites had been improved by 32.4%and 134.4%respectively compared with that of unreinforced specimens.The 4wt%IT-MNASF reinforced BCFRP specimens showed both a greater strength and a lower cost(reduced by 31%around)than that of plain CFRP composites.X-ray micro-computed tomography scanning results exhibited that the delamination-dominated failure of plain BCFRP composites was changed into multi-layer BF and CF fabrics damage.The reinforcing mechanism revealed that the introduced IT-MNASF could construct quasi-vertical fiber bridging,and it was used as"mechanical claws"to grasp adjacent fiber layers for creating a stronger mechanical interlocking,and this effectively improved resin-rich region and interfacial transition region at the interlayers.The simple and effective IT-MNASF interleaving technique was very successful in low-cost and high-strength development of BCFRP heterogeneous composites.展开更多
The high-performance Basalt Fiber Reinforced Polymer(BFRP)composites have been prepared by guiding Micro/Nano Short Aramid Fiber(MNSAF)into the interlayer to improve the resin-rich region and the interfacial transitio...The high-performance Basalt Fiber Reinforced Polymer(BFRP)composites have been prepared by guiding Micro/Nano Short Aramid Fiber(MNSAF)into the interlayer to improve the resin-rich region and the interfacial transition region,and the flexible fiber bridging claws of MNSAF were constructed to grasp the adjacent layers for stronger interlaminar bond.The lowvelocity impact results show that the MNSAF could improve the impact resistance of BFRP composites.The compression test results demonstrate that the compressive strength and the residual compressive strength after impact of MNSAF-reinforced BFRP composites were greater than those of unreinforced one,exhibiting the greatest 56.2% and 73.3% increments respectively for BFRP composites improved by 4wt%MNSAF.X-ray micro-computed tomography scanning results indicate that the“fiber bridging claws”contributed to better mechanical interlocking to inhibit the crack generation and propagation under impact and compression load,and the original delamination-dominated failure of unreinforced BFRP composites was altered into sheardominated failure of MNSAF-reinforced BFRP composites.Overall,the MNSAF interleaving might be an effective method in manufacturing high-performance laminated fiber in industrial production.展开更多
Quantum light sources are the core resources for photonics-based quantum information processing.We investigate the spectral engineering of photon triplets generated by third-order spontaneous parametric down-conversio...Quantum light sources are the core resources for photonics-based quantum information processing.We investigate the spectral engineering of photon triplets generated by third-order spontaneous parametric down-conversion in micro/nanofiber.The phase mismatching at one-third pump frequency gives rise to non-degenerate photon triplets,the joint spectral intensity of which has an elliptical locus with a fixed eccentricity of√6/3.Therefore,we propose a frequency-division scheme to separate non-degenerate photon triplets into three channels with high heralding efficiency for the first time.Choosing an appropriate pump wavelength can compensate for the fabrication errors of micro/nanofiber and also generate narrowband,non-degenerate photon triplet sources with a high signal-to-noise ratio.Furthermore,the long-period micro/nanofiber grating introduces a new controllable degree of freedom to tailor phase matching,resulting from the periodic oscillation of dispersion.In this scheme,the wavelength of photon triplets can be flexibly tuned using quasi-phase matching.We study the generation of photon triplets from this novel perspective of spectrum engineering,and we believe that this work will accelerate the practical implementation of photon triplets in quantum information processing.展开更多
Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and d...Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and diverse functionalities.Researchers are developing micro/nanorobots as innovative tools to improve sensing performance and miniaturize sensing systems,enabling in situ detection of substances that traditional sensing methods struggle to achieve.Over the past decade of development,significant research progress has been made in designing sensing strategies based on micro/nanorobots,employing various coordinated control and sensing approaches.This review summarizes the latest developments on micro/nanorobots for remote sensing applications by utilizing the self-generated signals of the robots,robot behavior,microrobotic manipulation,and robot-environment interactions.Providing recent studies and relevant applications in remote sensing,we also discuss the challenges and future perspectives facing micro/nanorobots-based intelligent sensing platforms to achieve sensing in complex environments,translating lab research achievements into widespread real applications.展开更多
Micro/nanorobots(MNRs)capable of performing tasks at the micro-and nanoscale hold great promise for applications in cutting-edge fields such as biomedical engineering,environmental engineering,and microfabrication.To ...Micro/nanorobots(MNRs)capable of performing tasks at the micro-and nanoscale hold great promise for applications in cutting-edge fields such as biomedical engineering,environmental engineering,and microfabrication.To cope with the intricate and dynamic environments encountered in practical applications,the development of high performance MNRs is crucial.They have evolved from single-material,single-function,and simple structure to multi-material,multi-function,and complex structure.However,the design and manufacturing of high performance MNRs with complex multi-material three-dimensional structures at the micro-and nanoscale pose significant challenges that cannot be addressed by conventional serial design strategies and single-process manufacturing methods.The material-interface-structure-function/performance coupled design methods and the additive/formative/subtractive composite manufacturing methods offer the opportunity to design and manufacture MNRs with multimaterials and complex structures under multi-factor coupling,thus paving the way for the development of high performance MNRs.In this paper,we take the three core capabilities of MNRs—mobility,controllability,and load capability—as the focal point,emphasizing the coupled design methods oriented towards their function/performance and the composite manufacturing methods for their functional structures.The limitations of current investigation are also discussed,and our envisioned future directions for design and manufacture of MNRs are shared.We hope that this review will provide a framework template for the design and manufacture of high performance MNRs,serving as a roadmap for researchers interested in this area.展开更多
As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progres...As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progress in flexible optoelectronics,MNF has been emerging as a promising candidate for assembling tactile sensors and soft actuators owing to its unique optical and mechanical properties.This review discusses the advances in MNF enabled tactile sensors and soft actuators,specifically,focusing on the latest research results over the past 5 years and the applications in health monitoring,human-machine interfaces,and robotics.Future prospects and challenges in developing flexible MNF devices are also presented.展开更多
The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materia...The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materials,which have been utilized in lithium ion batteries with enhanced energy and power density,high energy efficiency,superior rate capability and excellent cycling stability resulting from the doping,surface coating,nanocomposites and nano-architecturing.展开更多
The rapid and precise fabrication of multiscale supramolecular assemblies using micro/nanofluidic techniques has emerged as a dynamic area of research in supramolecular chemistry, materials chemistry, and organic chem...The rapid and precise fabrication of multiscale supramolecular assemblies using micro/nanofluidic techniques has emerged as a dynamic area of research in supramolecular chemistry, materials chemistry, and organic chemistry. This review summarizes the application of micro/nanofluidic techniques in constructing supramolecular assemblies, including nanoscale supramolecular assemblies such as macrocycles and cages, microscale supramolecular assemblies such as metal organic frameworks (MOFs) and covalent organic frameworks (COFs), and macroscale supramolecular assemblies such as supramolecular hydrogels. Compared to conventional synthesis methods, micro/nanofluidic techniques for the production of supramolecular assemblies have significant advantages, including enhanced safety, high reaction rates, improved selectivity/yield, and scalability. Additionally, micro/nanofluidic systems facilitate the creation of precisely controllable micro/nanoconfined environments, allowing for a unique flow behavior that improves our understanding of the supramolecular self-assembly process. Such systems may also lead to the development of novel supramolecular assemblies that differ from those generated via traditional methods.展开更多
Carbon fiber reinforced carbon composites(C/Cs),are the most promising high-temperature materials and could be widely applied in aerospace and nucleation fields,owing to their superior performances.However,C/Cs are ve...Carbon fiber reinforced carbon composites(C/Cs),are the most promising high-temperature materials and could be widely applied in aerospace and nucleation fields,owing to their superior performances.However,C/Cs are very susceptible to destructive oxidation and thus fail at elevated temperatures.Though matrix modification and coating technologies with Si-based and ultra-high temperature ceramics(UHTCs)are valid to enhance the oxidation/ablation resistance of C/Cs,it’s not sufficient to satisfy the increasing practical applications,due to the inherent brittleness of ceramics,mismatch issues between coatings and C/C substrates,and the fact that carbonaceous matrices are easily prone to high-temperature oxidation.To effectively solve the aforementioned problems,micro/nano multiscale reinforcing strategies have been developed for C/Cs and/or the coatings over the past two decades,to fabricate C/Cs with high strength and excellent high-temperature stability.This review is to systematically summarize the most recent major and important advancements in some micro/nano multiscale strategies,including nanoparticles,nanowires,carbon nanotubes/fibers,whiskers,graphene,ceramic fibers and hybrid micro/nano structures,for C/Cs and/or the coatings,to achieve high-temperature oxidation/ablation-resistant C/Cs.Finally,this review is concluded with an outlook of major unsolved problems,challenges to be met and future research advice for C/Cs with excellent comprehensive mechanical-thermal performance.It’s hoped that a better understanding of this review will be of high scientific and industrial interest,since it provides unusual and feasible new ideas to develop potential and practical C/Cs with improved high-temperature mechanical and oxidation/ablation-resistant properties.展开更多
The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced ...The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced damage in the grinding in order to reduce or eliminate the subsurface damage.The brittle/ductile transition behavior of optical glass materials and the wear of diamond wheel are the most important factors for ductile grinding of optical glass.In this paper,the critical brittle/ductile depth,the influence factors on brittle/ductile transition behavior,the wear of diamond grits in diamond grinding of ultra pure fused silica(UPFS) are investigated by means of micro/nano indentation technique,as well as single grit diamond grinding on an ultra-stiff machine tool,Tetraform "C".The single grit grinding processes are in-process monitored using acoustic emission(AE) and force dynamometer simultaneously.The wear of diamond grits,morphology and subsurface integrity of the machined groves are examined with atomic force microscope(AFM) and scanning electron microscope(SEM).The critical brittle/ductile depth of more than 0.5 μm is achieved.When compared to the using roof-like grits,by using pyramidal diamonds leads to higher critical depths of scratch with identical grinding parameters.However,the influence of grit shapes on the critical depth is not significant as supposed.The grinding force increased linearly with depth of cut in the ductile removal regime,but in brittle removal regime,there are large fluctuations instead of forces increase.The SEM photographs of the cross-section profile show that the median cracks dominate the crack patterns beneath the single grooves.Furthermore,The SEM photographs show multi worn patterns of diamond grits,indicating an inhomogeneous wear mechanism of diamond grits in grinding of fused silica with diamond grinding wheels.The proposed research provides the basal technical theory for improving the ultra-precision grinding of UPFS.展开更多
In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)proce...In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF.展开更多
基金supported by National Key R&D Program of China(Grant Nos.2021YFB2802000 and 2022YFB2804300)Science and Technology Commission of Shanghai Municipality(Grant No.21DZ1100500)+3 种基金Shanghai Municipal Science and Technology Major Projectthe Shanghai Frontiers Science Center Program(2021-2025 No.20)National Natural Science Foundation of China(Grant No.61975123)Shanghai Scienceand Technology Innovation Action Plan(Grant No.23JC1403100)。
文摘Able to precisely control and manipulate materials'states at micro/nano-scale level,femtosecond(fs)laser micro/nano processing technology has undergone tremendous development over the past three decades.Free-forming three-dimensional(3D)microscale functional devices and inducing fascinating and unique physical or chemical phenomena have granted this technology powerful versatility that no other technology can match.As this technology advances rapidly in various fields of application,some key challenges have emerged and remain to be urgently addressed.This review firstly introduces the fundamental principles for understanding how fs laser pulses interact with materials and the associated unique phenomena in section 2.Then micro/nano-fabrication in transparent materials by fs laser processing is presented in section 3.Thereafter,several high efficiency/throughput fabrication methods as well as pulse-shaping techniques are listed in sections 4 and 5 reviews four-dimensional(4D)and nanoscale printing realized by fs laser processing technology.Special attention is paid to the heterogeneous integration(HI)of functional materials enabled by fs laser processing in section 6.Several intriguing examples of 3D functional micro-devices created by fs laser-based manufacturing methods such as microfluidics,lab-on-chip,micro-optics,micro-mechanics,micro-electronics,micro-bots and micro-biodevices are reviewed in section 7.Finally,a summary of the review and a perspective are proposed to explore the challenges and future opportunities for further betterment of fs laser micro/nano processing technology.
基金supported by the National Natural Science Foundation of China(Grant No.:82372102).
文摘Enzyme-powered micro/nanomotors(MNMs)(EMNMs)use natural enzymes to facilitate the decomposition of fuels,including hydrogen peroxide(H2O2),glucose,triglycerides,and urea to provide power.EMNMs can achieve self-propulsion through the in situ utilization of biofuels without additional fuels,exhibiting excellent biocompatibility and significant potential for application in the biomedical field.Compared with H_(2)O_(2),which may cause oxidative damage to the body,urea exhibits superior biosafety characteristics.Presently,urease-powered MNMs(UMNMs)have made notable progress in their applications in the biomedical field and have garnered considerable attention from researchers.In this review,we present the latest advancements in the biomedical field of UMNMs,primarily focusing on:1)diverse materials used for constructing the fundamental framework of motors;2)control of motor movement through the regulation of enzymatic reaction rates;and 3)research directions for the clinical application of motors,including in vivo imaging,biomarker detection,cancer treatment,optical therapy,overcoming biological barriers,antibacterial interventions,antithrombotic strategies,and gastric disease management.Despite showing immense potential in biomedical applications,there are still several challenges impeding its practical implementation,such as maintaining activity in the in vivo environment while accurately targeting specific sites to achieve the desired clinical therapeutic effects.
基金supported by the National Key Research and Development Program(2022YFB4701700)National Excellent Youth Science Fund Project of the National Natural Science Foundation of China(52322502)+6 种基金the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(52025054)National Natural Science Foundation of China(52175009),Postdoctoral Fellowship Program of CPSF(GZC20232498)Postdoctoral Innovative Talents in Shandong Province(SDBX2023011)China Postdoctoral Science Foundation Grant(2023M733341)Key R&D Program of Shandong Province,China(2021ZLGX04)National Heilongjiang Providence Nature Science Foundation of China(YQ2022E022)Fundamental Research Funds for the Central Universities。
文摘Micro/nanorobots have exhibited excellent application potential in the biomedical field,such as drug delivery,minimally invasive surgery,and bio-sensing.Furthermore,in order to achieve practical application,it is essential for swimming micro/nanorobots to navigate towards specific targets or adjust their speed and morphology in complete environments.The navigation of swimming micro/nanorobots with temporal and spatial precision is critical for fulfilling the demand of applications.Here,we introduced a fully integrated wearable control system for micro/nanorobots navigation and manipulation,which is composed of a multifunctional sensor array,an artificial intelligence(AI)planner,and a magnetic field generator.The sensor array could perceive real-time changes in gestures,wrist rotation,and acoustic signals.AI planner based on machine learning offers adaptive path planning in response to dynamically changing signals to generate magnetic fields for the on-demand manipulation of micro/nanorobots.Such a novel,feasible control strategy was validated in the biological experiment in which cancer cells were targeted and killed by photothermal therapy using micro/nanorobots and integrated control platform.This wearable control system could play a crucial role in future intelligent medical applications and could be easily reconfigured toward other medical robots’control.
基金the National Natural Science Foundation of China(52275294)the National Key Research and Development Program of China(2018YFA0703000).
文摘The designing and manufacturing of micro/nanoscale tools for delivery,diagnostic,and therapeutic are essential for their multiscale integration in the precision medicine field.Conventional three-dimensional(3D)printing approaches are not suitable for such kind of tools due to the accuracy limitation.Multiphoton polymerization(MPP)-based micro/nanomanufacturing is a noncontact,high-precision molding technology that has been widely used in the micro/nano field is a promising tool for micro/nanoscale related precision medicine.In this article the fundamentals of MPP-based technology and the required materials in precision medicine are overviewed.The biomedical applications in various scenarios are then summarized and categorized as delivery systems,microtissue modeling,surgery,and diagnosis.Finally,the existing challenges and future perspectives on MPP-based micro/nanomanufacturing for precision medicine are discussed,focusing on material design,process optimization,and practical applications to overcome its current limitations.
基金financially supported by the State Key Laboratory for Mechanical Behavior of Materials,China(No.202325012)the National Natural Science Foundation of China(No.U21A20128).
文摘Sn-based solder is a widely used interconnection material in the field of electronic packaging;however,the performance requirements for these solders are becoming increasingly demanding owing to the rapid development in this area.In recent years,the addition of micro/nanoreinforcement phases to Sn-based solders has provided a solution to improve the intrinsic properties of the solders.This paper reviews the progress in Sn-based micro/nanoreinforced composite solders over the past decade.The types of reinforcement particles,preparation methods of the composite solders,and strengthening effects on the microstructure,wettability,melting point,mechanical properties,and corrosion resistance under different particle-addition levels are discussed and summarized.The mechanisms of performance enhancement are summarized based on material-strengthening effects such as grain refinement and second-phase dispersion strengthening.In addition,we discuss the current shortcomings of such composite solders and possible future improvements,thereby establishing a theoretical foundation for the future development of Sn-based solders.
基金Supported by National Natural Science Foundation of China(Grant Nos.52035004,52105434).
文摘Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hierarchical micro/nanograting structures is important for these applications.In this study,a strategy for machining hierarchical micro/nanograting structures is developed by controlling the tool movement trajectory.A coupling Euler-Lagrange finite element model is established to simulate the machining process.The effect of the machining methods on the nanograting formation is demonstrated,and a suitable machining method for reducing the cutting force is obtained.The height of the nanograting decreases with an increase in the tool edge radius.Furthermore,optical variable devices(OVDs)are machined using an array overlap machining approach.Coding schemes for the parallel column unit crossover and column unit in the groove crossover are designed to achieve high-quality machining of OVDs.The coloring of the logo of the Harbin Institute of Technology and the logo of the centennial anniversary of the Harbin Institute of Technology on the surface of metal samples,such as aluminum alloys,is realized.The findings of this study provide a method for the fabrication of hierarchical micro/nanograting structures that can be used to prepare OVDs.
文摘Over the past three decades,micro/nano science and technology have experienced rapid advancements as new materials and advanced devices have increasingly evolved towards high levels of integration and miniaturization.In this context,mechanical properties have emerged as critical parameters for evaluating the operational performance and longevity of materials and devices at the micro/nanoscale.
文摘The rapid evolution of laser micro/nano-manufacturing techniques has transformed precision manufacturing,enabling the creation of complex micro/nano-structures.These techniques are crucial for multiple industries,including electronics,photonics,and biomedical engineering,owing to their unmatched precision and versatility.The ability to manipulate materials at such scales has unlocked new possibilities for innovation,thereby facilitating the development of advanced components and devices with enhanced performance and functionalities.
基金the Fundamental Research Funds for the Central Universities(Grant No.30920041102)National Natural Science Foundation of China(Grant No.11802134).
文摘The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.
基金Supported financially by the National Natural Science Foundation of China(No.52102115)the High-end Foreign Expert Recruitment Plan of China(No.G2023036002L)+2 种基金the Natural Science Foundation of Sichuan Province,China(No.2023NSFSC0961)Shock and Vibration of Engineering Materials and Structures Key Lab of Sichuan Province,China(No.23kfgk06)the Postgraduate Innovation Fund Project by Southwest University of Science and Technology,China(No.24ycx2027).
文摘The high-strength Basalt Carbon Fiber Reinforced Polymer(BCFRP)composites had been manufactured by guiding Imitating Tree-root Micro/Nano Aramid Short Fiber(ITMNASF)into the interlayer of Basalt Fiber(BF)and Carbon Fiber(CF)plies to form thin interleaving,and various mass proportions of IT-MNASF were designed to discuss the reinforcing effect on the BCFRP heterogeneous composites.The results of three points bending tests showed that flexural strength and energy absorption of 4wt%IT-MNASF reinforced BCFRP heterogeneous composites had been improved by 32.4%and 134.4%respectively compared with that of unreinforced specimens.The 4wt%IT-MNASF reinforced BCFRP specimens showed both a greater strength and a lower cost(reduced by 31%around)than that of plain CFRP composites.X-ray micro-computed tomography scanning results exhibited that the delamination-dominated failure of plain BCFRP composites was changed into multi-layer BF and CF fabrics damage.The reinforcing mechanism revealed that the introduced IT-MNASF could construct quasi-vertical fiber bridging,and it was used as"mechanical claws"to grasp adjacent fiber layers for creating a stronger mechanical interlocking,and this effectively improved resin-rich region and interfacial transition region at the interlayers.The simple and effective IT-MNASF interleaving technique was very successful in low-cost and high-strength development of BCFRP heterogeneous composites.
基金supported financially by the National Natural Science Foundation of China(No.52102115)the High-end Foreign Expert Recruitment Plan of China(No.G2023036002L)+1 种基金the Basalt Fiber and Composite Key Laboratory of Sichuan Province,China(No.XXKFJJ202308)Shock and Vibration of Engineering Materials and Structures Key Lab of Sichuan Province,China(No.23kfgk06).
文摘The high-performance Basalt Fiber Reinforced Polymer(BFRP)composites have been prepared by guiding Micro/Nano Short Aramid Fiber(MNSAF)into the interlayer to improve the resin-rich region and the interfacial transition region,and the flexible fiber bridging claws of MNSAF were constructed to grasp the adjacent layers for stronger interlaminar bond.The lowvelocity impact results show that the MNSAF could improve the impact resistance of BFRP composites.The compression test results demonstrate that the compressive strength and the residual compressive strength after impact of MNSAF-reinforced BFRP composites were greater than those of unreinforced one,exhibiting the greatest 56.2% and 73.3% increments respectively for BFRP composites improved by 4wt%MNSAF.X-ray micro-computed tomography scanning results indicate that the“fiber bridging claws”contributed to better mechanical interlocking to inhibit the crack generation and propagation under impact and compression load,and the original delamination-dominated failure of unreinforced BFRP composites was altered into sheardominated failure of MNSAF-reinforced BFRP composites.Overall,the MNSAF interleaving might be an effective method in manufacturing high-performance laminated fiber in industrial production.
基金Project supported by the National Natural Science Foundation of China(Grant No.61605249)the Science and Technology Key Project of Henan Province of China(Grant Nos.182102210577 and 232102211086).
文摘Quantum light sources are the core resources for photonics-based quantum information processing.We investigate the spectral engineering of photon triplets generated by third-order spontaneous parametric down-conversion in micro/nanofiber.The phase mismatching at one-third pump frequency gives rise to non-degenerate photon triplets,the joint spectral intensity of which has an elliptical locus with a fixed eccentricity of√6/3.Therefore,we propose a frequency-division scheme to separate non-degenerate photon triplets into three channels with high heralding efficiency for the first time.Choosing an appropriate pump wavelength can compensate for the fabrication errors of micro/nanofiber and also generate narrowband,non-degenerate photon triplet sources with a high signal-to-noise ratio.Furthermore,the long-period micro/nanofiber grating introduces a new controllable degree of freedom to tailor phase matching,resulting from the periodic oscillation of dispersion.In this scheme,the wavelength of photon triplets can be flexibly tuned using quasi-phase matching.We study the generation of photon triplets from this novel perspective of spectrum engineering,and we believe that this work will accelerate the practical implementation of photon triplets in quantum information processing.
基金supported by the National Natural Science Foundation under Project No. 52205590the Natural Science Foundation of Jiangsu Province under Project No. BK20220834+4 种基金the Start-up Research Fund of Southeast University under Project No. RF1028623098the Xiaomi Foundation/ Xiaomi Young Talents Programsupported by the Research Impact Fund (project no. R4015-21)Research Fellow Scheme (project no. RFS2122-4S03)the EU-Hong Kong Research and Innovation Cooperation Co-funding Mechanism (project no. E-CUHK401/20) from the Research Grants Council (RGC) of Hong Kong, the SIAT-CUHK Joint Laboratory of Robotics and Intelligent Systems, and the Multi-Scale Medical Robotics Center (MRC), InnoHK, at the Hong Kong Science Park
文摘Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and diverse functionalities.Researchers are developing micro/nanorobots as innovative tools to improve sensing performance and miniaturize sensing systems,enabling in situ detection of substances that traditional sensing methods struggle to achieve.Over the past decade of development,significant research progress has been made in designing sensing strategies based on micro/nanorobots,employing various coordinated control and sensing approaches.This review summarizes the latest developments on micro/nanorobots for remote sensing applications by utilizing the self-generated signals of the robots,robot behavior,microrobotic manipulation,and robot-environment interactions.Providing recent studies and relevant applications in remote sensing,we also discuss the challenges and future perspectives facing micro/nanorobots-based intelligent sensing platforms to achieve sensing in complex environments,translating lab research achievements into widespread real applications.
基金National Natural Science Foundation of China(Nos.52125505,U23A20637)。
文摘Micro/nanorobots(MNRs)capable of performing tasks at the micro-and nanoscale hold great promise for applications in cutting-edge fields such as biomedical engineering,environmental engineering,and microfabrication.To cope with the intricate and dynamic environments encountered in practical applications,the development of high performance MNRs is crucial.They have evolved from single-material,single-function,and simple structure to multi-material,multi-function,and complex structure.However,the design and manufacturing of high performance MNRs with complex multi-material three-dimensional structures at the micro-and nanoscale pose significant challenges that cannot be addressed by conventional serial design strategies and single-process manufacturing methods.The material-interface-structure-function/performance coupled design methods and the additive/formative/subtractive composite manufacturing methods offer the opportunity to design and manufacture MNRs with multimaterials and complex structures under multi-factor coupling,thus paving the way for the development of high performance MNRs.In this paper,we take the three core capabilities of MNRs—mobility,controllability,and load capability—as the focal point,emphasizing the coupled design methods oriented towards their function/performance and the composite manufacturing methods for their functional structures.The limitations of current investigation are also discussed,and our envisioned future directions for design and manufacture of MNRs are shared.We hope that this review will provide a framework template for the design and manufacture of high performance MNRs,serving as a roadmap for researchers interested in this area.
基金financial supports from the National Natural Science Foundation of China(No.61975173)the Key Research and Development Project of Zhejiang Province(No.2022C03103,2023C01045).
文摘As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progress in flexible optoelectronics,MNF has been emerging as a promising candidate for assembling tactile sensors and soft actuators owing to its unique optical and mechanical properties.This review discusses the advances in MNF enabled tactile sensors and soft actuators,specifically,focusing on the latest research results over the past 5 years and the applications in health monitoring,human-machine interfaces,and robotics.Future prospects and challenges in developing flexible MNF devices are also presented.
基金Projects(51134007,21003161,21250110060) supported by the National Natural Science Foundation of ChinaProject(11MX10) supported by Central South University Annual Mittal-Founded Innovation ProjectProject(2011ssxt086) supported by Fundamental Research Funds for the Central Universities,China
文摘The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materials,which have been utilized in lithium ion batteries with enhanced energy and power density,high energy efficiency,superior rate capability and excellent cycling stability resulting from the doping,surface coating,nanocomposites and nano-architecturing.
基金the National Nature Science Foundation of China (Nos. 22107028 and 22103062)Program of Shanghai Outstanding Academic Leaders (No. 21XD1421200)Science and Technology Commission of Shanghai Municipality (No. 22JC1403900).
文摘The rapid and precise fabrication of multiscale supramolecular assemblies using micro/nanofluidic techniques has emerged as a dynamic area of research in supramolecular chemistry, materials chemistry, and organic chemistry. This review summarizes the application of micro/nanofluidic techniques in constructing supramolecular assemblies, including nanoscale supramolecular assemblies such as macrocycles and cages, microscale supramolecular assemblies such as metal organic frameworks (MOFs) and covalent organic frameworks (COFs), and macroscale supramolecular assemblies such as supramolecular hydrogels. Compared to conventional synthesis methods, micro/nanofluidic techniques for the production of supramolecular assemblies have significant advantages, including enhanced safety, high reaction rates, improved selectivity/yield, and scalability. Additionally, micro/nanofluidic systems facilitate the creation of precisely controllable micro/nanoconfined environments, allowing for a unique flow behavior that improves our understanding of the supramolecular self-assembly process. Such systems may also lead to the development of novel supramolecular assemblies that differ from those generated via traditional methods.
基金supported by the National Natural Science Foundation of China(Nos.91860203,51821091,51872239,52002321 and 52061135102)the China Postdoctoral Science Foundation(No.2019M660265)+3 种基金the Fundamental Research Funds for the Central Universities(China,Nos.G2019KY05116,G2020KY05125)the Innovation Talent Promotion Plan of Shaanxi Province for Science and Technology Innovation Team(No.2020TD003)the Creative Research Foundation of Science and Technology on Thermostructural Composite Materials Laboratory(Nos.614291102010517,5050200015 and 5150200033)the Shaanxi Provincial Education Department of China(No.2020JQ-170)。
文摘Carbon fiber reinforced carbon composites(C/Cs),are the most promising high-temperature materials and could be widely applied in aerospace and nucleation fields,owing to their superior performances.However,C/Cs are very susceptible to destructive oxidation and thus fail at elevated temperatures.Though matrix modification and coating technologies with Si-based and ultra-high temperature ceramics(UHTCs)are valid to enhance the oxidation/ablation resistance of C/Cs,it’s not sufficient to satisfy the increasing practical applications,due to the inherent brittleness of ceramics,mismatch issues between coatings and C/C substrates,and the fact that carbonaceous matrices are easily prone to high-temperature oxidation.To effectively solve the aforementioned problems,micro/nano multiscale reinforcing strategies have been developed for C/Cs and/or the coatings over the past two decades,to fabricate C/Cs with high strength and excellent high-temperature stability.This review is to systematically summarize the most recent major and important advancements in some micro/nano multiscale strategies,including nanoparticles,nanowires,carbon nanotubes/fibers,whiskers,graphene,ceramic fibers and hybrid micro/nano structures,for C/Cs and/or the coatings,to achieve high-temperature oxidation/ablation-resistant C/Cs.Finally,this review is concluded with an outlook of major unsolved problems,challenges to be met and future research advice for C/Cs with excellent comprehensive mechanical-thermal performance.It’s hoped that a better understanding of this review will be of high scientific and industrial interest,since it provides unusual and feasible new ideas to develop potential and practical C/Cs with improved high-temperature mechanical and oxidation/ablation-resistant properties.
基金supported by National Key Science and Technology Projects of China (Grant No. 2009ZX04001-101, Grant No. 2009ZX01001-151)New Century Excellent Talents in University,China (GrantNo. NCET-07-0246)National Natural Science Foundation of China(Grant No. 50675051)
文摘The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced damage in the grinding in order to reduce or eliminate the subsurface damage.The brittle/ductile transition behavior of optical glass materials and the wear of diamond wheel are the most important factors for ductile grinding of optical glass.In this paper,the critical brittle/ductile depth,the influence factors on brittle/ductile transition behavior,the wear of diamond grits in diamond grinding of ultra pure fused silica(UPFS) are investigated by means of micro/nano indentation technique,as well as single grit diamond grinding on an ultra-stiff machine tool,Tetraform "C".The single grit grinding processes are in-process monitored using acoustic emission(AE) and force dynamometer simultaneously.The wear of diamond grits,morphology and subsurface integrity of the machined groves are examined with atomic force microscope(AFM) and scanning electron microscope(SEM).The critical brittle/ductile depth of more than 0.5 μm is achieved.When compared to the using roof-like grits,by using pyramidal diamonds leads to higher critical depths of scratch with identical grinding parameters.However,the influence of grit shapes on the critical depth is not significant as supposed.The grinding force increased linearly with depth of cut in the ductile removal regime,but in brittle removal regime,there are large fluctuations instead of forces increase.The SEM photographs of the cross-section profile show that the median cracks dominate the crack patterns beneath the single grooves.Furthermore,The SEM photographs show multi worn patterns of diamond grits,indicating an inhomogeneous wear mechanism of diamond grits in grinding of fused silica with diamond grinding wheels.The proposed research provides the basal technical theory for improving the ultra-precision grinding of UPFS.
文摘In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF.