In this note, we give a sufficient condition for Mi-group. In particular, we show that if a finite group G is the semidirect product of two subgroups with coprime orders, in which one is a Sylow tower group and its Sy...In this note, we give a sufficient condition for Mi-group. In particular, we show that if a finite group G is the semidirect product of two subgroups with coprime orders, in which one is a Sylow tower group and its Sylow subgroups are all abelian, and the other is an Mi-group and all of its proper subgroups are also Mi-groups, then G is an Mi-group.展开更多
文摘In this note, we give a sufficient condition for Mi-group. In particular, we show that if a finite group G is the semidirect product of two subgroups with coprime orders, in which one is a Sylow tower group and its Sylow subgroups are all abelian, and the other is an Mi-group and all of its proper subgroups are also Mi-groups, then G is an Mi-group.