期刊文献+
共找到4,374篇文章
< 1 2 219 >
每页显示 20 50 100
Stable Adaptive Fuzzy Control with Hysteresis Observer for Three-Axis Micro/Nano Motion Stages
1
作者 Lih-Chang Lin Bor-Yih Chang Biing-Der Liaw 《Intelligent Control and Automation》 2012年第4期390-403,共14页
This paper considers the analytical dynamics with simplified Dahl hysteresis model for a three-axis piezoactuated micro/nano flexure stage. An adaptive controller with nonlinear dynamic hysteresis observer is proposed... This paper considers the analytical dynamics with simplified Dahl hysteresis model for a three-axis piezoactuated micro/nano flexure stage. An adaptive controller with nonlinear dynamic hysteresis observer is proposed using Lyapunov stability theory. In the controller, a fuzzy function approximator with parameters update law is included to compensate for the identification inaccuracy, model uncertainty, and flexure coupling effects. Simulation results are used to demonstrate the control performance. 展开更多
关键词 micro/nano Stage Adaptive FUZZY Control HYSTERESIS OBSERVER FUZZY Function Approximator
在线阅读 下载PDF
Micro-amplitude vibration-assisted scratching:a new method for one step and controllable fabrication of the microscale V-groove and nanoscale ripples
2
作者 Haoxiang Wu Hu Huang +1 位作者 Zhiyu Zhang Jiwang Yan 《International Journal of Extreme Manufacturing》 2025年第3期398-421,共24页
Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step... Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step and controllable fabrication.Accordingly,based on tip-based fabrication techniques,this study proposed a micro-amplitude vibration-assisted scratching method by introducing a periodic backward displacement into the conventional scratching process,which enabled the synchronous creation of the microscale V-groove and nanoscale ripples,i.e.a typical micro/nano hierarchical structure.The experiments and finite element modeling were employed to explore the formation process and mechanism of the micro/nano hierarchical structures.Being different from conventional cutting,this method was mainly based on the plow mechanism,and it could accurately replicate the shape of the indenter on the material surface.The microscale V-groove was formed due to the scratching action,and the nanoscale ripple was formed due to the extrusion action of the indenter on the microscale V-groove’s surface.Furthermore,the relationships between the processing parameters and the dimensions of the micro/nano hierarchical structures were established through experiments,and optimized processing parameters were determined to achieve regular micro/nano hierarchical structures.By this method,complex patterns constructed by various micro/nano hierarchical structures were fabricated on both flat and curved surfaces,achieving diverse surface structural colors. 展开更多
关键词 vibration-assisted scratching tip-based micro/nano fabrication micro/nano hierarchical structure structural color
在线阅读 下载PDF
Preface to the Special Issue on “Experimental Mechanics at the Micro/Nanoscale”
3
作者 Xide Li Wei Qiu +1 位作者 Dabiao Liu Mengxiong Liu 《Acta Mechanica Solida Sinica》 2025年第2期181-182,共2页
Over the past three decades,micro/nano science and technology have experienced rapid advancements as new materials and advanced devices have increasingly evolved towards high levels of integration and miniaturization.... Over the past three decades,micro/nano science and technology have experienced rapid advancements as new materials and advanced devices have increasingly evolved towards high levels of integration and miniaturization.In this context,mechanical properties have emerged as critical parameters for evaluating the operational performance and longevity of materials and devices at the micro/nanoscale. 展开更多
关键词 operational performance MINIATURIZATION DEVICES integration mechanical properties LONGEVITY micro nano science technology advanced devices
原文传递
Current research status on the distribution and transport of micro(nano)plastics in hyporheic zones and groundwater
4
作者 Dongming Zhang Qiqing Chen +1 位作者 Ting Xu Daqiang Yin 《Journal of Environmental Sciences》 2025年第5期387-409,共23页
Micro(nano)plastics,as an emerging environmental pollutant,are gradually discovered in hyporheic zones and groundwaterworldwide.Recent studies have focused on the origin and spatial/temporal distribution of micro(nano... Micro(nano)plastics,as an emerging environmental pollutant,are gradually discovered in hyporheic zones and groundwaterworldwide.Recent studies have focused on the origin and spatial/temporal distribution of micro(nano)plastics in regional groundwater,together with the influence of their properties and effects of environmental factors on their transport.However,the transport of micro(nano)plastics in the whole hyporheic zone-groundwater system and the behavior of co-existing substances still lack a complete theoretical interpretation.To provide systematic theoretical support for that,this review summarizes the current pollution status of micro(nano)plastics in the hyporheic zone-groundwater system,provides a comprehensive introduction of their sources and fate,and classifies the transport mechanisms into mechanical transport,physicochemical transport and biological processes assisted transport fromthe perspectives ofmechanical stress,physicochemical reactions,and bioturbation,respectively.Ultimately,this review proposes to advance the understanding of the multi-dimensional hydrosphere transport of micro(nano)plastics centered on groundwater,themicroorganisms-mediated synergistic transformation and co-transport involving the intertidal circulation.Overall,this review systematically dissects the presence and transport cycles of micro(nano)plastics within the hyporheic zone-groundwater system and proposes prospects for future studies based on the limitations of current studies. 展开更多
关键词 micro(nano)plastics GROUNDWATER Hyporheic zone Transport mechanisms ABUNDANCE
原文传递
Editorial for the Special Issue on Laser Micro/Nano-Manufacturing
5
作者 Minghui Hong Lianwei Chen Tun Cao 《Engineering》 2025年第6期1-2,共2页
The rapid evolution of laser micro/nano-manufacturing techniques has transformed precision manufacturing,enabling the creation of complex micro/nano-structures.These techniques are crucial for multiple industries,incl... The rapid evolution of laser micro/nano-manufacturing techniques has transformed precision manufacturing,enabling the creation of complex micro/nano-structures.These techniques are crucial for multiple industries,including electronics,photonics,and biomedical engineering,owing to their unmatched precision and versatility.The ability to manipulate materials at such scales has unlocked new possibilities for innovation,thereby facilitating the development of advanced components and devices with enhanced performance and functionalities. 展开更多
关键词 biomedical engineeringowing precision manufacturing advanced components devices PHOTONICS manipulate materials micro nano structures precision manufacturingenabling ELECTRONICS
在线阅读 下载PDF
Femtosecond laser micro/nano processing:from fundamental to applications
6
作者 Le Gao Qiming Zhang Min Gu 《International Journal of Extreme Manufacturing》 2025年第2期337-386,共50页
Able to precisely control and manipulate materials'states at micro/nano-scale level,femtosecond(fs)laser micro/nano processing technology has undergone tremendous development over the past three decades.Free-formi... Able to precisely control and manipulate materials'states at micro/nano-scale level,femtosecond(fs)laser micro/nano processing technology has undergone tremendous development over the past three decades.Free-forming three-dimensional(3D)microscale functional devices and inducing fascinating and unique physical or chemical phenomena have granted this technology powerful versatility that no other technology can match.As this technology advances rapidly in various fields of application,some key challenges have emerged and remain to be urgently addressed.This review firstly introduces the fundamental principles for understanding how fs laser pulses interact with materials and the associated unique phenomena in section 2.Then micro/nano-fabrication in transparent materials by fs laser processing is presented in section 3.Thereafter,several high efficiency/throughput fabrication methods as well as pulse-shaping techniques are listed in sections 4 and 5 reviews four-dimensional(4D)and nanoscale printing realized by fs laser processing technology.Special attention is paid to the heterogeneous integration(HI)of functional materials enabled by fs laser processing in section 6.Several intriguing examples of 3D functional micro-devices created by fs laser-based manufacturing methods such as microfluidics,lab-on-chip,micro-optics,micro-mechanics,micro-electronics,micro-bots and micro-biodevices are reviewed in section 7.Finally,a summary of the review and a perspective are proposed to explore the challenges and future opportunities for further betterment of fs laser micro/nano processing technology. 展开更多
关键词 femtosecond laser laser micro/nano processing laser fabrication direct laser writing 3D laser lithography
在线阅读 下载PDF
Recent development of LiNi_xCo_yMn_zO_2:Impact of micro/nano structures for imparting improvements in lithium batteries 被引量:8
7
作者 潘成迟 Craig E.BANKS +3 位作者 宋维鑫 王驰伟 陈启元 纪效波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期108-119,共12页
The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materia... The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materials,which have been utilized in lithium ion batteries with enhanced energy and power density,high energy efficiency,superior rate capability and excellent cycling stability resulting from the doping,surface coating,nanocomposites and nano-architecturing. 展开更多
关键词 lithium-ion battery micro/nano structures LiNixCoyMnzO2 DOPING surface coating composite materials
在线阅读 下载PDF
Stability Analysis of Contact Scanning Probe for Micro/Nano Coordinate Measuring Machine 被引量:2
8
作者 李瑞君 范光照 +3 位作者 钱剑钊 黄强先 龚伟 苗晋伟 《纳米技术与精密工程》 EI CAS CSCD 2012年第2期125-131,共7页
关键词 微纳米三坐标测量机 扫描探头 稳定性分析 传感哭喊中
在线阅读 下载PDF
Micro Motion质量流量计的参数组态设置技巧
9
作者 王晓梅 刘兆明 《中国计量》 2004年第4期49-51,共3页
关键词 micro motion 质量流量计 参数组态设置 流量变送器 流量校准系数
在线阅读 下载PDF
Synthesis of porous nano/micro structured LiFePO_4/C cathode materials for lithium-ion batteries by spray-drying method 被引量:1
10
作者 管晓梅 李国军 +1 位作者 黎春阳 任瑞铭 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期141-147,共7页
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result... In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres. 展开更多
关键词 LiFePO4/C cathode nano/micro structure porous material spray drying electrochemical properties
在线阅读 下载PDF
Investigation on the Radial Micro-motion about Piston of Axial Piston Pump 被引量:30
11
作者 XU Bing ZHANG Junhui +1 位作者 YANG Huayong ZHANG Bin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第2期325-333,共9页
The limit working parameters and service life of axial piston pump are determined by the carrying ability and lubrication characteristic of its key friction pairs. Therefore, the design and optimization of the key fri... The limit working parameters and service life of axial piston pump are determined by the carrying ability and lubrication characteristic of its key friction pairs. Therefore, the design and optimization of the key friction pairs are always a key and difficult problem in the research on axial piston pump. In the traditional research on piston/cylinder pair, the assembly relationship of piston and cylinder bore is simplified into ideal cylindrical pair, which can not be used to analyze the influences of radial micro-motion of piston on the distribution characteristics of oil-film thickness and pressure in details. In this paper, based on the lubrication theory of the oil film, a numerical simulation model is built, taking the influences of roughness, elastic deformation of piston and pressure-viscosity effect into consideration. With the simulation model, the dynamic characteristics of the radial micro-motion and pressure distribution are analyzed, and the relationships between radial micro-motion and carrying ability, lubrication condition, and abrasion are discussed. Furthermore, a model pump for pressure distribution measurement of oil film between piston and cylinder bore is designed. The comparison of simulation and experimental results of pressure distribution shows that the simulation model has high accuracy. The experiment and simulation results demonstrate that the pressure distribution has peak values that are much higher than the boundary pressure in the piston chamber due to the radial micro-motion, and the abrasion of piston takes place mainly on the hand close to piston ball. In addition, improvement of manufacturing roundness and straightness of piston and cylinder bore is helpful to improve the carrying ability of piston/cylinder pair. The proposed research provides references for designing piston/cylinder pair, and helps to prolong the service life of axial piston pump. 展开更多
关键词 axial piston pump piston/cylinder pair micro motion carrying ability
在线阅读 下载PDF
Synthesis of hierarchical dendritic micro–nano structure ZnFe_2O_4 and photocatalytic activities for water splitting 被引量:5
12
作者 Zhongping Yao Yajun Zhang +2 位作者 Yaqiong He Qixing Xia Zhaohua Jiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第8期1112-1116,共5页
Hierarchical dendritic micro–nano structure Zn Fe_2O_4 have been prepared by electrochemical reduction and thermal oxidation method in this work. X-ray diffractometry, Raman spectra and field-emission scanning electr... Hierarchical dendritic micro–nano structure Zn Fe_2O_4 have been prepared by electrochemical reduction and thermal oxidation method in this work. X-ray diffractometry, Raman spectra and field-emission scanning electron microscopy were used to characterize the crystal structure, size and morphology. The results show that the sample(S-2) is composed of pure ZnFe_2O_4 when the molar ratio of Zn^(2+)/Fe^(2+)in the electrolyte is 0.35. Decreasing the molar ratio of Zn^(2+)/Fe^(2+), the sample(S-1) is composed of ZnFe_2O_4 and α-Fe_2O_3, whereas increasing the molar ratio of Zn^(2+)/Fe^(2+), the sample(S-3) is composed of ZnFe_2O_4 and Zn O. The lattice parameters of ZnFe_2O_4 are influenced by the molar ratio of Zn^(2+)/Fe: Zn at excess decreases the cell volume whereas Fe at excess increases the cell volume of Zn Fe_2O_4. All the samples have the dendritic structure, of which S-2 has micron-sized lush branches with nano-sized leaves. UV–Vis diffuse reflectance spectra were acquired by a spectrophotometer. The absorption edges gradually blue shift with the increase of the molar ratio of Zn^(2+)/Fe^(2+). Photocatalytic activities for water splitting were investigated under Xe light irradiation in an aqueous olution containing 0.1 mol·L^(-1)Na_2S/0.02 mol·L^(-1)Na_2SO_3 in a glass reactor. The relatively highest photocatalytic activity with 1.41 μmol·h-1· 0.02 g^(-1)was achieved by pure ZnFe_2O_4sample(S-2). The photocatalytic activity of the mixture phase of Zn Fe_2O_4 and α-Fe_2O_3(S-1) is better than ZnF e_2O_4 and ZnO(S-3). 展开更多
关键词 ZNFE2O4 ELECTROCHEMICAL reduction and thermal OXIDATION DENDRITIC micronano structure Hydrogen production
在线阅读 下载PDF
Micro/nano Indentation and Single Grit Diamond Grinding Mechanism on Ultra Pure Fused Silica 被引量:11
13
作者 ZHAO Qingliang GUO Bing +1 位作者 STEPHENSIN David CORBETT John 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期963-970,共8页
The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced ... The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced damage in the grinding in order to reduce or eliminate the subsurface damage.The brittle/ductile transition behavior of optical glass materials and the wear of diamond wheel are the most important factors for ductile grinding of optical glass.In this paper,the critical brittle/ductile depth,the influence factors on brittle/ductile transition behavior,the wear of diamond grits in diamond grinding of ultra pure fused silica(UPFS) are investigated by means of micro/nano indentation technique,as well as single grit diamond grinding on an ultra-stiff machine tool,Tetraform "C".The single grit grinding processes are in-process monitored using acoustic emission(AE) and force dynamometer simultaneously.The wear of diamond grits,morphology and subsurface integrity of the machined groves are examined with atomic force microscope(AFM) and scanning electron microscope(SEM).The critical brittle/ductile depth of more than 0.5 μm is achieved.When compared to the using roof-like grits,by using pyramidal diamonds leads to higher critical depths of scratch with identical grinding parameters.However,the influence of grit shapes on the critical depth is not significant as supposed.The grinding force increased linearly with depth of cut in the ductile removal regime,but in brittle removal regime,there are large fluctuations instead of forces increase.The SEM photographs of the cross-section profile show that the median cracks dominate the crack patterns beneath the single grooves.Furthermore,The SEM photographs show multi worn patterns of diamond grits,indicating an inhomogeneous wear mechanism of diamond grits in grinding of fused silica with diamond grinding wheels.The proposed research provides the basal technical theory for improving the ultra-precision grinding of UPFS. 展开更多
关键词 ultra pure fused silica (UPFS) micro/nano indentation single grit diamond grinding ductile material removal subsurface integrity diamond grits wear
在线阅读 下载PDF
Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications:Take carbon/carbon composites and their coatings as the examples 被引量:17
14
作者 Qiangang Fu Pei Zhang +6 位作者 Lei Zhuang Lei Zhou Jiaping Zhang Jie Wang Xianghui Hou Ralf Riedel Hejun Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第1期31-68,共38页
Carbon fiber reinforced carbon composites(C/Cs),are the most promising high-temperature materials and could be widely applied in aerospace and nucleation fields,owing to their superior performances.However,C/Cs are ve... Carbon fiber reinforced carbon composites(C/Cs),are the most promising high-temperature materials and could be widely applied in aerospace and nucleation fields,owing to their superior performances.However,C/Cs are very susceptible to destructive oxidation and thus fail at elevated temperatures.Though matrix modification and coating technologies with Si-based and ultra-high temperature ceramics(UHTCs)are valid to enhance the oxidation/ablation resistance of C/Cs,it’s not sufficient to satisfy the increasing practical applications,due to the inherent brittleness of ceramics,mismatch issues between coatings and C/C substrates,and the fact that carbonaceous matrices are easily prone to high-temperature oxidation.To effectively solve the aforementioned problems,micro/nano multiscale reinforcing strategies have been developed for C/Cs and/or the coatings over the past two decades,to fabricate C/Cs with high strength and excellent high-temperature stability.This review is to systematically summarize the most recent major and important advancements in some micro/nano multiscale strategies,including nanoparticles,nanowires,carbon nanotubes/fibers,whiskers,graphene,ceramic fibers and hybrid micro/nano structures,for C/Cs and/or the coatings,to achieve high-temperature oxidation/ablation-resistant C/Cs.Finally,this review is concluded with an outlook of major unsolved problems,challenges to be met and future research advice for C/Cs with excellent comprehensive mechanical-thermal performance.It’s hoped that a better understanding of this review will be of high scientific and industrial interest,since it provides unusual and feasible new ideas to develop potential and practical C/Cs with improved high-temperature mechanical and oxidation/ablation-resistant properties. 展开更多
关键词 Carbon/carbon composites micro/nano multiscale reinforcing strategies Oxidation Ablation EROSION Hybrid structures
原文传递
Fast filtering algorithm based on vibration systems and neural information exchange and its application to micro motion robot 被引量:4
15
作者 高娃 查富生 +1 位作者 宋宝玉 李满天 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第1期159-169,共11页
This paper develops a fast filtering algorithm based on vibration systems theory and neural information exchange approach. The characters, including the derivation process and parameter analysis, are discussed and the... This paper develops a fast filtering algorithm based on vibration systems theory and neural information exchange approach. The characters, including the derivation process and parameter analysis, are discussed and the feasibility and the effectiveness are testified by the filtering performance compared with various filtering methods, such as the fast wavelet transform algorithm, the particle filtering method and our previously developed single degree of freedom vibration system filtering algorithm, according to simulation and practical approaches. Meanwhile, the comparisons indicate that a significant advantage of the proposed fast filtering algorithm is its extremely fast filtering speed with good filtering perfi^rmance. Further, the developed fast filtering algorithm is applied to the navigation and positioning system of the micro motion robot, which is a high real-time requirement for the signals preprocessing. Then, the preprocessing data is used to estimate the heading angle error and the attitude angle error of the micro motion robot. The estimation experiments illustrate the high practicality of the proposed fast filtering algorithm. 展开更多
关键词 fast filtering vibration system neural information exchange micro motion robot
原文传递
Preparation of micro/nano-structured ceramic coatings on Ti6Al4V alloy by plasma electrolytic oxidation process 被引量:10
16
作者 Da-jun ZHAI Ke-qin FENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第12期2546-2555,共10页
In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)proce... In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF. 展开更多
关键词 plasma electrolytic oxidation Ti6Al4V alloy micro/nano structure NAF surface modification
在线阅读 下载PDF
“Smart”micro/nano container-based self-healing coatings on magnesium alloys:A review 被引量:6
17
作者 Yonghua Chen Liang Wu +7 位作者 Wenhui Yao Jiahao Wu Maria Serdechnova Carsten Blawert Mikhail L.Zheludkevich Yuan Yuan Zhihui Xie Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2230-2259,共30页
Coating technologies are a commonly used way to protect metals against corrosion.However,with more and more severe service environments of materials,many protective coating systems often are not environmentally friend... Coating technologies are a commonly used way to protect metals against corrosion.However,with more and more severe service environments of materials,many protective coating systems often are not environmentally friendly or toxic as in the case of chromates.Based on the world’s abundant ideal magnesium(Mg)and its alloy,the smart self-healing anticorrosive coating can autonomously restore the damaged part of the coating according to the environmental changes,strengthen the corrosion protection ability,and prolong its service life.This paper reviews the research progress of smart self-healing coatings on Mg alloys.These coatings mostly contain suitable corrosion inhibitors encapsulated into micro/nano containers.Moreover,the different self-healing mechanisms and functionalities of micro/nano containers are discussed.The micro/nano containers range from inorganic nanocontainers such as mesoporous nanoparticles(silica(SiO_(2)),titanium dioxide(TiO_(2)),etc.),over inorganic clays(halloysite,hydrotalcite-like,zeolite),to organic nanocontainers such as polymer microcapsules,nanofibers,chitosan(CS)and cyclodextrin(CD),as well as,carbon materials such as graphene and carbon nanotubes and hybrids such as metal organic frameworks.The functioning of micro/nano containers can be divided in two principal groups:autonomous(based on defect filling and corrosion inhibition)and non-autonomous(based on dynamic bonds and shape memory polymers).Moreover,multi functionalities and composite applications of various micro/nano containers are summarized.At present,significant progress has been made in the preparation methods and technologies of micro/nano containers.Achieving long-term self-healing properties of coatings sensing of coating failure and early warning after self-healing function failure can be expected as the main development direction of self-healing corrosion protection coatings in the future. 展开更多
关键词 Magnesium alloy Self-healing coating micro/nano containers Mechanism Corrosion protection
在线阅读 下载PDF
Micro–Nano Water Film Enabled High‑Performance Interfacial Solar Evaporation 被引量:5
18
作者 Zhen Yu Yuqing Su +3 位作者 Ruonan Gu Wei Wu Yangxi Li Shaoan Cheng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期503-517,共15页
Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable... Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable heat loss.Herein,we propose a novel interfacial evaporation structure based on the micro–nano water film,which demonstrates significantly improved evaporation performance,as experimentally verified by polypyrrole-and polydopamine-coated polydimethylsiloxane sponge.The 2D evaporator based on the as-prepared sponge realizes an enhanced evaporation rate of 2.18 kg m^(−2)h^(−1)under 1 sun by fine-tuning the interfacial micro–nano water film.Then,a homemade device with an enhanced condensation function is engineered for outdoor clean water production.Throughout a continuous test for 40 days,this device demonstrates a high water production rate(WPR)of 15.9–19.4 kg kW^(−1)h^(−1)m^(−2).Based on the outdoor outcomes,we further establish a multi-objective model to assess the global WPR.It is predicted that a 1 m^(2)device can produce at most 7.8 kg of clean water per day,which could meet the daily drinking water needs of 3 people.Finally,this technology could greatly alleviate the current water and energy crisis through further large-scale applications. 展开更多
关键词 micronano water film Interfacial solar evaporation Solar desalination Artificial neural networks PPy sponge
在线阅读 下载PDF
Dropwise condensation heat transfer enhancement on surfaces micro/nano structured by a two-step electrodeposition process 被引量:4
19
作者 Hamid Reza TALESH BAHRAMI Alireza AZIZI Hamid SAFFARI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1065-1076,共12页
Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two diffe... Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time. 展开更多
关键词 dropwise condensation heat transfer ELECTRODEPOSITION micro/nano structure POROSITY
在线阅读 下载PDF
STRENGTH ANALYSIS OF CLAMPING IN MICRO/NANO SCALE EXPERIMENTS 被引量:2
20
作者 Liang Liu Dujuan Zeng +2 位作者 Xianlong Wei Qing Chen Xide Li 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第6期584-592,共9页
Two kinds of clamping in micro/nano scale experiments are investigated in this paper, one based on electron-beam-induced deposition, and the other on the van der Waals interaction. The clamping strength and mechanism ... Two kinds of clamping in micro/nano scale experiments are investigated in this paper, one based on electron-beam-induced deposition, and the other on the van der Waals interaction. The clamping strength and mechanism are analyzed both theoretically and experimentally. The influence of relative humidity on the micro/nano clamping and the method of electrostatic clamping are discussed. The clamping strength and performance of different clamping methods are compared considering the size and material of the clamped objects, and the application environments. 展开更多
关键词 micro/nano experimental mechanics CLAMPING interracial strength electron-beaminduced deposition (EBID) cohesive zone model
在线阅读 下载PDF
上一页 1 2 219 下一页 到第
使用帮助 返回顶部