Mgo-Cao refractories are widely used in the iron and steel metalurgy industry due to their advantages of purifying molten steel,high refractoriness,good thermal shock resistance,and excellent corrosion resistance to b...Mgo-Cao refractories are widely used in the iron and steel metalurgy industry due to their advantages of purifying molten steel,high refractoriness,good thermal shock resistance,and excellent corrosion resistance to basic slags.However,hydration occurs during the manufacturing,storage,and transportation of refractories,which severely limits their application.Mgo-CaO clinker is the main raw material for Mgo-Cao refractories,and its hydration resistance determines the development of the latter case.Herein,the Mgo-Cao clinker was modified using myristic acid as the modifying agent by the liquid-phase deposition method.The effects of the particle size of the raw materials,concentration of myristic acid,treatment temperature and time on the phase composition and hydration resistance of the modified Mgo-Cao clinkers were investigated in detail.The results show that the samples with an agent concentration of 0.25 mol L^(-1) and treated at 25℃ for 1 h exhibit the optimal hydration resistance properties,namely a low hydration mass gain rate(0.23%)and a large water contact angle(152.9).展开更多
MgO-CaO(40 wt.%CaO)refractory aggregates were prepared using the calcined dolomite and light-burned magnesia fine powder as raw materials and TiO_(2) as additive.The effect of TiO_(2) on their phase composition,micros...MgO-CaO(40 wt.%CaO)refractory aggregates were prepared using the calcined dolomite and light-burned magnesia fine powder as raw materials and TiO_(2) as additive.The effect of TiO_(2) on their phase composition,microstructures and properties was investigated by X-ray diffraction and scanning electron microscopy.The properties such as bulk density,apparent porosity,relative aggregate tube strength and hydration resistance were also investigated.The results showed that the CaTiO_(3) generated by the reaction between CaO and TiO_(2) was distributed around the CaO grain boundaries and intermittently distributed with MgO,which formed an isolation layer around CaO and greatly improved the hydration resistance.Meanwhile,the introduction of TiO_(2) promoted sintering and increased the grain size,further improving the strengths and hydration resistance of the materials.In addition,the most significant enhancement in the hydration resistance and strengths of the samples was achieved when 1.0-2.0 wt.%TiO_(2) was added.In this case,the relative strength of aggregate increased from 33.3% to 37.3%-43.1%,and the mass gain after the hydration test decreased from 3.13% to 1.26%-1.45%.展开更多
MgO–CaO refractories have attracted much attention in the field of clean steel due to the ability of their internal CaO to adsorb elements such as S and P in molten steel.However,there are still some problems such as...MgO–CaO refractories have attracted much attention in the field of clean steel due to the ability of their internal CaO to adsorb elements such as S and P in molten steel.However,there are still some problems such as difficult sintering and insufficient corrosion resistance existing in this system.Different contents of Y_(2)O_(3)were introduced into MgO–CaO system to prepare MgO–CaO–Y_(2)O_(3)ternary refractories via traditional and induction sintering methods.The influence of microstructural regulation on the slag-resistant properties of the refractories was investigated.The results show that the introduction of Y_(2)O_(3)in the MgO–CaO refractories prepared via the two sintering methods leads to the grain boundary reconstruction effect.Under the condition of traditional sintering,when a smaller amount of Y_(2)O_(3)is introduced into the MgO–CaO refractories,Y_(2)O_(3)is able to activate the lattice,promote sintering,and improve the densification of the refractories.However,when more Y_(2)O_(3)is introduced,the excess Y_(2)O_(3)hinders the sintering densification process.Combined with lamellar intergranular phase generated in the refractories,Y_(2)O_(3)-based solid solution can react with the slag,increase the slag viscosity and inhibit the penetration of the slag into the refractories.Under the condition of induction sintering,the solid solution of yttrium ions in CaO is increased by using the coupling of electromagnetic and thermal fields.Compared with the MgO–CaO refractories with high Y_(2)O_(3)content prepared by traditional sintering,the induction sintered refractories have higher densification,which further increases the corrosion resistance.The results provide a new path for developing long-life MgO–CaO based refractories.展开更多
MgO-CaO ceramics with enhanced microhardness and hydration resistance were successfully prepared by doping Y_(2)O_(3)in this work.The effects of introducing Y_(2)O_(3)on the microstructure and properties of MgO-CaO ce...MgO-CaO ceramics with enhanced microhardness and hydration resistance were successfully prepared by doping Y_(2)O_(3)in this work.The effects of introducing Y_(2)O_(3)on the microstructure and properties of MgO-CaO ceramics were investigated.The microstructural regulation effects of Y_(2)O_(3)additive on MgO,CaO,and MgO-CaO ceramics were analyzed comparatively.The results show that Y_(2)O_(3)dissolves into the CaO lattice to form solid solution in CaO ceramics,and no obvious intergranular phase forms.While the Y_(2)O_(3)additive leads to the micro structural reconstruction in MgO and MgO-CaO ceramics.By adding Y_(2)O_(3),SiO_(2)impurity from magnesium source reacts with CaO to form the silicate phases containing Y^(3+)ions in MgO-CaO ceramics.The increase in the MgO/CaO interface and the microstructural reconstruction synergistically improves the microhardness and hydration resistance of MgO-CaO ceramics markedly.展开更多
基金National Natural Science Foundation of China(Grants 52202025 and U23A20559)Natural Science Foundation of Hubei Province(Grant 2022CFB629)+1 种基金"The 14^(th)Five-Year Plan"Hubei Provincial Advantaged Characteristic Disciplines(Groups)Project of Wuhan University of Science and Technology(2023A0307).
文摘Mgo-Cao refractories are widely used in the iron and steel metalurgy industry due to their advantages of purifying molten steel,high refractoriness,good thermal shock resistance,and excellent corrosion resistance to basic slags.However,hydration occurs during the manufacturing,storage,and transportation of refractories,which severely limits their application.Mgo-CaO clinker is the main raw material for Mgo-Cao refractories,and its hydration resistance determines the development of the latter case.Herein,the Mgo-Cao clinker was modified using myristic acid as the modifying agent by the liquid-phase deposition method.The effects of the particle size of the raw materials,concentration of myristic acid,treatment temperature and time on the phase composition and hydration resistance of the modified Mgo-Cao clinkers were investigated in detail.The results show that the samples with an agent concentration of 0.25 mol L^(-1) and treated at 25℃ for 1 h exhibit the optimal hydration resistance properties,namely a low hydration mass gain rate(0.23%)and a large water contact angle(152.9).
基金the Key Project of the National Natural Science Foundation of China(Grant Nos.U21A2058 and 51802235)the Hubei Science and Technology Innovation Talent Project(Grant No.2023DJC087).
文摘MgO-CaO(40 wt.%CaO)refractory aggregates were prepared using the calcined dolomite and light-burned magnesia fine powder as raw materials and TiO_(2) as additive.The effect of TiO_(2) on their phase composition,microstructures and properties was investigated by X-ray diffraction and scanning electron microscopy.The properties such as bulk density,apparent porosity,relative aggregate tube strength and hydration resistance were also investigated.The results showed that the CaTiO_(3) generated by the reaction between CaO and TiO_(2) was distributed around the CaO grain boundaries and intermittently distributed with MgO,which formed an isolation layer around CaO and greatly improved the hydration resistance.Meanwhile,the introduction of TiO_(2) promoted sintering and increased the grain size,further improving the strengths and hydration resistance of the materials.In addition,the most significant enhancement in the hydration resistance and strengths of the samples was achieved when 1.0-2.0 wt.%TiO_(2) was added.In this case,the relative strength of aggregate increased from 33.3% to 37.3%-43.1%,and the mass gain after the hydration test decreased from 3.13% to 1.26%-1.45%.
基金financially supported by the National Natural Science Foundation of China(Nos.U20A20239 and U21A2057)the Key Research and Development Project of Hubei Province,China(No.2023BEB017)2023 Longzhong Talent Support Plan(23).
文摘MgO–CaO refractories have attracted much attention in the field of clean steel due to the ability of their internal CaO to adsorb elements such as S and P in molten steel.However,there are still some problems such as difficult sintering and insufficient corrosion resistance existing in this system.Different contents of Y_(2)O_(3)were introduced into MgO–CaO system to prepare MgO–CaO–Y_(2)O_(3)ternary refractories via traditional and induction sintering methods.The influence of microstructural regulation on the slag-resistant properties of the refractories was investigated.The results show that the introduction of Y_(2)O_(3)in the MgO–CaO refractories prepared via the two sintering methods leads to the grain boundary reconstruction effect.Under the condition of traditional sintering,when a smaller amount of Y_(2)O_(3)is introduced into the MgO–CaO refractories,Y_(2)O_(3)is able to activate the lattice,promote sintering,and improve the densification of the refractories.However,when more Y_(2)O_(3)is introduced,the excess Y_(2)O_(3)hinders the sintering densification process.Combined with lamellar intergranular phase generated in the refractories,Y_(2)O_(3)-based solid solution can react with the slag,increase the slag viscosity and inhibit the penetration of the slag into the refractories.Under the condition of induction sintering,the solid solution of yttrium ions in CaO is increased by using the coupling of electromagnetic and thermal fields.Compared with the MgO–CaO refractories with high Y_(2)O_(3)content prepared by traditional sintering,the induction sintered refractories have higher densification,which further increases the corrosion resistance.The results provide a new path for developing long-life MgO–CaO based refractories.
基金Project supported by the National Natural Science Foundation of China(U20A20239,U21A2057)the Key Research and Development Project of Hubei Province(2021BAD002)。
文摘MgO-CaO ceramics with enhanced microhardness and hydration resistance were successfully prepared by doping Y_(2)O_(3)in this work.The effects of introducing Y_(2)O_(3)on the microstructure and properties of MgO-CaO ceramics were investigated.The microstructural regulation effects of Y_(2)O_(3)additive on MgO,CaO,and MgO-CaO ceramics were analyzed comparatively.The results show that Y_(2)O_(3)dissolves into the CaO lattice to form solid solution in CaO ceramics,and no obvious intergranular phase forms.While the Y_(2)O_(3)additive leads to the micro structural reconstruction in MgO and MgO-CaO ceramics.By adding Y_(2)O_(3),SiO_(2)impurity from magnesium source reacts with CaO to form the silicate phases containing Y^(3+)ions in MgO-CaO ceramics.The increase in the MgO/CaO interface and the microstructural reconstruction synergistically improves the microhardness and hydration resistance of MgO-CaO ceramics markedly.