Effects of ultrasonic on morphologies of primary Mg2Si crystals in in-situ Mg2Si/A1 composite were investigated by metallographic microscopy and field emission scanning electron microscopy. The results show that the m...Effects of ultrasonic on morphologies of primary Mg2Si crystals in in-situ Mg2Si/A1 composite were investigated by metallographic microscopy and field emission scanning electron microscopy. The results show that the mean grain size of primary MgESi crystals is refined from 150 to 20 μm by high intensity ultrasonic, and the morphologies of primary MgESi crystals are changed as well. Optical microscopy reveals that primary MgESi crystals without ultrasonic vibration exhibit coarse particles with cavities, in which eutectic structures grow. However, primary Mg2Si crystals with ultrasonic vibration appear fine grains without any cavity. Three-dimensional morphologies of primary Mg2Si without ultrasonic vibration display octahedron and tetrakaidecahedron with hopper-like hole in the crystals. After ultrasonic vibration, primary Mg2Si particles become solid crystals with rounded comers and edges.展开更多
The Mg_(2)Si-matrix thermoelectric material was synthesized by low temperature solid-state reaction.This paper studies the effects of holding time and reaction temperature on the particle size and the properties of th...The Mg_(2)Si-matrix thermoelectric material was synthesized by low temperature solid-state reaction.This paper studies the effects of holding time and reaction temperature on the particle size and the properties of the material,and also studies effects of doping elemental Sb,Te and their doping seqence on the properties of the material.The result shows that excessively high temperature and elongated holding time of solid-state reaction are harmful,there is a range of particle size to ensure optimum properties and the doping sequence of Sb or Te without influencing the properties.展开更多
The modification effects of ytterbium(Yb), Na_3PO_4 and Yb + Na_3PO_4 on primary Mg_2Si phase in Mg-4Si alloys were investigated by means of X-ray diffraction(XRD), optical microscopy(OM), scanning electron microscopy...The modification effects of ytterbium(Yb), Na_3PO_4 and Yb + Na_3PO_4 on primary Mg_2Si phase in Mg-4Si alloys were investigated by means of X-ray diffraction(XRD), optical microscopy(OM), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS) analysis in this work. The results indicate that the morphology of the primary Mg_2Si phase apparently changes from coarse dendrites to fine dispersive polygonal particles and the mean size decreases from 276.6 μm to 7.1 μm, with combined modification of 0.8wt.% Yb and 2.64 wt.% Na_3PO_4. Such a morphological evolution results in improvement in the ultimate tensile strength and elongation of the alloys as compared to the base alloy. This may be attributed to the formation of the YbP particles that acted as the heterogeneous nucleation substrates for the primary Mg_2Si particles, resulting in a refined distribution of these precipitates. The results of XRD examination show that there was no reaction between Si and Yb or Na_3PO_4. Solo addition of Yb or Na_3PO_4 into the melt has no real modification effect on the microstructure, but the primary Mg_2Si particles and α-Mg phases become coarser than that in the unmodified alloy.展开更多
文摘Effects of ultrasonic on morphologies of primary Mg2Si crystals in in-situ Mg2Si/A1 composite were investigated by metallographic microscopy and field emission scanning electron microscopy. The results show that the mean grain size of primary MgESi crystals is refined from 150 to 20 μm by high intensity ultrasonic, and the morphologies of primary MgESi crystals are changed as well. Optical microscopy reveals that primary MgESi crystals without ultrasonic vibration exhibit coarse particles with cavities, in which eutectic structures grow. However, primary Mg2Si crystals with ultrasonic vibration appear fine grains without any cavity. Three-dimensional morphologies of primary Mg2Si without ultrasonic vibration display octahedron and tetrakaidecahedron with hopper-like hole in the crystals. After ultrasonic vibration, primary Mg2Si particles become solid crystals with rounded comers and edges.
文摘The Mg_(2)Si-matrix thermoelectric material was synthesized by low temperature solid-state reaction.This paper studies the effects of holding time and reaction temperature on the particle size and the properties of the material,and also studies effects of doping elemental Sb,Te and their doping seqence on the properties of the material.The result shows that excessively high temperature and elongated holding time of solid-state reaction are harmful,there is a range of particle size to ensure optimum properties and the doping sequence of Sb or Te without influencing the properties.
基金financially supported by the Fundamental Research Funds for Central Universities(Grant No.:XDJK2015B001)
文摘The modification effects of ytterbium(Yb), Na_3PO_4 and Yb + Na_3PO_4 on primary Mg_2Si phase in Mg-4Si alloys were investigated by means of X-ray diffraction(XRD), optical microscopy(OM), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS) analysis in this work. The results indicate that the morphology of the primary Mg_2Si phase apparently changes from coarse dendrites to fine dispersive polygonal particles and the mean size decreases from 276.6 μm to 7.1 μm, with combined modification of 0.8wt.% Yb and 2.64 wt.% Na_3PO_4. Such a morphological evolution results in improvement in the ultimate tensile strength and elongation of the alloys as compared to the base alloy. This may be attributed to the formation of the YbP particles that acted as the heterogeneous nucleation substrates for the primary Mg_2Si particles, resulting in a refined distribution of these precipitates. The results of XRD examination show that there was no reaction between Si and Yb or Na_3PO_4. Solo addition of Yb or Na_3PO_4 into the melt has no real modification effect on the microstructure, but the primary Mg_2Si particles and α-Mg phases become coarser than that in the unmodified alloy.