期刊文献+
共找到619,394篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of Ta addition on microstructure and mechanical properties of Ti46Al1.5Cr8Nb alloy
1
作者 Jiang-shan Liang Liao Mi +4 位作者 Hong-ze Fang Xin Ding Xian-fei Ding Bao-hui Zhu Rui-run Chen 《China Foundry》 2026年第1期37-44,共8页
The microstructure of high Nb-TiAl alloys was optimized by the addition of a small amount of Ta elements to further improve their properties.A series of Ti46Al1.5Cr8Nb-xTa(x=0.2,0.4,0.6,0.8,1.0,at.%)alloys were prepar... The microstructure of high Nb-TiAl alloys was optimized by the addition of a small amount of Ta elements to further improve their properties.A series of Ti46Al1.5Cr8Nb-xTa(x=0.2,0.4,0.6,0.8,1.0,at.%)alloys were prepared by vacuum arc melting.The microstructure,mechanical properties,and related influencing mechanisms were systematically investigated.The results indicate that the solidification microstructure of the Ti46Al1.5Cr8Nb-xTa alloys comprises theγ-TiAl phase,α_(2)-Ti_(3)Al phase,and B2 phase.As the Ta content increases from 0.2 at.%to 1.0 at.%,the content ofα_(2)phase and B2 phase increases,while theγphase content decreases.Among them,the B2 phase shows the most pronounced change,being significantly refined,with its content increasing from 12.49%to 21.91%.In addition,the average size of the lamellar colony decreases from 160.65 to 94.44μm.The addition of the Ta element shifts the solidification path toward lower aluminum concentrations,leading to changes in phase content.The tantalum-induced increase in the B2 phase and enhanced supercooling at the solidification front provide the basis for lamellar colony refinement.Compressive testing at room temperature reveals that the Ti46 Al1.5 Cr8 Nb0.4 Ta alloy exhibits optimal compressive properties,achieving a compressive strength of 2,434 MPa and a compressive strain of 33.1%.The improvement of its properties is attributed to a combination of lamellar colony refinement,solid solution strengthening resulting from the incorporation of Ta element,and a reduction in the c/a of theγphase. 展开更多
关键词 TiAl alloy Ta element microstructure mechanical properties lamellar colony
在线阅读 下载PDF
Basic Mechanical Properties and Microstructure of Sustainable Recycled Coral Aggregate Concrete
2
作者 WANG Lei LU Jiahui +5 位作者 ZHANG Jiwang YI Jin ZHU Dexiang HUANG Dongming QIN Yan LI Yajie 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期217-226,共10页
Crushing waste coral concrete into recycled aggregates to create recycled coral aggregate concrete(RCAC)contributes to sustainable construction development on offshore islands and reefs.To investigate the impact of re... Crushing waste coral concrete into recycled aggregates to create recycled coral aggregate concrete(RCAC)contributes to sustainable construction development on offshore islands and reefs.To investigate the impact of recycled coral aggregate on concrete properties,this study performed a comprehensive analysis of the physical properties of recycled coral aggregate and the basic mechanical properties and microstructure of RCAC.The test results indicate that,compared to coral debris,the crushing index of recycled coral aggregate was reduced by 9.4%,while porosity decreased by 33.5%.Furthermore,RCAC retained the early strength characteristics of coral concrete,with compressive strength and flexural strength exhibiting a notable increase as the water-cement ratio decreased.Under identical conditions,the compressive strength and flexural strength of RCAC were 12.7% and 2.5% higher than coral concrete's,respectively,with porosity correspondingly reduced from 3.13% to 5.11%.This enhancement could be attributed to the new mortar filling the recycled coral aggregate.Scanning electron microscopy(SEM)analysis revealed three distinct interface transition zones within RCAC,with the‘new mortar-old mortar’interface identified as the weakest.The above findings provided a reference for the sustainable use of coral concrete in constructing offshore islands. 展开更多
关键词 recycled coral aggregate sustainable concrete mechanical properties microSTRUCTURE interfacial transition zone
原文传递
Influence of interface shape on microstructure and mechanical properties of Mg/Al composite plates fabricated by hot-pressing
3
作者 Shi-jun TAN Bo SONG +6 位作者 Hao-hua XU Ting-ting LIU Jia SHE Sheng-feng GUO Xian-hua CHEN Kai-hong ZHENG Fu-sheng PAN 《Transactions of Nonferrous Metals Society of China》 2026年第1期124-143,共20页
A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The resu... A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction. 展开更多
关键词 Mg/Al composite plate interface shape microSTRUCTURE mechanical properties TEXTURE
在线阅读 下载PDF
Microstructures and mechanical properties of friction stir welded and processed high entropy alloys
4
作者 Kang Chen Jian Miao +2 位作者 Huijie Zhang Qi Cheng Yingling Wang 《Defence Technology(防务技术)》 2026年第1期80-108,共29页
High entropy alloys(HEAs)have recently attracted significant attention due to their exceptional mechanical properties and potential applications across various fields.Friction stir welding and processing(FSW/P),as not... High entropy alloys(HEAs)have recently attracted significant attention due to their exceptional mechanical properties and potential applications across various fields.Friction stir welding and processing(FSW/P),as notable solid-state welding and processing techniques,have been proved effectiveness in enhancing microstructures and mechanical properties of HEAs.This review article summarizes the current status of FSW/P of HEAs.The welding materials and conditions used for FSW/P in HEAs are reviewed and discussed.The effects of FSW/P on the evolutions of grain structure,texture,dislocation,and secondary phase for different HEAs are highlighted.Furthermore,the influences of FSW/P on the mechanical properties of various HEAs are analyzed.Finally,potential applications,challenges,and future directions of FSW/P in HEAs are forecasted.Overall,FSW/P enable to refine grains of HEAs through dynamic recrystallization and to activate diverse deformation mechanisms of HEAs through tailoring phase structures,thereby significantly improving the strength,hardness,and ductility of both single-and dual-phase HEAs.Future progress in this field will rely on comprehensive optimization of processing parameters and alloy composition,integration of multi-scale modeling with advanced characterization for in-depth exploration of microstructural mechanisms,systematic evaluation of functional properties,and effective bridging of the gap between laboratory research and industrial application.The review aims to provide an overview of recent advancements in the FSW/P of HEAs and encourage further research in this area. 展开更多
关键词 High entropy alloys Friction stir welding/processing microSTRUCTURE mechanical property
在线阅读 下载PDF
Effect of Hot Working on Microstructures and Mechanical Properties of Gravity-Cast Al-8.3Zn-3.3Cu-2.2Mg HighStrength Aluminum Alloy 被引量:2
5
作者 Qi Yushi Jin Yu +5 位作者 Wei Fangming Du Lanjun Ren Yan Liang Xueqian Chen Gang Du Zhiming 《稀有金属材料与工程》 北大核心 2025年第2期327-336,共10页
The microstructures and mechanical properties of Al-8.3Zn-3.3Cu-2.2Mg alloys prepared via hot extrusion and liquid forging methods were investigated.Results show that based on DEFORM simulation analysis,the optimal ho... The microstructures and mechanical properties of Al-8.3Zn-3.3Cu-2.2Mg alloys prepared via hot extrusion and liquid forging methods were investigated.Results show that based on DEFORM simulation analysis,the optimal hot extrusion parameters are determined as ingot initial temperature of 380°C and extrusion speed of 3 mm/s.The hot-extruded aluminum alloy after T6 heat treatment presents superior mechanical properties with yield strength of 519.6 MPa,ultimate tensile strength of 582.1 MPa,and elongation of 11.0%.Compared with the properties of gravity-cast and liquid-forged alloys,the yield strength of hot-extruded alloy increases by 30.8%and 4.9%,and the ultimate tensile strength improves by 43.5%and 10.2%,respectively.The significant improvement in tensile strength of the hot-extruded alloys is attributed to the elimination of casting defects and the refinement of matrix grain and eutectic phases.In addition,the hot-extruded alloy demonstrates superior plasticity compared with the liquid-forged alloy.This is because severe plastic deformation occurs during hot extrusion,which effectively breaks and disperses the eutectic phases,facilitating the dissolution and precipitation of the second phases and inhibiting the microcrack initiation. 展开更多
关键词 Al-Zn-Cu-Mg alloy hot extrusion liquid forging mechanical properties microstructure
原文传递
Effects of the extrusion parameters on microstructure,texture and room temperature mechanical properties of extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy 被引量:1
6
作者 Chenjin Zhang Guangyu Yang +4 位作者 Lei Xiao Zhiyong Kan Jing Guo Qiang Li Wanqi Jie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期136-146,共11页
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi... Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy. 展开更多
关键词 Mg-rare earth alloys extrusion temperature extrusion ratio extrusion speed strengthening mechanisms
在线阅读 下载PDF
Effects of Cerium-Rich Rare Earth and Al-Ti-B Composite Addition on Microstructure and Mechanical Properties of Al-Mg-Si Alloys 被引量:1
7
作者 Chong Yufan Du Zhaoxin +5 位作者 Gong Tianhao Sun Baoan Pan Zheru Qi Lele Xie Chengcheng Cheng Jun 《稀有金属材料与工程》 北大核心 2025年第1期50-61,共12页
Modification of 6061 aluminum alloy was conducted through composite addition of cerium-rich rare earths and Al-Ti-B.Results show that the composite addition of Al-Ti-B and Ce/La element at a specific ratio notably pro... Modification of 6061 aluminum alloy was conducted through composite addition of cerium-rich rare earths and Al-Ti-B.Results show that the composite addition of Al-Ti-B and Ce/La element at a specific ratio notably promotes the refinement of the alloy's grains.Ce and La elements are combined with Si and other elements to form rare earth phases,improving the morphology and distribution of precipitates and mitigating the adverse effects ofβ-Fe phases on the microstructure and mechanical properties of alloy.However,excessive rare earth content poses challenges;it not only leads to a decrease in Mg-Si strengthening phase by binding with Si but also promotes the formation of larger or numerous rare earth phases that may act as initiation points for cracks,thereby impeding the improvement of the structure and performance of alloy.The composite addition of cerium-rich rare earths and Al-Ti-B not only preserves the strength of the alloy but also significantly enhances the plasticity of the 6061 as-cast alloy.At a composite addition ratio of Al-Ti-B:RE=2:1,the newly developed 6061-RE aluminum alloy exhibits increased average elongation by 50%and 45%in its as-cast and homogenized states,respectively,compared to the baseline 6061 alloy,facilitating subsequent deformation processing.After solution treatment at 540℃for 1 h and aging at 180℃for 5 h,the average ultimate tensile strength and yield strength of 6061-RE alloys reach 313.2 and 283.1 MPa,increased by 12.3%and 14.5%compared with those of the original alloy,respectively,and the average elongation is improved by 41%. 展开更多
关键词 rare earth alloy Al-Mg-Si alloy cerium-rich rare earth mechanical property microstructure
原文传递
Microstructures,mechanical properties,and strengthening mechanisms of the(NbMoTa)_(100−x)C_(x) refractory medium-entropy alloys 被引量:1
8
作者 Xueqian Gou Ruqing Cao +2 位作者 Weihua Zhou Zheling Shen Yi Li 《Journal of Materials Science & Technology》 2025年第11期105-119,共15页
Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uni... Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uniform deformation that occurs at room temperature.Once cracks nucleate,they will rapidly propagate into vertical splitting cracks.Here,we introduce multiple phases including FCC and HCP phases into the NbMoTa RMEA via appropriate addition of carbon.The results show that multiple-phase synergy effectively suppresses non-uniform deformation,thereby delaying the onset of vertical splitting cracks.An optimal combination of compressive strength-plasticity is achieved by the(NbMoTa)_(92.5)C_(7.5) alloy.The significant improvement in room-temperature mechanical properties can be attributed to its hierarchical microstructure:in the mesoscale,the BCC matrix is divided by eutectic structures;while at the microscale,the BCC matrix is further refined by abundant lath-like FCC precipitates.The FCC precip-itates contain high-density stacking faults,acting as a dislocation source under compressive loading.The HCP phase in the eutectic microstructures,in turn,acts as a strong barrier to dislocation movement and simultaneously increases the dislocation storage capacity.These findings open a new route to tailor the microstructure and mechanical properties of RH/MEAs. 展开更多
关键词 Refractory medium-entropy alloys Carbon microSTRUCTURES mechanical properties Strengthening mechanisms
原文传递
Pressure-Modulated Activation Energy as a Unified Descriptor of Mechanical Behavior in Metallic Glass
9
作者 Huanrong Liu Jian Li +1 位作者 Shan Zhang Pengfei Guan 《Chinese Physics Letters》 2026年第1期71-82,共12页
The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ... The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ simulations with varied protocols to evaluate the effectiveness of different descriptors in predicting mechanical properties across both low-and high-pressure regimes.Our findings demonstrate that conventional structural and configurational descriptors fail to correlate with the mechanical response following pressure release,whereas the activation energy descriptor exhibits robust linearity with shear modulus after correcting for pressure effects.Notably,the soft mode parameter emerges as an ideal and computationally efficient alternative for capturing this mechanical behavior.These findings provide critical insights into the influence of pressure on glassy properties,integrating the distinct features of compressed glasses into a unified theoretical framework. 展开更多
关键词 pressure modulated activation energy predicting mechanical properties metallic glass relaxation processes functional properties mechanical behavior simulations varied protocols structural configurational descriptors
原文传递
Mechanical Properties Analysis of Flexible Memristors for Neuromorphic Computing
10
作者 Zhenqian Zhu Jiheng Shui +1 位作者 Tianyu Wang Jialin Meng 《Nano-Micro Letters》 2026年第1期53-79,共27页
The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,fle... The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,flexible memristors exhibit great application potential in emulating artificial synapses for highefficiency and low power consumption neuromorphic computing.This paper provides comprehensive overview of flexible memristors from perspectives of development history,material system,device structure,mechanical deformation method,device performance analysis,stress simulation during deformation,and neuromorphic computing applications.The recent advances in flexible electronics are summarized,including single device,device array and integration.The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply,paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics. 展开更多
关键词 Flexible memristor Neuromorphic computing mechanical property Wearable electronics
在线阅读 下载PDF
Reducing bentonite usage in iron ore pelletization through synergistic modification with mechanical force and DMSO:Effects and mechanisms
11
作者 Yinrui Dong Yongbin Yang +4 位作者 Lin Wang Qianqian Duan Qian Li Yan Zhang Tao Jiang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期177-190,共14页
Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pell... Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pellets.Addressing the gap in the application of organically-intercalated modified bentonite in the pelletizing field,this study introduces an innovative modification process for bentonite that employs the synergistic effect of mechanical force and dimethyl sulfoxide to enhance the intercalation of organic compounds within bentonite,thus significantly enhancing its binding performance.The colloid value and swell capacity of modified bentonite(98.5 m L/3g and 55.0 m L/g)were much higher than the original bentonite(90.5 m L/3g and 17.5 m L/g).With the decrease of bentonite dosage from1.5wt%to 1.0wt%,the drop number of green pellets from a height of 0.5 m and the compressive strengths of roasted pellets using the modified bentonite(6.0 times and 2916 N per pellet)were significantly higher than those of the original bentonite(4.0 times and 2739 N per pellet).This study provides a comprehensive analysis of the intercalation modification mechanism of bentonite,offering crucial technical insights for the development of high-performance modified bentonite as iron ore pellet binders. 展开更多
关键词 PELLETS bentonite modification mechanical force dimethyl sulfoxide organic intercalation
在线阅读 下载PDF
First-Principles Study on the Mechanical and Thermodynamic Properties of (NbZrHfTi)C High-Entropy Ceramics
12
作者 Yonggang Tong Kai Yang +5 位作者 Pengfei Li Yongle Hu Xiubing Liang Jian Liu Yejun Li Jingzhong Fang 《Computers, Materials & Continua》 2026年第1期353-367,共15页
(NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperatu... (NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperature properties.This study systematically investigates the mechanical properties of(NbZrHfTi)C high-entropy ceramics by employing first-principles density functional theory,combined with the Debye-Grüneisen model,to explore the variations in their thermophysical properties with temperature(0–2000 K)and pressure(0–30 GPa).Thermodynamically,the calculated mixing enthalpy and Gibbs free energy confirm the feasibility of forming a stable single-phase solid solution in(NbZrHfTi)C.The calculated results of the elastic stiffness constant indicate that the material meets the mechanical stability criteria of the cubic crystal system,further confirming the structural stability.Through evaluation of key mechanical parameters—bulk modulus,shear modulus,Young’s modulus,and Poisson’s ratio—we provide comprehensive insight into the macro-mechanical behaviour of the material and its correlation with the underlying microstructure.Notably,compared to traditional binary carbides and their average properties,(NbZrHfTi)C exhibits higher Vickers hardness(Approximately 28.5 GPa)and fracture toughness(Approximately 3.4 MPa⋅m^(1/2)),which can be primarily attributed to the lattice distortion and solid-solution strengthening mechanism.The study also utilizes the quasi-harmonic approximation method to predict the material’s thermophysical properties,including Debye temperature(initial value around 563 K),thermal expansion coefficient(approximately 8.9×10^(−6) K−1 at 2000 K),and other key parameters such as heat capacity at constant volume.The results show that within the studied pressure and temperature ranges,(NbZrHfTi)C consistently maintains a stable phase structure and good thermomechanical properties.The thermal expansion coefficient increasing with temperature,while heat capacity approaches the Dulong-Petit limit at elevated temperatures.These findings underscore the potential of(NbZrHfTi)C applications in ultra-high temperature thermal protection systems,cutting tool coatings,and nuclear structural materials. 展开更多
关键词 High entropy ceramics mechanical properties electronic properties thermodynamic properties
在线阅读 下载PDF
Mechanical and microstructural properties of schist exposed to freezethaw cycles,dry-wet cycles,and alternating actions 被引量:2
13
作者 Jiajia Gao Jiajian Jin +5 位作者 Daguo Wang Shaogang Lei Jianguo Lu Huan Xiao Jinhe Li Huadong Li 《International Journal of Mining Science and Technology》 2025年第5期783-800,共18页
In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural prope... In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural properties of schist subjected to four conditions were investigated:freeze-thaw cycles in air(FTA),freeze-thaw cycles in water(FTW),dry-wet cycles(DW),and dry-wet-freeze-thaw cycles(DWFT).Uniaxial compressive strength(UCS),water absorption,ultrasonication,low-field nuclear magnetic resonance,and scanning electron microscopy analyses were conducted.The integrity attenuation characteristics of the longitudinal wave velocity,UCS,and elastic modulus were analyzed.The results showed that liquid water emerged as a critical factor in reducing the brittleness of schist.The attenuation function model accurately described the peak stress and static elastic modulus of schist in various media(R2>0.97).Different media affected the schist deterioration and half-life,with the FTW-immersed samples having a half-life of 28 cycles.Furthermore,the longitudinal wave velocity decreased as the number of cycles increased,with the FTW showing the most significant reduction and having the shortest half-life of 208 cycles.Moreover,the damage variables of compressive strength and elastic modulus increased with the number of cycles.After 40 cycles,the schist exposed to FTW exhibited the highest damage variables and saturated water content. 展开更多
关键词 SCHIST mechanical property microstructure Freeze-thaw cycles Dry-wet cycles
在线阅读 下载PDF
Performance and Microscopic Influence Mechanism of Solidified Cadmium Contaminated Soil by Rice Husk Ash Based Geopolymer
14
作者 CHEN Wei HAN Jianhong +5 位作者 YU Hongbao XU Hong WANG Ying FAN Wenxiao ZHAO Lina LIU Peijie 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期171-178,共8页
In order to realize the comprehensive utilization of industrial solid waste rice husk ash and heavy metal cadmium contaminated soil,rice husk ash-based geopolymer prepared by alkaline activator was used to modify cadm... In order to realize the comprehensive utilization of industrial solid waste rice husk ash and heavy metal cadmium contaminated soil,rice husk ash-based geopolymer prepared by alkaline activator was used to modify cadmium contaminated soil.The main physical and chemical properties of rice husk ash were clarified by SEM,XRF and X-ray diffraction.The unconfined compressive strength test and toxicity leaching test were carried out on the modified soil.Combined with FTIR and TG micro-level,the solidification mechanism of rice husk ash-based geopolymer solidified cadmium contaminated soil was discussed.The results show that the strength of geopolymer modified soil is significantly higher than that of plain soil,and the unconfined compressive strength at 7 d age is 4.2 times that of plain soil.The strength of modified soil with different dosage of geopolymer at 28 d age is about 36% to 40% higher than that of modified soil at 7 d age.Geopolymer has a significant effect on the leaching of heavy metals in contaminated soil.When the cadmium content is 100 mg/kg,it meets the standard limit.In the process of complex depolymerization-condensation reaction,on the one hand,geopolymers are cemented and agglomerated to form a complex spatial structure,which affects the macro and micro characteristics of soil.On the other hand,it has significant adsorption,precipitation and replacement effects on heavy metal ions in soil,showing good strength and low heavy metal leaching toxicity. 展开更多
关键词 rice husk ash alkali excitation heavy metals curing mechanism
原文传递
Composite descriptor for screening mechanical properties in high-entropy diborides
15
作者 Yong FAN Jin-feng NIE +3 位作者 Jin WANG Zhi-gang DING Wei LIU Yong-hao ZHAO 《Transactions of Nonferrous Metals Society of China》 2026年第1期218-230,共13页
The composition−property relationship of 18 quaternary high entropy diborides(HEBs)consisting of boron and IVB,VB and VIB transition metals(TM)was investigated using first-principles calculations.A valence electron co... The composition−property relationship of 18 quaternary high entropy diborides(HEBs)consisting of boron and IVB,VB and VIB transition metals(TM)was investigated using first-principles calculations.A valence electron concentration−relative electronegativity(VEC−REN)composite descriptor was developed to effectively predict the mechanical properties of HEBs.The results demonstrate that with a fixed VEC,the rise of the REN makes HEBs harder but more brittle when the electronegativity of doped TM atoms is lower than that of boron atoms.However,HEBs become softer and more ductile as REN increases if the doped TM atoms have higher electronegativity than boron atoms.The VEC−REN composite descriptor can accurately classify and predict the mechanical properties of HEBs with different components,which provides important theoretical guidance for the rapid design and development of novel high-entropy ceramic materials. 展开更多
关键词 first-principles high-entropy diborides valence electron concentration relative electronegativity mechanical properties
在线阅读 下载PDF
Mechanical properties and microstructure evolution of 1800 MPa grade low alloy ultrahigh strength steel during quenching and tempering process 被引量:1
16
作者 Tong Wang Yang-xin Wang +2 位作者 Chun-dong Hu Peng-min Cao Han Dong 《Journal of Iron and Steel Research International》 2025年第6期1691-1700,共10页
The characterization techniques were employed like transmission electron microscope,X-ray diffraction and microstructural characterization to investigate microstructural evolution and impact of precipitate-phase preci... The characterization techniques were employed like transmission electron microscope,X-ray diffraction and microstructural characterization to investigate microstructural evolution and impact of precipitate-phase precipitation on strength and toughness of a self-developed 32Si_(2)CrNi_(2)MoVNb steel during the quenching and tempering process.Research outputs indicated that the steel microstructure under the quenching state could be composed of martensite with a high dislocation density,a small amount of residual austenite,and many dispersed spherical MC carbides.In details,after tempering at 200℃,fine needle-shapedε-carbides would precipitate,which may improve yield strength and toughness of the steel.However,as compared to that after tempering at 200℃,the average length of needle-shapedε-carbides was found to increase to 144.1±4 from 134.1±3 nm after tempering at 340℃.As a result,the yield strength may increase to 1505±40 MPa,and the impact absorption energy(V-notch)may also decrease.Moreover,after tempering at 450℃,thoseε-carbides in the steel may transform into coarse rod-shaped cementite,and dislocation recoveries at such high tempering temperature may lead to decrease of strength and toughness of the steel.Finally,the following properties could be obtained:a yield strength of 1440±35 MPa,an ultimate tensile strength of 1864±50 MPa and an impact absorption energy of 45.9±4 J,by means of rational composition design and microstructural control. 展开更多
关键词 STRENGTH TOUGHNESS CARBIDE microstructure Evolution mechanism
原文传递
Dissimilar Friction Stir Lap Welding of Ti Alloy and Al-Li Alloy:Microstructure and Mechanical Property 被引量:1
17
作者 Zhang Wenxin Zhang Xiankun +3 位作者 Shi Lei Li Shengli Jiang Yuanning Wu Chuansong 《稀有金属材料与工程》 北大核心 2025年第2期311-318,共8页
Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with ... Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with the decrease in welding heat input,the weld surface is smoother.The Ti/Al joint interface is flat without obvious Ti and Al mixed structure,and the hook structure is not formed under optimal parameters.Due to the enhanced breaking effect of the stirring head,the hook structural defects and intermetallic compounds are more likely to form at the Ti/Al interface at high rotational speed of 1000 r/min,thereby deteriorating the mechanical properties of joints.Decreasing the heat input is beneficial to hardness enhancement of the aluminum alloy in the weld nugget zone.Under the optimal parameters of rotation speed of 800 r/min and welding speed of 120 mm/min,the maximum tensile shear strength of joint is 289 N/mm. 展开更多
关键词 Ti/Al dissimilar welding friction stir lap welding Ti alloy Al-Li alloy interface bonding mechanical property
原文传递
Investigation into the Effect and Microscopic Mechanism of Retarders on Two-component Backfilling Grout in Shield Engineering
18
作者 CAI Hongwei MIN Fanlu +5 位作者 YUAN Rui LI Zhen ZHANG Jianfeng WANG Dengfeng ZHANG Yazhou YAO Zhanhu 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期84-95,共12页
To address the issues of short setting time and high bleeding rate of A component,which easily cause pipe plugging and poor grouting performance when a two-component grout is injected synchronously behind the Segmenta... To address the issues of short setting time and high bleeding rate of A component,which easily cause pipe plugging and poor grouting performance when a two-component grout is injected synchronously behind the Segmental Lining,the inorganic retarder sodium pyrophosphate(TSPP)and three organic retarders were added to the A component:sodium citrate(SC),sodium tartrate(ST)and glycerol(GLY).The effect law and microscopic mechanism of viscosity,bleeding rate,setting time,gelling time,compressive strength,and stone rate were investigated.The results revealed that the addition of retarders could enhance the stability and setting time of the A component and increase the gelling time,stone rate,and compressive strength of two-component grout.Among them,the performance of the grout with an SC dosage of 0.1% was superior.The bleeding rate of this grout was reduced to 3.5%,the stone rate of the two-component grout was more than 99%,and the early compressive strength and late compressive strength of this grout were increased by approximately 35% and 7%,respectively.The initial and final setting time of the A component with a TSPP dosage of 0.3% was the longest,which was prolonged to 17 and 26 h,respectively.Microscopic analysis revealed that the four retarders hindered the hydration process of cement through complexation and adsorption,and inhibited the hydration of C_(3)S and the crystallisation of CH.Moreover,they reduced the defects caused by the rapid reaction of water glass and CH on the solid phase structure,enabled the microstructure of the stone body to be denser,and subsequently,enhanced the compressive strength. 展开更多
关键词 backfilling grout two-component grout RETARDER working performance gelling performance microscopic mechanism
原文传递
Influence of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy 被引量:2
19
作者 X.W.Shang Z.G.Lu +1 位作者 R.P.Guo L.Xu 《Acta Metallurgica Sinica(English Letters)》 2025年第4期627-641,共15页
Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prep... Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prepared under different HIP temperatures (880–1000℃), and the microstructural evolution and mechanical properties were systematically investigated. The results demonstrated that the HIPed alloys were predominantly composed of more than 80 vol.% α phase and a small amount of β phase, and their phase compositions were basically unaffected by the HIP temperatures. Under the typical single-temperature-maintained HIP (STM-HIP) regime, the microstructure of alloy significantly coarsened as the HIP temperature increased, and the alloy strength exhibited an obvious linear negative correlation with the HIP temperature. On the basis of Hall–Petch relation, the prediction model of grain size was established, and the mathematical equation between HIP temperature and grain size (d=M(T_(HIP-N)^(-2))) was deduced. Furthermore, a possible evolution mechanism of microstructure was proposed, which could be divided into the decomposition of initial α′ martensite for as-received powder, formation of the globular α grains in prior particle boundaries (PPBs) region, and precipitation of the platelet α grains in non-PPBs region. For these alloys prepared by the dual-temperature-maintained HIP (DTM-HIP) regime, although their tensile properties were comparable to that of alloy prepared by STM-HIP regime with same high-temperature holding stage, higher proportion of globular α grains occurred due to more recrystallization nucleation during the low-temperature holding stage, which probably provided a solution for improving the dynamic service performance of HIPed alloys. 展开更多
关键词 Powder metallurgy Hot isostatic pressing Titanium alloy mechanical properties microstructure evolution
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部