Thermal characterization becomes challenging as the material size is reduced to micro/nanoscales.Based on scanning probe microscopy(SPM),scanning thermal microscopy(STh M)is able to collect thermophysical characterist...Thermal characterization becomes challenging as the material size is reduced to micro/nanoscales.Based on scanning probe microscopy(SPM),scanning thermal microscopy(STh M)is able to collect thermophysical characteristics of the microscopic domain with high spatial resolution.Starting from its development history,this review introduces the operation mechanism of the instrument in detail,including working principles,thermal probes,quantitative study,and applications.As the core principle of STh M,the heat transfer mechanism section is discussed emphatically.Additionally,the emerging technologies based on the STh M platform are clearly reviewed and corresponding examples are presented in detail.Finally,the current challenges and future opportunities of STh M are discussed.展开更多
基金funding from the National Natural Science Foundation of China (51876112)Shanghai Sailing Program (21YF1414200)+1 种基金Discipline of Shanghai-Materials Science and EngineeringShanghai Engineering Research Center of Advanced Thermal Functional Materials
文摘Thermal characterization becomes challenging as the material size is reduced to micro/nanoscales.Based on scanning probe microscopy(SPM),scanning thermal microscopy(STh M)is able to collect thermophysical characteristics of the microscopic domain with high spatial resolution.Starting from its development history,this review introduces the operation mechanism of the instrument in detail,including working principles,thermal probes,quantitative study,and applications.As the core principle of STh M,the heat transfer mechanism section is discussed emphatically.Additionally,the emerging technologies based on the STh M platform are clearly reviewed and corresponding examples are presented in detail.Finally,the current challenges and future opportunities of STh M are discussed.