期刊文献+
共找到134,296篇文章
< 1 2 250 >
每页显示 20 50 100
Femtosecond laser micro/nano processing:from fundamental to applications
1
作者 Le Gao Qiming Zhang Min Gu 《International Journal of Extreme Manufacturing》 2025年第2期337-386,共50页
Able to precisely control and manipulate materials'states at micro/nano-scale level,femtosecond(fs)laser micro/nano processing technology has undergone tremendous development over the past three decades.Free-formi... Able to precisely control and manipulate materials'states at micro/nano-scale level,femtosecond(fs)laser micro/nano processing technology has undergone tremendous development over the past three decades.Free-forming three-dimensional(3D)microscale functional devices and inducing fascinating and unique physical or chemical phenomena have granted this technology powerful versatility that no other technology can match.As this technology advances rapidly in various fields of application,some key challenges have emerged and remain to be urgently addressed.This review firstly introduces the fundamental principles for understanding how fs laser pulses interact with materials and the associated unique phenomena in section 2.Then micro/nano-fabrication in transparent materials by fs laser processing is presented in section 3.Thereafter,several high efficiency/throughput fabrication methods as well as pulse-shaping techniques are listed in sections 4 and 5 reviews four-dimensional(4D)and nanoscale printing realized by fs laser processing technology.Special attention is paid to the heterogeneous integration(HI)of functional materials enabled by fs laser processing in section 6.Several intriguing examples of 3D functional micro-devices created by fs laser-based manufacturing methods such as microfluidics,lab-on-chip,micro-optics,micro-mechanics,micro-electronics,micro-bots and micro-biodevices are reviewed in section 7.Finally,a summary of the review and a perspective are proposed to explore the challenges and future opportunities for further betterment of fs laser micro/nano processing technology. 展开更多
关键词 femtosecond laser laser micro/nano processing laser fabrication direct laser writing 3D laser lithography
在线阅读 下载PDF
Urease-powered micro/nanomotors:Current progress and challenges
2
作者 Wen-Wen Li Zi-Li Yu Jun Jia 《Journal of Pharmaceutical Analysis》 2025年第3期547-563,共17页
Enzyme-powered micro/nanomotors(MNMs)(EMNMs)use natural enzymes to facilitate the decomposition of fuels,including hydrogen peroxide(H2O2),glucose,triglycerides,and urea to provide power.EMNMs can achieve self-propuls... Enzyme-powered micro/nanomotors(MNMs)(EMNMs)use natural enzymes to facilitate the decomposition of fuels,including hydrogen peroxide(H2O2),glucose,triglycerides,and urea to provide power.EMNMs can achieve self-propulsion through the in situ utilization of biofuels without additional fuels,exhibiting excellent biocompatibility and significant potential for application in the biomedical field.Compared with H_(2)O_(2),which may cause oxidative damage to the body,urea exhibits superior biosafety characteristics.Presently,urease-powered MNMs(UMNMs)have made notable progress in their applications in the biomedical field and have garnered considerable attention from researchers.In this review,we present the latest advancements in the biomedical field of UMNMs,primarily focusing on:1)diverse materials used for constructing the fundamental framework of motors;2)control of motor movement through the regulation of enzymatic reaction rates;and 3)research directions for the clinical application of motors,including in vivo imaging,biomarker detection,cancer treatment,optical therapy,overcoming biological barriers,antibacterial interventions,antithrombotic strategies,and gastric disease management.Despite showing immense potential in biomedical applications,there are still several challenges impeding its practical implementation,such as maintaining activity in the in vivo environment while accurately targeting specific sites to achieve the desired clinical therapeutic effects. 展开更多
关键词 micro/nanomotor Imaging Drug delivery UREASE BIOMEDICINE
暂未订购
Fully integrated wearable control system for micro/nanorobot navigation
3
作者 Zhanxiang Zhang Lin Wang +8 位作者 Fengqi Jiang Shimin Yu Fengtong Ji Tianhao Sun He Zhang Yanhe Zhu Hao Chang Tianlong Li Jie Zhao 《International Journal of Extreme Manufacturing》 2025年第3期505-517,共13页
Micro/nanorobots have exhibited excellent application potential in the biomedical field,such as drug delivery,minimally invasive surgery,and bio-sensing.Furthermore,in order to achieve practical application,it is esse... Micro/nanorobots have exhibited excellent application potential in the biomedical field,such as drug delivery,minimally invasive surgery,and bio-sensing.Furthermore,in order to achieve practical application,it is essential for swimming micro/nanorobots to navigate towards specific targets or adjust their speed and morphology in complete environments.The navigation of swimming micro/nanorobots with temporal and spatial precision is critical for fulfilling the demand of applications.Here,we introduced a fully integrated wearable control system for micro/nanorobots navigation and manipulation,which is composed of a multifunctional sensor array,an artificial intelligence(AI)planner,and a magnetic field generator.The sensor array could perceive real-time changes in gestures,wrist rotation,and acoustic signals.AI planner based on machine learning offers adaptive path planning in response to dynamically changing signals to generate magnetic fields for the on-demand manipulation of micro/nanorobots.Such a novel,feasible control strategy was validated in the biological experiment in which cancer cells were targeted and killed by photothermal therapy using micro/nanorobots and integrated control platform.This wearable control system could play a crucial role in future intelligent medical applications and could be easily reconfigured toward other medical robots’control. 展开更多
关键词 micro/nanorobot wearable control system machine learning targeted delivery
在线阅读 下载PDF
Multiphoton Polymerization-Based Micro/Nanomanufacturing Toward Precision Medicine
4
作者 Jiarui Hu An Ren +8 位作者 Weikang Lv Abdellah Aazmi Changwei Qin Xinyi Liang Xiaobin Xu Mengfei Yu Qi Li Huayong Yang Liang Ma 《Engineering》 2025年第6期35-60,共26页
The designing and manufacturing of micro/nanoscale tools for delivery,diagnostic,and therapeutic are essential for their multiscale integration in the precision medicine field.Conventional three-dimensional(3D)printin... The designing and manufacturing of micro/nanoscale tools for delivery,diagnostic,and therapeutic are essential for their multiscale integration in the precision medicine field.Conventional three-dimensional(3D)printing approaches are not suitable for such kind of tools due to the accuracy limitation.Multiphoton polymerization(MPP)-based micro/nanomanufacturing is a noncontact,high-precision molding technology that has been widely used in the micro/nano field is a promising tool for micro/nanoscale related precision medicine.In this article the fundamentals of MPP-based technology and the required materials in precision medicine are overviewed.The biomedical applications in various scenarios are then summarized and categorized as delivery systems,microtissue modeling,surgery,and diagnosis.Finally,the existing challenges and future perspectives on MPP-based micro/nanomanufacturing for precision medicine are discussed,focusing on material design,process optimization,and practical applications to overcome its current limitations. 展开更多
关键词 Multiphoton polymerization micro/nanomanufacturing Biomanufacturing Biomedical application Drug delivery
暂未订购
Advances in micro/nanoparticle-enhanced Sn-based composite solders
5
作者 Kaiming Liang Wenqiang Wan +4 位作者 Yifei Li Xin Zhang Xiangdong Ding Peng He Shuye Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2043-2064,共22页
Sn-based solder is a widely used interconnection material in the field of electronic packaging;however,the performance requirements for these solders are becoming increasingly demanding owing to the rapid development ... Sn-based solder is a widely used interconnection material in the field of electronic packaging;however,the performance requirements for these solders are becoming increasingly demanding owing to the rapid development in this area.In recent years,the addition of micro/nanoreinforcement phases to Sn-based solders has provided a solution to improve the intrinsic properties of the solders.This paper reviews the progress in Sn-based micro/nanoreinforced composite solders over the past decade.The types of reinforcement particles,preparation methods of the composite solders,and strengthening effects on the microstructure,wettability,melting point,mechanical properties,and corrosion resistance under different particle-addition levels are discussed and summarized.The mechanisms of performance enhancement are summarized based on material-strengthening effects such as grain refinement and second-phase dispersion strengthening.In addition,we discuss the current shortcomings of such composite solders and possible future improvements,thereby establishing a theoretical foundation for the future development of Sn-based solders. 展开更多
关键词 Sn-based composite solder micro/nanoparticles properties electronic packaging microstructure corrosion resistance
在线阅读 下载PDF
Promising advances in physically propelled micro/nanoscale robots
6
作者 Zishang Liang Baolei Zhang +7 位作者 Shenghui Yi Kaiyuan Sun Guanhui Pei Yan Shang Xiaoyun Liu Shuxia Ren Pengfei Liu Jinjin Zhao 《Nano Materials Science》 2025年第5期582-598,共17页
Micro/nanoscale robots(MNRs)have attracted significant interest in various fields because of their flexible design,physically controlled maneuvering,and barrier targeting.The execution of specific functions using MNRs... Micro/nanoscale robots(MNRs)have attracted significant interest in various fields because of their flexible design,physically controlled maneuvering,and barrier targeting.The execution of specific functions using MNRs relies on precise propulsion methods.Among the diverse propulsion techniques,physical propulsion is widely used owing to its noninvasive,safe,and convenient attributes.This review provides an analysis of the propulsion mechanisms in the magnetic,electric,thermal,and ultrasound fields and presents a comprehensive summary of the structures,movements,and applications of various MNRs while also examining their advantages and shortcomings associated with various physical propulsion methods.Finally,challenges and perspectives associated with the future development of MNRs are presented.The content of this review can serve as a multidisciplinary science reference for physicists,bioengineers,clinicians,roboticists,and chemists involved in pharmaceutical design and clinical therapy research. 展开更多
关键词 micro/nanoscale robots Magnetic field propulsion Electric field propulsion Thermal field propulsion Ultrasound propulsion
在线阅读 下载PDF
Understanding the Machining Process of Hierarchical Micro/Nanograting Structures Used for Optical Variable Device
7
作者 Yanquan Geng Wenhan Zhu +5 位作者 Xiaosong Zhang Aoxiang Zhang Yongda Yan Hailong Cui Bo Xue Jiqiang Wang 《Chinese Journal of Mechanical Engineering》 2025年第1期161-185,共25页
Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hie... Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hierarchical micro/nanograting structures is important for these applications.In this study,a strategy for machining hierarchical micro/nanograting structures is developed by controlling the tool movement trajectory.A coupling Euler-Lagrange finite element model is established to simulate the machining process.The effect of the machining methods on the nanograting formation is demonstrated,and a suitable machining method for reducing the cutting force is obtained.The height of the nanograting decreases with an increase in the tool edge radius.Furthermore,optical variable devices(OVDs)are machined using an array overlap machining approach.Coding schemes for the parallel column unit crossover and column unit in the groove crossover are designed to achieve high-quality machining of OVDs.The coloring of the logo of the Harbin Institute of Technology and the logo of the centennial anniversary of the Harbin Institute of Technology on the surface of metal samples,such as aluminum alloys,is realized.The findings of this study provide a method for the fabrication of hierarchical micro/nanograting structures that can be used to prepare OVDs. 展开更多
关键词 Hierarchical micro/nanograting structures Optical variable devices Finite element simulation Tool trajectory controlling
在线阅读 下载PDF
Recent development of LiNi_xCo_yMn_zO_2:Impact of micro/nano structures for imparting improvements in lithium batteries 被引量:8
8
作者 潘成迟 Craig E.BANKS +3 位作者 宋维鑫 王驰伟 陈启元 纪效波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期108-119,共12页
The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materia... The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materials,which have been utilized in lithium ion batteries with enhanced energy and power density,high energy efficiency,superior rate capability and excellent cycling stability resulting from the doping,surface coating,nanocomposites and nano-architecturing. 展开更多
关键词 lithium-ion battery micro/nano structures LiNixCoyMnzO2 DOPING surface coating composite materials
在线阅读 下载PDF
Preface to the Special Issue on “Experimental Mechanics at the Micro/Nanoscale”
9
作者 Xide Li Wei Qiu +1 位作者 Dabiao Liu Mengxiong Liu 《Acta Mechanica Solida Sinica》 2025年第2期181-182,共2页
Over the past three decades,micro/nano science and technology have experienced rapid advancements as new materials and advanced devices have increasingly evolved towards high levels of integration and miniaturization.... Over the past three decades,micro/nano science and technology have experienced rapid advancements as new materials and advanced devices have increasingly evolved towards high levels of integration and miniaturization.In this context,mechanical properties have emerged as critical parameters for evaluating the operational performance and longevity of materials and devices at the micro/nanoscale. 展开更多
关键词 operational performance MINIATURIZATION DEVICES integration mechanical properties LONGEVITY micro nano science technology advanced devices
原文传递
Editorial for the Special Issue on Laser Micro/Nano-Manufacturing
10
作者 Minghui Hong Lianwei Chen Tun Cao 《Engineering》 2025年第6期1-2,共2页
The rapid evolution of laser micro/nano-manufacturing techniques has transformed precision manufacturing,enabling the creation of complex micro/nano-structures.These techniques are crucial for multiple industries,incl... The rapid evolution of laser micro/nano-manufacturing techniques has transformed precision manufacturing,enabling the creation of complex micro/nano-structures.These techniques are crucial for multiple industries,including electronics,photonics,and biomedical engineering,owing to their unmatched precision and versatility.The ability to manipulate materials at such scales has unlocked new possibilities for innovation,thereby facilitating the development of advanced components and devices with enhanced performance and functionalities. 展开更多
关键词 biomedical engineeringowing precision manufacturing advanced components devices PHOTONICS manipulate materials micro nano structures precision manufacturingenabling ELECTRONICS
在线阅读 下载PDF
Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications:Take carbon/carbon composites and their coatings as the examples 被引量:17
11
作者 Qiangang Fu Pei Zhang +6 位作者 Lei Zhuang Lei Zhou Jiaping Zhang Jie Wang Xianghui Hou Ralf Riedel Hejun Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第1期31-68,共38页
Carbon fiber reinforced carbon composites(C/Cs),are the most promising high-temperature materials and could be widely applied in aerospace and nucleation fields,owing to their superior performances.However,C/Cs are ve... Carbon fiber reinforced carbon composites(C/Cs),are the most promising high-temperature materials and could be widely applied in aerospace and nucleation fields,owing to their superior performances.However,C/Cs are very susceptible to destructive oxidation and thus fail at elevated temperatures.Though matrix modification and coating technologies with Si-based and ultra-high temperature ceramics(UHTCs)are valid to enhance the oxidation/ablation resistance of C/Cs,it’s not sufficient to satisfy the increasing practical applications,due to the inherent brittleness of ceramics,mismatch issues between coatings and C/C substrates,and the fact that carbonaceous matrices are easily prone to high-temperature oxidation.To effectively solve the aforementioned problems,micro/nano multiscale reinforcing strategies have been developed for C/Cs and/or the coatings over the past two decades,to fabricate C/Cs with high strength and excellent high-temperature stability.This review is to systematically summarize the most recent major and important advancements in some micro/nano multiscale strategies,including nanoparticles,nanowires,carbon nanotubes/fibers,whiskers,graphene,ceramic fibers and hybrid micro/nano structures,for C/Cs and/or the coatings,to achieve high-temperature oxidation/ablation-resistant C/Cs.Finally,this review is concluded with an outlook of major unsolved problems,challenges to be met and future research advice for C/Cs with excellent comprehensive mechanical-thermal performance.It’s hoped that a better understanding of this review will be of high scientific and industrial interest,since it provides unusual and feasible new ideas to develop potential and practical C/Cs with improved high-temperature mechanical and oxidation/ablation-resistant properties. 展开更多
关键词 Carbon/carbon composites micro/nano multiscale reinforcing strategies Oxidation Ablation EROSION Hybrid structures
原文传递
Micro/nano Indentation and Single Grit Diamond Grinding Mechanism on Ultra Pure Fused Silica 被引量:11
12
作者 ZHAO Qingliang GUO Bing +1 位作者 STEPHENSIN David CORBETT John 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期963-970,共8页
The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced ... The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced damage in the grinding in order to reduce or eliminate the subsurface damage.The brittle/ductile transition behavior of optical glass materials and the wear of diamond wheel are the most important factors for ductile grinding of optical glass.In this paper,the critical brittle/ductile depth,the influence factors on brittle/ductile transition behavior,the wear of diamond grits in diamond grinding of ultra pure fused silica(UPFS) are investigated by means of micro/nano indentation technique,as well as single grit diamond grinding on an ultra-stiff machine tool,Tetraform "C".The single grit grinding processes are in-process monitored using acoustic emission(AE) and force dynamometer simultaneously.The wear of diamond grits,morphology and subsurface integrity of the machined groves are examined with atomic force microscope(AFM) and scanning electron microscope(SEM).The critical brittle/ductile depth of more than 0.5 μm is achieved.When compared to the using roof-like grits,by using pyramidal diamonds leads to higher critical depths of scratch with identical grinding parameters.However,the influence of grit shapes on the critical depth is not significant as supposed.The grinding force increased linearly with depth of cut in the ductile removal regime,but in brittle removal regime,there are large fluctuations instead of forces increase.The SEM photographs of the cross-section profile show that the median cracks dominate the crack patterns beneath the single grooves.Furthermore,The SEM photographs show multi worn patterns of diamond grits,indicating an inhomogeneous wear mechanism of diamond grits in grinding of fused silica with diamond grinding wheels.The proposed research provides the basal technical theory for improving the ultra-precision grinding of UPFS. 展开更多
关键词 ultra pure fused silica (UPFS) micro/nano indentation single grit diamond grinding ductile material removal subsurface integrity diamond grits wear
在线阅读 下载PDF
Preparation of micro/nano-structured ceramic coatings on Ti6Al4V alloy by plasma electrolytic oxidation process 被引量:10
13
作者 Da-jun ZHAI Ke-qin FENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第12期2546-2555,共10页
In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)proce... In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF. 展开更多
关键词 plasma electrolytic oxidation Ti6Al4V alloy micro/nano structure NAF surface modification
在线阅读 下载PDF
Stability Analysis of Contact Scanning Probe for Micro/Nano Coordinate Measuring Machine 被引量:2
14
作者 李瑞君 范光照 +3 位作者 钱剑钊 黄强先 龚伟 苗晋伟 《纳米技术与精密工程》 EI CAS CSCD 2012年第2期125-131,共7页
关键词 微纳米三坐标测量机 扫描探头 稳定性分析 传感哭喊中
在线阅读 下载PDF
Construction and Properties of Structure-and Size-controlled Micro/Nano-energetic Materials 被引量:20
15
作者 HUANG Bing CAO Minhua +2 位作者 NIE Fude HUANG Hui HU Changwen 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第2期75-103,共29页
The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development... The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given. 展开更多
关键词 applied chemistry STRUCTURE SIZE micro/nano-energetic materials construction technology PROPERTY
在线阅读 下载PDF
“Smart”micro/nano container-based self-healing coatings on magnesium alloys:A review 被引量:6
16
作者 Yonghua Chen Liang Wu +7 位作者 Wenhui Yao Jiahao Wu Maria Serdechnova Carsten Blawert Mikhail L.Zheludkevich Yuan Yuan Zhihui Xie Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2230-2259,共30页
Coating technologies are a commonly used way to protect metals against corrosion.However,with more and more severe service environments of materials,many protective coating systems often are not environmentally friend... Coating technologies are a commonly used way to protect metals against corrosion.However,with more and more severe service environments of materials,many protective coating systems often are not environmentally friendly or toxic as in the case of chromates.Based on the world’s abundant ideal magnesium(Mg)and its alloy,the smart self-healing anticorrosive coating can autonomously restore the damaged part of the coating according to the environmental changes,strengthen the corrosion protection ability,and prolong its service life.This paper reviews the research progress of smart self-healing coatings on Mg alloys.These coatings mostly contain suitable corrosion inhibitors encapsulated into micro/nano containers.Moreover,the different self-healing mechanisms and functionalities of micro/nano containers are discussed.The micro/nano containers range from inorganic nanocontainers such as mesoporous nanoparticles(silica(SiO_(2)),titanium dioxide(TiO_(2)),etc.),over inorganic clays(halloysite,hydrotalcite-like,zeolite),to organic nanocontainers such as polymer microcapsules,nanofibers,chitosan(CS)and cyclodextrin(CD),as well as,carbon materials such as graphene and carbon nanotubes and hybrids such as metal organic frameworks.The functioning of micro/nano containers can be divided in two principal groups:autonomous(based on defect filling and corrosion inhibition)and non-autonomous(based on dynamic bonds and shape memory polymers).Moreover,multi functionalities and composite applications of various micro/nano containers are summarized.At present,significant progress has been made in the preparation methods and technologies of micro/nano containers.Achieving long-term self-healing properties of coatings sensing of coating failure and early warning after self-healing function failure can be expected as the main development direction of self-healing corrosion protection coatings in the future. 展开更多
关键词 Magnesium alloy Self-healing coating micro/nano containers Mechanism Corrosion protection
在线阅读 下载PDF
Dropwise condensation heat transfer enhancement on surfaces micro/nano structured by a two-step electrodeposition process 被引量:4
17
作者 Hamid Reza TALESH BAHRAMI Alireza AZIZI Hamid SAFFARI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1065-1076,共12页
Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two diffe... Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time. 展开更多
关键词 dropwise condensation heat transfer ELECTRODEPOSITION micro/nano structure POROSITY
在线阅读 下载PDF
Deformation Analysis of Micro/Nano Indentation and Diamond Grinding on Optical Glasses 被引量:2
18
作者 ZHAO Qingliang ZHAO Lingling +2 位作者 GUO Bing STEPHENSIN David CORBETT John 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期411-418,共8页
The previous research of precision grinding optical glasses with electrolytic in process dressing (ELID) technology mainly concentrated on the action of ELID and machining parameters when grinding, which aim at gene... The previous research of precision grinding optical glasses with electrolytic in process dressing (ELID) technology mainly concentrated on the action of ELID and machining parameters when grinding, which aim at generating very "smoothed" surfaces and reducing the subsurface damage. However, when grinding spectrosil 2000 and BK7 glass assisted with ELID technology, a deeply comparative study on material removal mechanism and the wheel wear behaviors have not been given yet. In this paper, the micro/nano indentation technique is initially applied for investigating the mechanical properties of optical glasses, whose results are then refereed to evaluate the machinability. In single grit diamond scratching on glasses, the scratching traces display four kinds of scratch characteristics according to different material removal modes. In normal grinding experiments, the result shows BK7 glass has a better machinability than that of spectrosil 2000, corresponding to what the micro/nano indentation vent revealed. Under the same grinding depth parameters, the smaller amplitude of acoustic emission (AE) raw signals, grinding force and grinding force ratio correspond to a better surface quality. While for these two kinds of glasses, with the increasing of grinding depth, the variation trends of the surface roughness, the force ratio, and the AE raw signals are contrary, which should be attributed to different material removal modes. Moreover, the SEM micrographs of used wheels surface indicate that diamond grains on the wheel surface after grinding BK7 glass are worn more severely than that of spectrosil 2000. The proposed research analyzes what happened in the grinding process with different material removal patterns, which can provide a basis for producing high-quality optical glasses and comprehensively evaluate the surface and subsurface integrity of optical glasses. 展开更多
关键词 optical glasses micro/nano indentation single grit diamond scratching material removal mode surface integrity electrolytic in process dressing (ELID)
在线阅读 下载PDF
STRENGTH ANALYSIS OF CLAMPING IN MICRO/NANO SCALE EXPERIMENTS 被引量:2
19
作者 Liang Liu Dujuan Zeng +2 位作者 Xianlong Wei Qing Chen Xide Li 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第6期584-592,共9页
Two kinds of clamping in micro/nano scale experiments are investigated in this paper, one based on electron-beam-induced deposition, and the other on the van der Waals interaction. The clamping strength and mechanism ... Two kinds of clamping in micro/nano scale experiments are investigated in this paper, one based on electron-beam-induced deposition, and the other on the van der Waals interaction. The clamping strength and mechanism are analyzed both theoretically and experimentally. The influence of relative humidity on the micro/nano clamping and the method of electrostatic clamping are discussed. The clamping strength and performance of different clamping methods are compared considering the size and material of the clamped objects, and the application environments. 展开更多
关键词 micro/nano experimental mechanics CLAMPING interracial strength electron-beaminduced deposition (EBID) cohesive zone model
在线阅读 下载PDF
Linear and nonlinear torsional free vibration of functionally graded micro/nano-tubes based on modified couple stress theory 被引量:2
20
作者 A.R.SETOODEH M.REZAEI M.R.ZENDEHDEL SHAHRI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第6期725-740,共16页
The linear and nonlinear torsional free vibration analyses of functionMly graded micro/nuno-tubes (FGMTs) are analytically investigated based on the couple stress theory. The employed non-classical continuum theory ... The linear and nonlinear torsional free vibration analyses of functionMly graded micro/nuno-tubes (FGMTs) are analytically investigated based on the couple stress theory. The employed non-classical continuum theory contains one material length scale parameter, which can capture the small scale effect. The FGMT model accounts for the through-radius power-law variation of a two-constituent material. Hamilton's principle is used to develop the non-classical nonlinear governing equation. To study the effect of the boundary conditions, two types of end conditions, i.e., fixed-fixed and fixed-free, are considered. The derived boundary value governing equation is of the fourthorder, and is solved by the homotopy analysis method (HAM). This method is based on the Taylor series with an embedded parameter and is capable of providing very good approximations by means of only a few terms, if the initial guess and the auxiliary linear operator are properly selected. The analytical expressions are developed for the linear and nonlinear natural frequencies, which can be conveniently used to investigate the effects of the dimensionless length scale parameter, the material gradient index, and the vibration amplitude on the natural frequencies of FGMTs. 展开更多
关键词 torsional vibration nonlinear vibration micro/nano-tube functionallygraded material (FGM) couple stress theory size effect
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部