The microstructure differences of the Triassic Chang 6 and Chang 8 members tight reservoirs in the Longdong area of Ordos Basin were compared by means of cast thin sections, scanning electron microscope, X-ray diffrac...The microstructure differences of the Triassic Chang 6 and Chang 8 members tight reservoirs in the Longdong area of Ordos Basin were compared by means of cast thin sections, scanning electron microscope, X-ray diffraction, and constant rate mercury injection. Their pore evolution models were established, and the effects of main diagenesis on densification were examined. The throat is the main factor controlling the physical properties of the Chang 6 and Chang 8 members reservoirs: The lower the permeability, the smaller and the more concentrated the throat radius and the larger the proportion of the throats in the effective storage space. There are several obvious differences between Chang 6 and Chang 8 members:(1) with the increase of permeability, the contribution of the relative large throats to the permeability in the Chang 8 member reservoir is more than that in the Chang 6 member reservoir;(2) the control effect on pore-throat ratio of the nano-throats in the Chang 6 member reservoir is more significant. The sedimentary action determines the primary pore structure of the Chang 6 and Chang 8 members sand bodies, and the diagenesis is the main factor controlling the densification of the reservoirs. Because of the difference in rock fabrics and the chlorite content of Chang 6 and Chang 8, the strong compaction resulted in less porosity reduction(17%) of the Chang 81 reservoir with larger buried depth and larger ground temperature than the Chang 63 reservoir(19%). The siliceous, calcareous and clay minerals cement filling the pores and blocking the pore throat, which is the key factor causing the big differences between the reservoir permeability of Chang 6 and Chang 8 members.展开更多
In order to analyze the normal deviatoric stress that viscous-elastic fluid acting on the residual oil under the situation of different flooding conditions and different permeabilities, Viscous-elastic fluid flow equa...In order to analyze the normal deviatoric stress that viscous-elastic fluid acting on the residual oil under the situation of different flooding conditions and different permeabilities, Viscous-elastic fluid flow equation is established in the micro pore by choosing the continuity equation, motion equation and the upper-convected Maxwell constitutive equation, the flow field is computed by using numerical analysis, the forces that driving fluid acting on the residual oil in micro pore are got, and the influence of flooding conditions, pore width and viscous-elasticity of driving fluid on force is compared and analyzed. The results show that: the more viscous-elasticity of driving fluid increases, the greater the normal deviatoric stress acting on the residual oil increases;using constant pressure gradient flooding, the lager the pore width is, the greater normal deviatoric stress acting on the residual oil will be.展开更多
The Micro pore volume in porous materials usually interests many researchers. However, there has been few, if not, direct method to determine it. A strategy of combining mercury porosimetry with pre adsorption is pr...The Micro pore volume in porous materials usually interests many researchers. However, there has been few, if not, direct method to determine it. A strategy of combining mercury porosimetry with pre adsorption is proposed in the present paper. The total pore volume in activated carbon is determined through direct measurements for the first time. The application scope of mercury porosimetry is also enlarged. Besides, the present experiments also confirmed the preference of adsorption to the smaller pores even in the range of meso and macro pores.展开更多
Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the ac...Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the active site hosts, its hostility to electron/mass transfer could lead to the incomplete fulfillment of the catalytic activity. Besides, the formation of inactive metallic Fe particles during the conventional catalyst synthesis could also decrease the active site density and complicate the identification of real active site. Herein, we developed a facial hydrogen etching methodology to yield single site Fe-N-C catalysts featured with micro/mesoporous hierarchical structure. The hydrogen concentration in pyrolysis process was designated to effectively regulate the pore structure and active site density of the resulted catalysts.The optimized sample achieves excellent ORR catalytic performance with an ultralow H2O2 yield(1%)and superb stability over 10,000 cycles. Our finding provides new thoughts for the rational design of hierarchically porous carbon-based materials and highly promising non-precious metal ORR catalysts.展开更多
Micro-pore is a very common material defect. In the present paper, the temperature fields of medium carbon steel joints with and without micro-pore defect during linear friction welding (LFW) were investigated by us...Micro-pore is a very common material defect. In the present paper, the temperature fields of medium carbon steel joints with and without micro-pore defect during linear friction welding (LFW) were investigated by using finite element method. The effect of micro-pore defect on the axial shortening of joints during LFW was examined. The x- and y-direction displacements of micro-pore during the LFW process were also studied. In addition, the shape of micro-pore after LFW was observed. The heat conducted from the weld inteace to the specimen interior. The fluctuation range of the temperature curves for the joint with micro-pore is larger than that without micro-pore. Position of micro-pore changes with the change of the friction time. The circular shape of micro-pore becomes oval after welding.展开更多
Based on scanning electron microscopy and nitrogen adsorption experiment at low temperature, the pore types and structures of the Longmaxi Formation shale in the Dianqianbei area, SW China were analyzed, and a molecul...Based on scanning electron microscopy and nitrogen adsorption experiment at low temperature, the pore types and structures of the Longmaxi Formation shale in the Dianqianbei area, SW China were analyzed, and a molecular model was built. According to mathematical statistics, the validation of the model was solved by converting it into a mathematical formula. It is found by SEM that the pores in clay mineral layers and organic pores occupy most of the pores in shale; the nitrogen adsorption experiment at low temperature reveals that groove pores formed by flaky particles and micro-pores are the main types of pores, and the results of the two are in good agreement. A molecular model was established by illite and graphene molecular structures. Moreover, based on the fractal theory and the Frenkel-Halsey-Hill formula, a modified Frenkel-Halsey-Hill formula was proposed. The reliability of the molecular model was verified to some extent by obtaining parameters such as the fractal dimension, replacement rate and fractal coefficients of correction, and mathematical calculation. This study provides the theoretical basis for quantitative study of shale reservoirs.展开更多
Micro-pored CA6 -MA lightweight material with CAM: MA mass ratio of 7:3 was prepared using Al(OH) 3, MgCO3 and CaCO3 as starting materials, and anthracite. sweet potato starch and anthracite + sweet potato starch...Micro-pored CA6 -MA lightweight material with CAM: MA mass ratio of 7:3 was prepared using Al(OH) 3, MgCO3 and CaCO3 as starting materials, and anthracite. sweet potato starch and anthracite + sweet potato starch as pore forming agent (PFA) with an addition of 10 mass%, 20 mass% and 30 mass%, respectively. The starting materials were dry mixed, wet co-milled in a ball mill for 1 h. slip cast into cylindrical specimens with a diameter of 60 ram. and then calcined at 1 450 ℃ for 3 h. With the increase of PFA addition,, apparent porosity increases, and bulk density decreases. The influence of different PFAs on properties of the micro-pored LW CAM -MA aggregate was investigated. The achieved CAM - MA, by adding 30% sweet potato starch, has a porosity of 76. 8%, bulk density of 0. 78 g · cm^ - 3 and median pore size of 1.90 μm.展开更多
A new low-cost corrosion-resistant rebar(HRB400 R) was designed and fabricated by chromium micro-alloying. The effects of Cr on the passivation and corrosion behavior of this rebar in the simulated concrete pore sol...A new low-cost corrosion-resistant rebar(HRB400 R) was designed and fabricated by chromium micro-alloying. The effects of Cr on the passivation and corrosion behavior of this rebar in the simulated concrete pore solutions were studied systematically, and its improved corrosion resistance was revealed. In the Cl--free saturated Ca(OH)_2 solution, the HRB400 R rebar presented nearly the same passive film and similar passivation ability compared to the common carbon steel rebar. In the long-term immersion corrosion test in the Cl--contained Ca(OH)_2 solution, the HRB400 R rebar presented improved corrosion resistance and obvious longer passivation-maintaining period. Micro-alloying of Cr element in the rebar matrix enhanced its corrosion resistance against Cl--attack and retarded the corrosion initiation in the matrix. In the alkaline Na Cl salt spraying test, the HRB400 R rebar also presented obviously lower mass-loss rate. The enrichment of Cr element in the rust layer improved its retardant effect to the penetration of aggressive medium, and decreased the corrosion propagation rate of the rebar.展开更多
基金Supported by the China National Science and Technology Major Project(20162X050500062011ZX05044)the National Natural Science Foundation of China(41102083)
文摘The microstructure differences of the Triassic Chang 6 and Chang 8 members tight reservoirs in the Longdong area of Ordos Basin were compared by means of cast thin sections, scanning electron microscope, X-ray diffraction, and constant rate mercury injection. Their pore evolution models were established, and the effects of main diagenesis on densification were examined. The throat is the main factor controlling the physical properties of the Chang 6 and Chang 8 members reservoirs: The lower the permeability, the smaller and the more concentrated the throat radius and the larger the proportion of the throats in the effective storage space. There are several obvious differences between Chang 6 and Chang 8 members:(1) with the increase of permeability, the contribution of the relative large throats to the permeability in the Chang 8 member reservoir is more than that in the Chang 6 member reservoir;(2) the control effect on pore-throat ratio of the nano-throats in the Chang 6 member reservoir is more significant. The sedimentary action determines the primary pore structure of the Chang 6 and Chang 8 members sand bodies, and the diagenesis is the main factor controlling the densification of the reservoirs. Because of the difference in rock fabrics and the chlorite content of Chang 6 and Chang 8, the strong compaction resulted in less porosity reduction(17%) of the Chang 81 reservoir with larger buried depth and larger ground temperature than the Chang 63 reservoir(19%). The siliceous, calcareous and clay minerals cement filling the pores and blocking the pore throat, which is the key factor causing the big differences between the reservoir permeability of Chang 6 and Chang 8 members.
文摘In order to analyze the normal deviatoric stress that viscous-elastic fluid acting on the residual oil under the situation of different flooding conditions and different permeabilities, Viscous-elastic fluid flow equation is established in the micro pore by choosing the continuity equation, motion equation and the upper-convected Maxwell constitutive equation, the flow field is computed by using numerical analysis, the forces that driving fluid acting on the residual oil in micro pore are got, and the influence of flooding conditions, pore width and viscous-elasticity of driving fluid on force is compared and analyzed. The results show that: the more viscous-elasticity of driving fluid increases, the greater the normal deviatoric stress acting on the residual oil increases;using constant pressure gradient flooding, the lager the pore width is, the greater normal deviatoric stress acting on the residual oil will be.
文摘The Micro pore volume in porous materials usually interests many researchers. However, there has been few, if not, direct method to determine it. A strategy of combining mercury porosimetry with pre adsorption is proposed in the present paper. The total pore volume in activated carbon is determined through direct measurements for the first time. The application scope of mercury porosimetry is also enlarged. Besides, the present experiments also confirmed the preference of adsorption to the smaller pores even in the range of meso and macro pores.
基金supported by the National Natural Science Foundation of China(21633008,21433003,U1601211,21733004)National Science and Technology Major Project(2016YFB0101202)+1 种基金Jilin Province Science and Technology Development Program(20150101066JC,20160622037JC,20170203003SF,20170520150JH)Hundred Talents Program of Chinese Academy of Sciences and the Recruitment Program of Foreign Experts(WQ20122200077)
文摘Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the active site hosts, its hostility to electron/mass transfer could lead to the incomplete fulfillment of the catalytic activity. Besides, the formation of inactive metallic Fe particles during the conventional catalyst synthesis could also decrease the active site density and complicate the identification of real active site. Herein, we developed a facial hydrogen etching methodology to yield single site Fe-N-C catalysts featured with micro/mesoporous hierarchical structure. The hydrogen concentration in pyrolysis process was designated to effectively regulate the pore structure and active site density of the resulted catalysts.The optimized sample achieves excellent ORR catalytic performance with an ultralow H2O2 yield(1%)and superb stability over 10,000 cycles. Our finding provides new thoughts for the rational design of hierarchically porous carbon-based materials and highly promising non-precious metal ORR catalysts.
基金The authors would like to appreeiate the National Natural Science Foundation of China (51005180), the Fok Ying-Tong Educalion Fuundalion for Young Teachers in the Higher Education Institutions of China (131052) , the Fundamental Research Fund of NPU(JC201233) , and the 111 Project of China (B08040).
文摘Micro-pore is a very common material defect. In the present paper, the temperature fields of medium carbon steel joints with and without micro-pore defect during linear friction welding (LFW) were investigated by using finite element method. The effect of micro-pore defect on the axial shortening of joints during LFW was examined. The x- and y-direction displacements of micro-pore during the LFW process were also studied. In addition, the shape of micro-pore after LFW was observed. The heat conducted from the weld inteace to the specimen interior. The fluctuation range of the temperature curves for the joint with micro-pore is larger than that without micro-pore. Position of micro-pore changes with the change of the friction time. The circular shape of micro-pore becomes oval after welding.
基金Supported by the China National Science and Technology Major Project(2017ZX05063002-009)the National Natural Science Foundation of China(41772150)
文摘Based on scanning electron microscopy and nitrogen adsorption experiment at low temperature, the pore types and structures of the Longmaxi Formation shale in the Dianqianbei area, SW China were analyzed, and a molecular model was built. According to mathematical statistics, the validation of the model was solved by converting it into a mathematical formula. It is found by SEM that the pores in clay mineral layers and organic pores occupy most of the pores in shale; the nitrogen adsorption experiment at low temperature reveals that groove pores formed by flaky particles and micro-pores are the main types of pores, and the results of the two are in good agreement. A molecular model was established by illite and graphene molecular structures. Moreover, based on the fractal theory and the Frenkel-Halsey-Hill formula, a modified Frenkel-Halsey-Hill formula was proposed. The reliability of the molecular model was verified to some extent by obtaining parameters such as the fractal dimension, replacement rate and fractal coefficients of correction, and mathematical calculation. This study provides the theoretical basis for quantitative study of shale reservoirs.
文摘Micro-pored CA6 -MA lightweight material with CAM: MA mass ratio of 7:3 was prepared using Al(OH) 3, MgCO3 and CaCO3 as starting materials, and anthracite. sweet potato starch and anthracite + sweet potato starch as pore forming agent (PFA) with an addition of 10 mass%, 20 mass% and 30 mass%, respectively. The starting materials were dry mixed, wet co-milled in a ball mill for 1 h. slip cast into cylindrical specimens with a diameter of 60 ram. and then calcined at 1 450 ℃ for 3 h. With the increase of PFA addition,, apparent porosity increases, and bulk density decreases. The influence of different PFAs on properties of the micro-pored LW CAM -MA aggregate was investigated. The achieved CAM - MA, by adding 30% sweet potato starch, has a porosity of 76. 8%, bulk density of 0. 78 g · cm^ - 3 and median pore size of 1.90 μm.
基金Funded by the National Basic Research Program of China(973 Program,2015CB655100)the Natural Science Foundation of China(Nos.51308111 and 51278098)+5 种基金the Industry-UniversityResearch Cooperative Innovation Fund of Jiangsu Province(No.BY2013091)the Research Project of Science and Technology Development of China Railway Corporation(No.2014G004-F)the“Six Talent Peak”Project of Jiangsu Province(No.2014-XCL-023 and 2016-XCL-196)the China Postdoctoral Science Foundation(No.2013M531249)the Postdoctoral Science Foundation of Jiangsu Province of China(1202008C)the Applied Research Foundation of Nantong City(No.BK2013001)
文摘A new low-cost corrosion-resistant rebar(HRB400 R) was designed and fabricated by chromium micro-alloying. The effects of Cr on the passivation and corrosion behavior of this rebar in the simulated concrete pore solutions were studied systematically, and its improved corrosion resistance was revealed. In the Cl--free saturated Ca(OH)_2 solution, the HRB400 R rebar presented nearly the same passive film and similar passivation ability compared to the common carbon steel rebar. In the long-term immersion corrosion test in the Cl--contained Ca(OH)_2 solution, the HRB400 R rebar presented improved corrosion resistance and obvious longer passivation-maintaining period. Micro-alloying of Cr element in the rebar matrix enhanced its corrosion resistance against Cl--attack and retarded the corrosion initiation in the matrix. In the alkaline Na Cl salt spraying test, the HRB400 R rebar also presented obviously lower mass-loss rate. The enrichment of Cr element in the rust layer improved its retardant effect to the penetration of aggressive medium, and decreased the corrosion propagation rate of the rebar.