Crystallographic plasticity was applied to study the initiation of micro cracks on the smooth surface of polycrystalline under uniform applied stress. Even under the uniform external stress, due to the different cryst...Crystallographic plasticity was applied to study the initiation of micro cracks on the smooth surface of polycrystalline under uniform applied stress. Even under the uniform external stress, due to the different crystallographic orientations of the grains in the polycrystalline, there is un-uniform stress distribution and the deformation is also not uniform. Under the fatigue loading, the roughness increases with the number of fatigue, and deformation will localize in some places, where micro cracks form.展开更多
The micro crack of aluminum sheet during cold rolling lubricated with emulsions is investigated. Experi-ments show that micro cracks occur after cold rolling process and this is attributed to various parameters, for i...The micro crack of aluminum sheet during cold rolling lubricated with emulsions is investigated. Experi-ments show that micro cracks occur after cold rolling process and this is attributed to various parameters, for instance, the thin oxide film formed at the sheet surface. The micro crack spacing thus becomes an important parameter which deserves more concerns. The aspect ratio of these micro cracks is then analyzed theoreti-cally, which takes into consideration of the oxide fracture process. The good agreement between the obser-vations and the theoretical predictions validates the analysis. The approach can shed some new lights on the mechanical process of aluminium sheet during cold rolling.展开更多
The internal micro cracks with the critical length about 30?μm and thickness less than 1?μm were introduced into the pure titanium samples by uniaxial tension compression low cycle fatigue method. The experimental r...The internal micro cracks with the critical length about 30?μm and thickness less than 1?μm were introduced into the pure titanium samples by uniaxial tension compression low cycle fatigue method. The experimental results indicate that the internal fatigue micro crack clearly evolves from the original penny shaped crack into a string of spherical voids in the longitudinal section plane of the fatigue sample after the vacuum diffusive healing at the high temperature. The quantitative relationship between the radius and the spacing of spherical voids depends on the crack position (within grains, on grain boundaries or transgranular sites) and its orientations within the grain. The diffusive healing, the related thermodynamics and mechanism, and the effect of the surface tension anisotropy on the relationship between void diameter and void spacing are also discussed.展开更多
The paper presents a principal formulation of statistical evolution of microcracks, occurring in solids, subjected to external loading. In particular, the concept of ideal microcracks is elaborated, in order to descri...The paper presents a principal formulation of statistical evolution of microcracks, occurring in solids, subjected to external loading. In particular, the concept of ideal microcracks is elaborated, in order to describe the fundamental features of damage resulting from nucleation and extension of microcracks. Relevant average damage functions are also discussed.展开更多
We propose a nonlinear ultrasonic technique by using the mixed-frequency signals excited Lamb waves to conduct micro-crack detection in thin plate structures.Simulation models of three-dimensional(3D)aluminum plates a...We propose a nonlinear ultrasonic technique by using the mixed-frequency signals excited Lamb waves to conduct micro-crack detection in thin plate structures.Simulation models of three-dimensional(3D)aluminum plates and composite laminates are established by ABAQUS software,where the aluminum plate contains buried crack and composite laminates comprises cohesive element whose thickness is zero to simulate delamination damage.The interactions between the S0 mode Lamb wave and the buried micro-cracks of various dimensions are simulated by using the finite element method.Fourier frequency spectrum analysis is applied to the received time domain signal and fundamental frequency amplitudes,and sum and difference frequencies are extracted and simulated.Simulation results indicate that nonlinear Lamb waves have different sensitivities to various crack sizes.There is a positive correlation among crack length,height,and sum and difference frequency amplitudes for an aluminum plate,with both amplitudes decreasing as crack thickness increased,i.e.,nonlinear effect weakens as the micro-crack becomes thicker.The amplitudes of sum and difference frequency are positively correlated with the length and width of the zero-thickness cohesive element in the composite laminates.Furthermore,amplitude ratio change is investigated and it can be used as an effective tool to detect inner defects in thin 3D plates.展开更多
An experimental investigation on the mechanical mechanisms of fatigue micro-crack initiation and propagation of a nickel-based superalloy is presented. By coupling digital image correlation method and scanning electro...An experimental investigation on the mechanical mechanisms of fatigue micro-crack initiation and propagation of a nickel-based superalloy is presented. By coupling digital image correlation method and scanning electron microscope, the fatigue residual strain distribution at the grain scale has been obtained. The results showed that there is a trend of accumulation for the residual strain. Micro-cracks are more likely to initiate in or near the areas with particularly large residual strain, and propagate along the large-strain paths.展开更多
Standards of highway conservation and maintenance are improved gradually following the improvement of requirements of road service. Before obvious damage such as obvious cracking (block,transverse, longitudinal ) and ...Standards of highway conservation and maintenance are improved gradually following the improvement of requirements of road service. Before obvious damage such as obvious cracking (block,transverse, longitudinal ) and rutting emerge, inconspicuous distress (micro-cracks, polishing, pockmarked) is generated previously. These inconspicuous distresses may provide basis and criteria for pavement preventive maintenance. Currently most of preventive conservation measures are determined by experienced experts in maintenance and repair of road after site visits. Thus method is difficult in operation, and has a certain amount of instability as it is based on experience and personal knowledge. In this paper, camera and laser were used for automated high-speed acquisition images. Methods to preprocess pavement image are compared. The pretreatment method suitable for analyze micro-cracks picture is elected, an effective way to remove shadow is also proposed.展开更多
A mathematical model for simulating the fluid flow, heat transfer and solidification in the conventional mold and the chamfer mold, together with a finite element stress-strain model in the straightening process of bo...A mathematical model for simulating the fluid flow, heat transfer and solidification in the conventional mold and the chamfer mold, together with a finite element stress-strain model in the straightening process of both molds, were established for the typical niobium, vanadium, and titanium micro-alloyed steels. On the basis of both numerical analysis, the mold copper plate with an optimum chamfered shape was designed and applied in industrial tests. The predicted results from numerical simulation of fluid flow, heat transfer and solidification in the conven tional mold and the chamfer mold show that the increased chamfered angle leads to an approximately linear increase o[ the slab surface temperature, but it also causes strong flow near the slab corner. Very small chamfered length can lead to a significant increase of the temperature near the slab corner. However, with further increasing the chamfered length, the temperature of the slab corner increased slightly. The calculated results from the finite element analysis of stress-strain during the straightening process show that at the same slope width, the tangential strain on the slat) edges and corners is minimum when the chamfered angle is 30° and 45°, which is only 40° to 46° of rectangular slabs with the same cross-section area. At the same chamfered angle of 30°, when the chamfered length is controlled between 65-85 mm, the tangential strain on the part of the slab edges and corners is relatively smaller. Industrial test results show that the slab corner temperature at straightening segment increases about 100 ℃ by using chamfer mold compared to the conventional molds. The slab transverse corner cracks have been reduced more than 95° in comparison with those in the conventional mold.展开更多
This paper develops the non-equilibrium statistical fatigue damage theory to study the statistical behaviour of micro-crack for metals in magnetic field. The one-dimensional homogeneous crack system is chosen for stud...This paper develops the non-equilibrium statistical fatigue damage theory to study the statistical behaviour of micro-crack for metals in magnetic field. The one-dimensional homogeneous crack system is chosen for study. To investigate the effect caused by magnetic field on the statistical distribution of micro-crack in the system, the theoretical analysis on microcrack evolution equation, the average length of micro-crack, density distribution function of microcrack and fatigue fracture probability have been performed. The derived results relate the changes of some quantities, such as average length, density distribution function and fatigue fracture probability, to the applied magnetic field, the magnetic and mechanical properties of metals. It gives a theoretical explanation on the change of fatigue damage due to magnetic fields observed by experiments, and presents an analytic approach on studying the fatigue damage of metal in magnetic field.展开更多
The main results obtained from the experimental and engineering investigation on the heat evolution and cracking risk of a furnace concrete block were presented. The heat evolution of experimental mortars containing m...The main results obtained from the experimental and engineering investigation on the heat evolution and cracking risk of a furnace concrete block were presented. The heat evolution of experimental mortars containing micro-slag under different environmental temperatures was instrumented in order to investigate the self-catalyzed effect, which was discovered in engineering. More-over,the thermal stress of the furnace concrete due to heat temperature rise was calculated to evaluate the cracking risk of mass concrete containing micro-slag due to self-catalyzed effect. The experimental results illustrate that with the development of hydration and initial temperature of mixture, the hydra-tion can be also accelerated and temperature of concrete will be continued to rise, which was the self-catalyzed effect. And the thermal stress due to self-catalyzed effect could not result in the cracking of furnace concrete.展开更多
The effect of different microstructures on the polarization resistance (Rp) and the hydrogen-induced cracking (HIC) of a micro-alloyed steel austenitized and submitted to different cooling rates was studied.Samples 19...The effect of different microstructures on the polarization resistance (Rp) and the hydrogen-induced cracking (HIC) of a micro-alloyed steel austenitized and submitted to different cooling rates was studied.Samples 19.1 x 6 x 2 mm,containing the whole thickness of the plate were extracted from a 20 mm plate and heat treated on a quenching dilatometer,were submitted to Rp and HIC corrosion tests.Both Rp and HIC tests followed as close as possible ASTM G59 and NACE standard TM0284-2003,in this case,modified only with regard to the size of the samples.Steel samples transformed from austenite by a slow cooling (cooling rate of 0.5℃.s-1) showed higher susceptibility to hydrogen-induced cracking,with large cracks in the middle of the sample propagating along segregation bands,corresponding to the centerline of the plate thickness.For cooling rates of 10℃.s-1,only small cracks were found in the matrix and micro cracks nucleated at non-metallic inclusions.For higher cooling rates (40℃.s-1) very few small cracks were detected,linked to non-metallic inclusions.This result suggests that structures formed by polygonal structures and segregation bands (were eutectoid microconstituents predominate) have higher susceptibility to HIC.Structures predominantly formed by acicular ferrite make it difficult to propagate the cracks among non-oriented and interlaced acicular ferrite crystals.Smaller segregation bands containing eutectoid products also help inhibit cracking and crack propagation;segregation bands can function as pipelines for hydrogen diffusion and offer a path of stress concentration for the propagation of cracks,frequently associated to non-metallic inclusions.Polarization resistance essays performed on the steel in theas received condition,prior to any heat treatment,showed larger differences between the regions of the plate,with a considerably lower Rp in the centerline.The austenitization heat treatments followed by cooling rates of 0.5 e 10℃.s-1 made more uniform the corrosion resistance along the thickness of the plate.The effects of heat treatments on the corrosion resistance are probably related to the microconstituent formed,allied to the chemical homogenization of the impurities concentrated on the centerline of the plate.展开更多
True triaxial rockburst experiments with four different unloading rates were performed on four prism specimens of granite sampled from Beishan, China. The damage evolution in the rockburst test was investigated from t...True triaxial rockburst experiments with four different unloading rates were performed on four prism specimens of granite sampled from Beishan, China. The damage evolution in the rockburst test was investigated from two aspects including fracture surface crack and fragment characteristics. The scanning electron microscopy was used to observe the micro crack information on fragment surface. Combing binarization and box counting dimensions, the fractal dimensions of cracks were obtained. Meanwhile,the fragments were collected and a sieving experiment was conducted. We weighed the fragments qualities, counted the amount of fragments and measured the fragments length, width and thickness.Utilizing four methods to calculate damage fractal dimensions of fragments, the trend of fractal value changing with unloading rates can be roughly described. It can be concluded from these experiments that the fractal dimension either for crack or for fragment holds a decreasing trend with the decreasing unloading rate, indicating a reduction of damage level.展开更多
文摘Crystallographic plasticity was applied to study the initiation of micro cracks on the smooth surface of polycrystalline under uniform applied stress. Even under the uniform external stress, due to the different crystallographic orientations of the grains in the polycrystalline, there is un-uniform stress distribution and the deformation is also not uniform. Under the fatigue loading, the roughness increases with the number of fatigue, and deformation will localize in some places, where micro cracks form.
文摘The micro crack of aluminum sheet during cold rolling lubricated with emulsions is investigated. Experi-ments show that micro cracks occur after cold rolling process and this is attributed to various parameters, for instance, the thin oxide film formed at the sheet surface. The micro crack spacing thus becomes an important parameter which deserves more concerns. The aspect ratio of these micro cracks is then analyzed theoreti-cally, which takes into consideration of the oxide fracture process. The good agreement between the obser-vations and the theoretical predictions validates the analysis. The approach can shed some new lights on the mechanical process of aluminium sheet during cold rolling.
文摘The internal micro cracks with the critical length about 30?μm and thickness less than 1?μm were introduced into the pure titanium samples by uniaxial tension compression low cycle fatigue method. The experimental results indicate that the internal fatigue micro crack clearly evolves from the original penny shaped crack into a string of spherical voids in the longitudinal section plane of the fatigue sample after the vacuum diffusive healing at the high temperature. The quantitative relationship between the radius and the spacing of spherical voids depends on the crack position (within grains, on grain boundaries or transgranular sites) and its orientations within the grain. The diffusive healing, the related thermodynamics and mechanism, and the effect of the surface tension anisotropy on the relationship between void diameter and void spacing are also discussed.
基金The project partially supported by National Natural Science Foundation of China.
文摘The paper presents a principal formulation of statistical evolution of microcracks, occurring in solids, subjected to external loading. In particular, the concept of ideal microcracks is elaborated, in order to describe the fundamental features of damage resulting from nucleation and extension of microcracks. Relevant average damage functions are also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61571222,61602235,and 11474160)the Six Talent Peaks Project of Jiangsu Province,China
文摘We propose a nonlinear ultrasonic technique by using the mixed-frequency signals excited Lamb waves to conduct micro-crack detection in thin plate structures.Simulation models of three-dimensional(3D)aluminum plates and composite laminates are established by ABAQUS software,where the aluminum plate contains buried crack and composite laminates comprises cohesive element whose thickness is zero to simulate delamination damage.The interactions between the S0 mode Lamb wave and the buried micro-cracks of various dimensions are simulated by using the finite element method.Fourier frequency spectrum analysis is applied to the received time domain signal and fundamental frequency amplitudes,and sum and difference frequencies are extracted and simulated.Simulation results indicate that nonlinear Lamb waves have different sensitivities to various crack sizes.There is a positive correlation among crack length,height,and sum and difference frequency amplitudes for an aluminum plate,with both amplitudes decreasing as crack thickness increased,i.e.,nonlinear effect weakens as the micro-crack becomes thicker.The amplitudes of sum and difference frequency are positively correlated with the length and width of the zero-thickness cohesive element in the composite laminates.Furthermore,amplitude ratio change is investigated and it can be used as an effective tool to detect inner defects in thin 3D plates.
基金supported by the National Natural Science Foundation of China (NSFC, Nos. 11002048, 10972072)the National Basic Research Program of China (973 Program, No. 2007CB714104)the Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering at Hohai University (No. 2009585912)
文摘An experimental investigation on the mechanical mechanisms of fatigue micro-crack initiation and propagation of a nickel-based superalloy is presented. By coupling digital image correlation method and scanning electron microscope, the fatigue residual strain distribution at the grain scale has been obtained. The results showed that there is a trend of accumulation for the residual strain. Micro-cracks are more likely to initiate in or near the areas with particularly large residual strain, and propagate along the large-strain paths.
文摘Standards of highway conservation and maintenance are improved gradually following the improvement of requirements of road service. Before obvious damage such as obvious cracking (block,transverse, longitudinal ) and rutting emerge, inconspicuous distress (micro-cracks, polishing, pockmarked) is generated previously. These inconspicuous distresses may provide basis and criteria for pavement preventive maintenance. Currently most of preventive conservation measures are determined by experienced experts in maintenance and repair of road after site visits. Thus method is difficult in operation, and has a certain amount of instability as it is based on experience and personal knowledge. In this paper, camera and laser were used for automated high-speed acquisition images. Methods to preprocess pavement image are compared. The pretreatment method suitable for analyze micro-cracks picture is elected, an effective way to remove shadow is also proposed.
基金Sponsored by National Natural Science Foundation of China(51204059)
文摘A mathematical model for simulating the fluid flow, heat transfer and solidification in the conventional mold and the chamfer mold, together with a finite element stress-strain model in the straightening process of both molds, were established for the typical niobium, vanadium, and titanium micro-alloyed steels. On the basis of both numerical analysis, the mold copper plate with an optimum chamfered shape was designed and applied in industrial tests. The predicted results from numerical simulation of fluid flow, heat transfer and solidification in the conven tional mold and the chamfer mold show that the increased chamfered angle leads to an approximately linear increase o[ the slab surface temperature, but it also causes strong flow near the slab corner. Very small chamfered length can lead to a significant increase of the temperature near the slab corner. However, with further increasing the chamfered length, the temperature of the slab corner increased slightly. The calculated results from the finite element analysis of stress-strain during the straightening process show that at the same slope width, the tangential strain on the slat) edges and corners is minimum when the chamfered angle is 30° and 45°, which is only 40° to 46° of rectangular slabs with the same cross-section area. At the same chamfered angle of 30°, when the chamfered length is controlled between 65-85 mm, the tangential strain on the part of the slab edges and corners is relatively smaller. Industrial test results show that the slab corner temperature at straightening segment increases about 100 ℃ by using chamfer mold compared to the conventional molds. The slab transverse corner cracks have been reduced more than 95° in comparison with those in the conventional mold.
文摘This paper develops the non-equilibrium statistical fatigue damage theory to study the statistical behaviour of micro-crack for metals in magnetic field. The one-dimensional homogeneous crack system is chosen for study. To investigate the effect caused by magnetic field on the statistical distribution of micro-crack in the system, the theoretical analysis on microcrack evolution equation, the average length of micro-crack, density distribution function of microcrack and fatigue fracture probability have been performed. The derived results relate the changes of some quantities, such as average length, density distribution function and fatigue fracture probability, to the applied magnetic field, the magnetic and mechanical properties of metals. It gives a theoretical explanation on the change of fatigue damage due to magnetic fields observed by experiments, and presents an analytic approach on studying the fatigue damage of metal in magnetic field.
基金Funded by the Key Technologies R&D Program from Department of Science and Technology Hubei Province(200410G0121) "973" Pro-gram(001CB610704-3) from Ministry of Science and Technology of China
文摘The main results obtained from the experimental and engineering investigation on the heat evolution and cracking risk of a furnace concrete block were presented. The heat evolution of experimental mortars containing micro-slag under different environmental temperatures was instrumented in order to investigate the self-catalyzed effect, which was discovered in engineering. More-over,the thermal stress of the furnace concrete due to heat temperature rise was calculated to evaluate the cracking risk of mass concrete containing micro-slag due to self-catalyzed effect. The experimental results illustrate that with the development of hydration and initial temperature of mixture, the hydra-tion can be also accelerated and temperature of concrete will be continued to rise, which was the self-catalyzed effect. And the thermal stress due to self-catalyzed effect could not result in the cracking of furnace concrete.
文摘The effect of different microstructures on the polarization resistance (Rp) and the hydrogen-induced cracking (HIC) of a micro-alloyed steel austenitized and submitted to different cooling rates was studied.Samples 19.1 x 6 x 2 mm,containing the whole thickness of the plate were extracted from a 20 mm plate and heat treated on a quenching dilatometer,were submitted to Rp and HIC corrosion tests.Both Rp and HIC tests followed as close as possible ASTM G59 and NACE standard TM0284-2003,in this case,modified only with regard to the size of the samples.Steel samples transformed from austenite by a slow cooling (cooling rate of 0.5℃.s-1) showed higher susceptibility to hydrogen-induced cracking,with large cracks in the middle of the sample propagating along segregation bands,corresponding to the centerline of the plate thickness.For cooling rates of 10℃.s-1,only small cracks were found in the matrix and micro cracks nucleated at non-metallic inclusions.For higher cooling rates (40℃.s-1) very few small cracks were detected,linked to non-metallic inclusions.This result suggests that structures formed by polygonal structures and segregation bands (were eutectoid microconstituents predominate) have higher susceptibility to HIC.Structures predominantly formed by acicular ferrite make it difficult to propagate the cracks among non-oriented and interlaced acicular ferrite crystals.Smaller segregation bands containing eutectoid products also help inhibit cracking and crack propagation;segregation bands can function as pipelines for hydrogen diffusion and offer a path of stress concentration for the propagation of cracks,frequently associated to non-metallic inclusions.Polarization resistance essays performed on the steel in theas received condition,prior to any heat treatment,showed larger differences between the regions of the plate,with a considerably lower Rp in the centerline.The austenitization heat treatments followed by cooling rates of 0.5 e 10℃.s-1 made more uniform the corrosion resistance along the thickness of the plate.The effects of heat treatments on the corrosion resistance are probably related to the microconstituent formed,allied to the chemical homogenization of the impurities concentrated on the centerline of the plate.
基金supported by the National Key Basic Research Program (No. 2010CB226800)the Innovation Team Development Program of the Ministry of Education (No. IRT0656)the Fundamental Research Funds for the Central Universities (No. 2010YL14)
文摘True triaxial rockburst experiments with four different unloading rates were performed on four prism specimens of granite sampled from Beishan, China. The damage evolution in the rockburst test was investigated from two aspects including fracture surface crack and fragment characteristics. The scanning electron microscopy was used to observe the micro crack information on fragment surface. Combing binarization and box counting dimensions, the fractal dimensions of cracks were obtained. Meanwhile,the fragments were collected and a sieving experiment was conducted. We weighed the fragments qualities, counted the amount of fragments and measured the fragments length, width and thickness.Utilizing four methods to calculate damage fractal dimensions of fragments, the trend of fractal value changing with unloading rates can be roughly described. It can be concluded from these experiments that the fractal dimension either for crack or for fragment holds a decreasing trend with the decreasing unloading rate, indicating a reduction of damage level.