Mg2FeH6 doped with and without Ti and its alloys (TiMn2, TiAl) were prepared combing ball milling and heat treatment. The effects of these additives on the dehydrogenation performance of Mg2FeH6 were studied systemati...Mg2FeH6 doped with and without Ti and its alloys (TiMn2, TiAl) were prepared combing ball milling and heat treatment. The effects of these additives on the dehydrogenation performance of Mg2FeH6 were studied systematically. The results show that all additives have favor influence on improving the hydrogen desorption property of Mg2FeH6. Especially, TiMn2 exhibits prominent effect on enhancing the dehydrogenation kinetics of Mg2FeH6. Moreover, the activation energy of TiMn2-doped Mg2FeH6 calculated by Kissinger equation is 94.87 kJ/mol, which is 28 kJ/mol lower than that of the undoped Mg2FeH6. The cycling tests suggest that the improved dehydrogenation kinetics of Mg2FeH6 doped by TiMn2 can maintain in the second cycle.展开更多
Mg-20wt.%Fe_(23)Y_(8) composite was successfully prepared by reactive mechanical alloying(RMA).X-ray diffraction(XRD)measurement shows that the main phases of composite are MgH_(2) and Mg2FeH6.The composite exhibits e...Mg-20wt.%Fe_(23)Y_(8) composite was successfully prepared by reactive mechanical alloying(RMA).X-ray diffraction(XRD)measurement shows that the main phases of composite are MgH_(2) and Mg2FeH6.The composite exhibits excellent hydrogen abs/desorption properties and can absorb 4.36wt.%and 5.72wt.%hydrogen at 473 and 573 K in 10 min under 3.0 MPa hydrogen pressure,respectively.The composite can desorb 5.27wt.%hydrogen at 573 K in 30 min under 0.02 MPa hydrogen pressure.Compared with the pure MgH_(2),the hydrogen desorption temperature of Mg-20wt.%Fe_(23)Y_(8) composite is decreased about 40℃.It is supposed that both the catalyst effect of Fe-Y distributed in Mg substrate and the crystal defects play the main role in improving hydrogen sorption properties of Mg-20wt.%Fe_(23)Y_(8) composite.展开更多
基金Project(2010CB631300)supported by the National Basic Research Program of ChinaProject(2012AA051503)supported by the National High Technology Research&Development Program of China+1 种基金Projects(51001090,51171173)supported by the National Natural Science Foundation of ChinaProject(IRT13037)supported by the Program for Innovative Research Team in University of Ministry of Education of China
文摘Mg2FeH6 doped with and without Ti and its alloys (TiMn2, TiAl) were prepared combing ball milling and heat treatment. The effects of these additives on the dehydrogenation performance of Mg2FeH6 were studied systematically. The results show that all additives have favor influence on improving the hydrogen desorption property of Mg2FeH6. Especially, TiMn2 exhibits prominent effect on enhancing the dehydrogenation kinetics of Mg2FeH6. Moreover, the activation energy of TiMn2-doped Mg2FeH6 calculated by Kissinger equation is 94.87 kJ/mol, which is 28 kJ/mol lower than that of the undoped Mg2FeH6. The cycling tests suggest that the improved dehydrogenation kinetics of Mg2FeH6 doped by TiMn2 can maintain in the second cycle.
基金This work was financially supported by the Ministry of Science and Technology of China(No.2003AA518010).
文摘Mg-20wt.%Fe_(23)Y_(8) composite was successfully prepared by reactive mechanical alloying(RMA).X-ray diffraction(XRD)measurement shows that the main phases of composite are MgH_(2) and Mg2FeH6.The composite exhibits excellent hydrogen abs/desorption properties and can absorb 4.36wt.%and 5.72wt.%hydrogen at 473 and 573 K in 10 min under 3.0 MPa hydrogen pressure,respectively.The composite can desorb 5.27wt.%hydrogen at 573 K in 30 min under 0.02 MPa hydrogen pressure.Compared with the pure MgH_(2),the hydrogen desorption temperature of Mg-20wt.%Fe_(23)Y_(8) composite is decreased about 40℃.It is supposed that both the catalyst effect of Fe-Y distributed in Mg substrate and the crystal defects play the main role in improving hydrogen sorption properties of Mg-20wt.%Fe_(23)Y_(8) composite.