MgO-CaO(40 wt.%CaO)refractory aggregates were prepared using the calcined dolomite and light-burned magnesia fine powder as raw materials and TiO_(2) as additive.The effect of TiO_(2) on their phase composition,micros...MgO-CaO(40 wt.%CaO)refractory aggregates were prepared using the calcined dolomite and light-burned magnesia fine powder as raw materials and TiO_(2) as additive.The effect of TiO_(2) on their phase composition,microstructures and properties was investigated by X-ray diffraction and scanning electron microscopy.The properties such as bulk density,apparent porosity,relative aggregate tube strength and hydration resistance were also investigated.The results showed that the CaTiO_(3) generated by the reaction between CaO and TiO_(2) was distributed around the CaO grain boundaries and intermittently distributed with MgO,which formed an isolation layer around CaO and greatly improved the hydration resistance.Meanwhile,the introduction of TiO_(2) promoted sintering and increased the grain size,further improving the strengths and hydration resistance of the materials.In addition,the most significant enhancement in the hydration resistance and strengths of the samples was achieved when 1.0-2.0 wt.%TiO_(2) was added.In this case,the relative strength of aggregate increased from 33.3% to 37.3%-43.1%,and the mass gain after the hydration test decreased from 3.13% to 1.26%-1.45%.展开更多
Fenton-like technology based on peroxymonosulfate activation has shown great potential in refractory organics degradation.In this work,single Fe atom catalysts were synthesized through facile ball milling and exhibite...Fenton-like technology based on peroxymonosulfate activation has shown great potential in refractory organics degradation.In this work,single Fe atom catalysts were synthesized through facile ball milling and exhibited very high performance in peroxymonosulfate activation.The Fe single-atom filled an N vacancy on the triazine ring edge of C_(3)N_(4),as confirmed through X-ray absorption fine structure,density functional calculation and elec-tron paramagnetic resonance.The SAFe_(0.4)–C_(3)N_(4)/PMS system could completely remove phenol(20 mg/L)within 10 min and its first-order kinetic constant was 12.3 times that of the Fe_(3)O_(4)/PMS system.Under different ini-tial pH levels and in various anionic environments,SAFe_(0.4)–C_(3)N_(4) still demonstrated excellent catalytic activity,achieving a removal rate of over 90%for phenol within 12 min.In addition,SAFe_(0.4)–C_(3)N_(4) exhibited outstanding selectivity in reaction systems with different pollutants,showing excellent degradation effects on electron-rich pollutants only.Hydroxyl radicals(•OH),singlet oxygen(1O_(2))and high-valent iron oxide(Fe(Ⅳ)=O)were de-tected in the SAFe_(0.4)–C_(3)N_(4)/PMS system through free radical capture experiments.Further experiments on the quenching of active species and a methyl phenyl sulfoxide probe confirmed that 1O_(2) and Fe(Ⅳ)=O played dom-inant roles.Additionally,the change in the current response after adding PMS and phenol in succession proved that a direct electron transfer path between organic matter and the catalyst surface was unlikely to exist in the SAFe_(0.4)–C_(3)N_(4)/PMS/Phenol degradation system.This study provides a new demonstration of the catalytic mech-anism of single-atom catalysts.展开更多
MgO–CaO refractories have attracted much attention in the field of clean steel due to the ability of their internal CaO to adsorb elements such as S and P in molten steel.However,there are still some problems such as...MgO–CaO refractories have attracted much attention in the field of clean steel due to the ability of their internal CaO to adsorb elements such as S and P in molten steel.However,there are still some problems such as difficult sintering and insufficient corrosion resistance existing in this system.Different contents of Y_(2)O_(3) were introduced into MgO–CaO system to prepare MgO–CaO–Y_(2)O_(3) ternary refractories via traditional and induction sintering methods.The influence of microstructural regulation on the slag-resistant properties of the refractories was investigated.The results show that the introduction of Y_(2)O_(3) in the MgO–CaO refractories prepared via the two sintering methods leads to the grain boundary reconstruction effect.Under the condition of traditional sintering,when a smaller amount of Y_(2)O_(3) is introduced into the MgO–CaO refractories,Y_(2)O_(3) is able to activate the lattice,promote sintering,and improve the densification of the refractories.However,when more Y_(2)O_(3) is introduced,the excess Y_(2)O_(3) hinders the sintering densification process.Combined with lamellar intergranular phase generated in the refractories,Y_(2)O_(3)-based solid solution can react with the slag,increase the slag viscosity and inhibit the penetration of the slag into the refractories.Under the condition of induction sintering,the solid solution of yttrium ions in CaO is increased by using the coupling of electromagnetic and thermal fields.Compared with the MgO–CaO refractories with high Y_(2)O_(3) content prepared by traditional sintering,the induction sintered refractories have higher densification,which further increases the corrosion resistance.The results provide a new path for developing long-life MgO–CaO based refractories.展开更多
Magnesiu-Calcia materials containing 22 -53 wt% CaO hare been investigated Jot refinery slag corrosion and penetration resistance by Scanning Electron Microscopy ( SEM) .nd XRD. The corrosion and penetration resista...Magnesiu-Calcia materials containing 22 -53 wt% CaO hare been investigated Jot refinery slag corrosion and penetration resistance by Scanning Electron Microscopy ( SEM) .nd XRD. The corrosion and penetration resistance of MgO-CaO materials is enhanced with the increase of CaO content in specimens. It can be explained that, with increase of CaO content, the specimens reacted will+ slag form higher melting point minerals of C3S ant C2S, creating a dense surface layer, which stopped others from penetrating further. Thus , the corrosion and penetration resistame was improved. No matter what kinds of slag were chosen, the depth of penetration decreased will+ increase of CaO con,tent.展开更多
Corrosion resistance and penetration resistance of MgO-CaO materials with different CaO contents (22%, 42%, 49%, 53%, in mass)to refining AOD slag or VOD slag were investigated using static crucible technique by vis...Corrosion resistance and penetration resistance of MgO-CaO materials with different CaO contents (22%, 42%, 49%, 53%, in mass)to refining AOD slag or VOD slag were investigated using static crucible technique by visual observation, SEM and XRD. The corrosion resistance and penetration resistance of speci-mens decrease with the increase of CaO content. This may be caused by the formation of C3S and C2S during the reactions between specimens and the slag. The formed C3S and C2S can restrain the further penetration to the matrix. The higher the CaO content, the more the C2S or C3S formed, the lower the porosity of the speci-mens, and the lower the penetration depth and corrosion rate. The corrosion resistance to AOD slag is better than that to VOD slag, because the reaction between AOD slag and the matrix is slighter than that between VOD slag and the matrix.展开更多
The interaction of MgO-MgAl_(2)O_(4)-based and MgO-Cr_(2)O_(3)-based refractories with X70 molten steel was studied by immersion experiments at 1560℃.The effects of immersion time(30 and 60 min)on the contents of tot...The interaction of MgO-MgAl_(2)O_(4)-based and MgO-Cr_(2)O_(3)-based refractories with X70 molten steel was studied by immersion experiments at 1560℃.The effects of immersion time(30 and 60 min)on the contents of total oxygen(TO),Al,Nb,Si,Mn,and Cr as well as the composition,number density,and size distribution of inclusions in the molten steel were investigated.The influence of the penetration and erosion degree of the molten steel to the refractory on the steel-refractory interface layer was analyzed.The results show that,at 1560℃,the MgO-MgAl_(2)O_(4)-based refractory can better control the contents of TO and the composition of molten steel compared with the MgO-Cr_(2)O_(3)-based refractory.The TO content is only 16×10^(-4) wt.%in the molten steel after reacted with the Mg0-MgAl_(2)O_(4)-based refractory at the end point of refining,4 accounting for 11.5%of that reacted with the MgO-Cr_(2)O_(3)-based refractory(139×10^(-4) wt.%).The number density of inclusions is only 14 mm^(-2),and the average size ofinclusions is only 1.31μm,with thelargest proportion of inclusions in 1-2μm(70%).The Al_(2)O_(3)-MnS-CaO complex inclusions in the original steel changed to complex inclusions dominated by Cr-Nb-Mn-S-O and MgO.Al_(2)O_(3),corresponding to the MgO-Cr_(2)O_(3)-based and MgO-MgAl_(2)O_(4)-based refractories,respectively.The MgO.Al_(2)O_(3) layer was formed at the reaction interface between MgO-MgAl_(2)O_(4)-based refractory and molten steel,which is helpful to restrict the erosion of refractories and the pollution of molten steel.The damage mechanism of the MgO-Cr_(2)O_(3)-based refractory is mainly permeation and chemical reaction,while the damage of the MgO-MgAl_(2)O_(4)-based refractory is mainlyscouring erosion.展开更多
1 Scope This standard specifies the definition and test methods of flowability of dense and insulating refractory castables, and moulding equipment, moulding methods, curing and drying conditions of castables samples.
1 Scope This standard specifies the terms, definition, di-mension series, size designation representation, dimen-sion standard representation, brick dimension, and di- mension characteristics of general refractory bri...1 Scope This standard specifies the terms, definition, di-mension series, size designation representation, dimen-sion standard representation, brick dimension, and di- mension characteristics of general refractory bricks.展开更多
This standard specifies the definitions, theory, apparatus, specimens, procedures, test results and disposal, test error and report of test method for refractoriness under load of refractory products (non-differentia...This standard specifies the definitions, theory, apparatus, specimens, procedures, test results and disposal, test error and report of test method for refractoriness under load of refractory products (non-differential, with rising temperature).展开更多
This standard specifies the terms and definitions, theory, apparatus, specimens, test procedures, calcu- lation results, apparatus check and test reports, etc. of abrasion resistance at ambient temperature of refracto...This standard specifies the terms and definitions, theory, apparatus, specimens, test procedures, calcu- lation results, apparatus check and test reports, etc. of abrasion resistance at ambient temperature of refractory products.展开更多
1 Scope This standard specifies the terms, definitions, classifications, brands, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage and quality certificate of ...1 Scope This standard specifies the terms, definitions, classifications, brands, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage and quality certificate of ceramic fiher and the products.展开更多
Refractory wounds cause significant harm to the health of patients and the most common treatments in clinical practice are surgical debridement and wound dressings.However,certain challenges,including surgical difficu...Refractory wounds cause significant harm to the health of patients and the most common treatments in clinical practice are surgical debridement and wound dressings.However,certain challenges,including surgical difficulty,lengthy recovery times,and a high recurrence rate persist.Conductive hydrogel dressings with combined monitoring and therapeutic properties have strong advantages in promoting wound healing due to the stimulation of endogenous current on wounds and are the focus of recent advancements.Therefore,this review introduces the mechanism of conductive hydrogel used for wound monitoring and healing,the materials selection of conductive hydrogel dressings used for wound monitoring,focuses on the conductive hydrogel sensor to monitor the output categories of wound status signals,proving invaluable for non-invasive,real-time evaluation of wound condition to encourage wound healing.Notably,the research of artificial intelligence(AI)model based on sensor derived data to predict the wound healing state,AI makes use of this abundant data set to forecast and optimize the trajectory of tissue regeneration and assess the stage of wound healing.Finally,refractory wounds including pressure ulcers,diabetes ulcers and articular wounds,and the corresponding wound monitoring and healing process are discussed in detail.This manuscript supports the growth of clinically linked disciplines and offers motivation to researchers working in the multidisciplinary field of conductive hydrogel dressings.展开更多
Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-depo...Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-deposited and remelted were developed to refine the microstructure and enhance the oxidation resistance of refractory high entropy alloy using electron beam freeform fabrication(EBF3).Finer and short-range ordering structures were observed in the remelted sample,whereas the Al-deposited sample showcased the formation of silicide and intermetallic phases.High-temperature cyclic and isothermal oxidation tests at 1000℃ were carried out.The total weight gain after 60 h of cyclic oxidation decreased by 17.49%and 30.46%for the remelted and deposited samples,respectively,compared to the as-cast state.Oxidation kinetics reveal an evident lower mass gain and oxidation rate in the treated samples.A multilayer oxide consisting of TiO_(2)+Al_(2)O_(3)+SiO_(2)+AlNbO_(4) was studied for its excellent oxidation resistance.The oxidation behavior of rutile,corundum and other oxides was analyzed using first principles calculations and chemical defect analysis.Overall,this research,which introduces novel treatments,offers promising insights for enhancing the inherent oxidation resistance of refractory high entropy alloys.展开更多
AIM:To assess the efficacy and safety of ultrasound cycloplasty(UCP)in lowering intraocular pressure(IOP)among Chinese patients suffering from refractory glaucoma.METHODS:In this 12-month retrospective study,28 patien...AIM:To assess the efficacy and safety of ultrasound cycloplasty(UCP)in lowering intraocular pressure(IOP)among Chinese patients suffering from refractory glaucoma.METHODS:In this 12-month retrospective study,28 patients with refractory glaucoma(IOP≥25 mm Hg)were treated with 8-second UCP using either 8 or 10 probe sectors.The principal measure of efficacy was the decrease in IOP at the following intervals after UCP:1d,1,3,6,and 12mo,with each measurement compared to baseline.RESULTS:Mean IOP(in mm Hg)was reduced from 46.8±8.9 to 24.5±3.2,27.0±4.8,29.1±4.6,26.1±4.5,and 28.3±4.8 at 1d,1,3,6,and 12mo postoperatively,respectively.Compared to baseline,IOP reductions at these time points were 45.0%,39.9%,35.3%,41.4%,and 36.7%,respectively.Most patients experienced relief from ocular pain after surgery.No cases of choroidal detachment or hypotony was observed.CONCLUSION:UCP is effective in reducing IOP among Chinese patients with refractory glaucoma and shows a favorable safety profile.展开更多
Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uni...Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uniform deformation that occurs at room temperature.Once cracks nucleate,they will rapidly propagate into vertical splitting cracks.Here,we introduce multiple phases including FCC and HCP phases into the NbMoTa RMEA via appropriate addition of carbon.The results show that multiple-phase synergy effectively suppresses non-uniform deformation,thereby delaying the onset of vertical splitting cracks.An optimal combination of compressive strength-plasticity is achieved by the(NbMoTa)_(92.5)C_(7.5) alloy.The significant improvement in room-temperature mechanical properties can be attributed to its hierarchical microstructure:in the mesoscale,the BCC matrix is divided by eutectic structures;while at the microscale,the BCC matrix is further refined by abundant lath-like FCC precipitates.The FCC precip-itates contain high-density stacking faults,acting as a dislocation source under compressive loading.The HCP phase in the eutectic microstructures,in turn,acts as a strong barrier to dislocation movement and simultaneously increases the dislocation storage capacity.These findings open a new route to tailor the microstructure and mechanical properties of RH/MEAs.展开更多
Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ord...Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ordering characteristic is destroyed after dislocation shearing.Meanwhile,the local chemical order(LCO)cannot provide an adequate strengthening effect due to its small size.展开更多
Grain boundary engineering plays a significant role in the improvement of strength and plasticity of alloys. However, in refractory high-entropy alloys, the susceptibility of grain boundaries to oxygen presents a bott...Grain boundary engineering plays a significant role in the improvement of strength and plasticity of alloys. However, in refractory high-entropy alloys, the susceptibility of grain boundaries to oxygen presents a bottleneck in achieving high mechanical performance. Creating a large number of clean grain boundaries in refractory high-entropy alloys is a challenge. In this study, an ultrafine-grained (UFG) NbMoTaW alloy with high grain-boundary cohesion was prepared by powder metallurgy, taking advantages of rapid hot-pressing sintering and full-process inert atmosphere protection from powder synthesis to sintering. By oxygen control and an increase in the proportion of grain boundaries, the segregation of oxygen and formation of oxides at grain boundaries were strongly mitigated, thus the intrinsic high cohesion of the interfaces was preserved. Compared to the coarse-grained alloys prepared by arc-melting and those sintered by traditional powder metallurgy methods, the UFG NbMoTaW alloy demonstrated simultaneously increased strength and plasticity at ambient temperature. The highly cohesive grain boundaries not only reduce brittle fractures effectively but also promote intragranular deformation. Consequently, the UFG NbMoTaW alloy achieved a high yield strength even at elevated temperatures, with a remarkable performance of 1117 MPa at 1200 ℃. This work provides a feasible solution for producing refractory high-entropy alloys with low impurity content, refined microstructure, and excellent mechanical performance.展开更多
Hydrogen-based mineral phase transformation(HMPT)technology has demonstrated its effectiveness in separating iron and enriching rare earths from Bayan Obo refractory ores.However,further research is needed to clarify ...Hydrogen-based mineral phase transformation(HMPT)technology has demonstrated its effectiveness in separating iron and enriching rare earths from Bayan Obo refractory ores.However,further research is needed to clarify the phase composition and floatability of rare earths obtained after HMPT owing to the associated phase transformations.This study explored the mineralogical characteristics and separation behavior of rare earths in HMPT-treated iron tailings.Process mineralogy studies conducted via BGRIMM process mineralogy analysis and X-ray diffraction revealed that the main valuable minerals in the tailings included rare-earth oxides(9.15wt%),monazite(5.31wt%),and fluorite(23.52wt%).The study also examined the impact of mineral liberation and gangue mineral intergrowth on flotation performance.Flotation tests achieved a rare-earth oxide(REO)grade of 74.12wt% with a recovery of 34.17% in open-circuit flotation,whereas closed-circuit flotation resulted in a REO grade of 60.27wt% with a recovery of 73%.Transmission electron microscopy and scanning electron microscopy coupled with energy-dispersive spectroscopy revealed that monazite remained stable during the HMPT process,while bastnaesite was transformed into Ce_(7)O_(12)and CeF_(3),leading to increased collector consumption.Nonetheless,the HMPT process did not significantly affect the flotation performance of rare earths.The enrichment of fluorite in the tailings highlighted its further recovery potential.The integration of HMPT with magnetic separation and flotation presents an efficient strategy for recovering rare earths,iron,and fluorite from Bayan Obo ores.展开更多
Refractory high-entropy alloys(RHEAs)are promising for high-temperature applications due to their ex-ceptional mechanical properties at high temperatures.However,limited studies on their high-temperature fatigue behav...Refractory high-entropy alloys(RHEAs)are promising for high-temperature applications due to their ex-ceptional mechanical properties at high temperatures.However,limited studies on their high-temperature fatigue behavior hinder further development.This study systematically investigates the low-cycle fatigue(LCF)behavior of HfNbTiZr RHEA at room temperature(25℃)and elevated temperatures(350,450,and 600℃)through a combination of experimental analyses and dislocation-based damage-coupled crystal plasticity finite element(CPFE)simulations,to unveil the effects of creep damage on LCF behavior at varying temperatures.The results indicate that the LCF life dramatically decreases at an increased tem-perature,shifting from transgranular fatigue damage at lower temperatures(25-350℃)to a dual damage mechanism involving both intergranular fatigue and creep damage at higher temperatures(450-600℃).At 600℃,creep damage notably contributes to the accumulation of geometrically necessary dislocations(GNDs),crack initiation,and propagation at grain boundaries,and thus accelerates LCF failure.Compara-tive CPFE simulations reveal that creep damage significantly contributes to cyclic softening and reduction in elastic modulus,which also amplifies the strain localization under the LCF loading.The contribution of creep damage to the total stored energy density(SED)representing the overall damage increases with temperatures,accounting for 11%at 600℃.Additionally,CPFE simulations indicate that the creep dam-age notably influences the magnitude of GND density localized at grain boundaries.This study provides critical insights into the fatigue damage mechanisms of RHEAs,offering valuable guidance for their ap-plication in high temperatures.展开更多
BACKGROUND A case study of multiple distinct levels of skipped thoracolumbar spine infection was reported in which 13 successful vacuum sealing drainage(VSD)surgeries were treated.CASE SUMMARY The patient underwent a ...BACKGROUND A case study of multiple distinct levels of skipped thoracolumbar spine infection was reported in which 13 successful vacuum sealing drainage(VSD)surgeries were treated.CASE SUMMARY The patient underwent a total of 13 procedures within our medical facility,including five performed under local anesthesia and eight performed under general anesthesia.The source of the ailment was ultimately identified as Enterobacter cloacae.After the last procedure,the patient's symptoms were alleviated,and the recovery process was satisfactory.Three months post-operation,the Japanese Orthopaedic Association scores had improved to 100%.Imageological examination revealed a satisfactory position of internal fixation,and the abnormal signals in the vertebral body and intervertebral space had been eliminated when compared to the pre-operative results.CONCLUSION The study demonstrates that the extreme lateral approach debridement combined with multiple VSD operations is a secure and successful method of treatment for recurrent spinal infection,providing an alternative to traditional surgery.展开更多
基金the Key Project of the National Natural Science Foundation of China(Grant Nos.U21A2058 and 51802235)the Hubei Science and Technology Innovation Talent Project(Grant No.2023DJC087).
文摘MgO-CaO(40 wt.%CaO)refractory aggregates were prepared using the calcined dolomite and light-burned magnesia fine powder as raw materials and TiO_(2) as additive.The effect of TiO_(2) on their phase composition,microstructures and properties was investigated by X-ray diffraction and scanning electron microscopy.The properties such as bulk density,apparent porosity,relative aggregate tube strength and hydration resistance were also investigated.The results showed that the CaTiO_(3) generated by the reaction between CaO and TiO_(2) was distributed around the CaO grain boundaries and intermittently distributed with MgO,which formed an isolation layer around CaO and greatly improved the hydration resistance.Meanwhile,the introduction of TiO_(2) promoted sintering and increased the grain size,further improving the strengths and hydration resistance of the materials.In addition,the most significant enhancement in the hydration resistance and strengths of the samples was achieved when 1.0-2.0 wt.%TiO_(2) was added.In this case,the relative strength of aggregate increased from 33.3% to 37.3%-43.1%,and the mass gain after the hydration test decreased from 3.13% to 1.26%-1.45%.
基金supported by the National Natural Science Foundation of China(Nos.22406081,22276086,22306086)the Natural Science Foundation of Jiangxi Province(No.20232BAB213029),all of which are greatly acknowledged by the authors.
文摘Fenton-like technology based on peroxymonosulfate activation has shown great potential in refractory organics degradation.In this work,single Fe atom catalysts were synthesized through facile ball milling and exhibited very high performance in peroxymonosulfate activation.The Fe single-atom filled an N vacancy on the triazine ring edge of C_(3)N_(4),as confirmed through X-ray absorption fine structure,density functional calculation and elec-tron paramagnetic resonance.The SAFe_(0.4)–C_(3)N_(4)/PMS system could completely remove phenol(20 mg/L)within 10 min and its first-order kinetic constant was 12.3 times that of the Fe_(3)O_(4)/PMS system.Under different ini-tial pH levels and in various anionic environments,SAFe_(0.4)–C_(3)N_(4) still demonstrated excellent catalytic activity,achieving a removal rate of over 90%for phenol within 12 min.In addition,SAFe_(0.4)–C_(3)N_(4) exhibited outstanding selectivity in reaction systems with different pollutants,showing excellent degradation effects on electron-rich pollutants only.Hydroxyl radicals(•OH),singlet oxygen(1O_(2))and high-valent iron oxide(Fe(Ⅳ)=O)were de-tected in the SAFe_(0.4)–C_(3)N_(4)/PMS system through free radical capture experiments.Further experiments on the quenching of active species and a methyl phenyl sulfoxide probe confirmed that 1O_(2) and Fe(Ⅳ)=O played dom-inant roles.Additionally,the change in the current response after adding PMS and phenol in succession proved that a direct electron transfer path between organic matter and the catalyst surface was unlikely to exist in the SAFe_(0.4)–C_(3)N_(4)/PMS/Phenol degradation system.This study provides a new demonstration of the catalytic mech-anism of single-atom catalysts.
基金financially supported by the National Natural Science Foundation of China(Nos.U20A20239 and U21A2057)the Key Research and Development Project of Hubei Province,China(No.2023BEB017)2023 Longzhong Talent Support Plan(23).
文摘MgO–CaO refractories have attracted much attention in the field of clean steel due to the ability of their internal CaO to adsorb elements such as S and P in molten steel.However,there are still some problems such as difficult sintering and insufficient corrosion resistance existing in this system.Different contents of Y_(2)O_(3) were introduced into MgO–CaO system to prepare MgO–CaO–Y_(2)O_(3) ternary refractories via traditional and induction sintering methods.The influence of microstructural regulation on the slag-resistant properties of the refractories was investigated.The results show that the introduction of Y_(2)O_(3) in the MgO–CaO refractories prepared via the two sintering methods leads to the grain boundary reconstruction effect.Under the condition of traditional sintering,when a smaller amount of Y_(2)O_(3) is introduced into the MgO–CaO refractories,Y_(2)O_(3) is able to activate the lattice,promote sintering,and improve the densification of the refractories.However,when more Y_(2)O_(3) is introduced,the excess Y_(2)O_(3) hinders the sintering densification process.Combined with lamellar intergranular phase generated in the refractories,Y_(2)O_(3)-based solid solution can react with the slag,increase the slag viscosity and inhibit the penetration of the slag into the refractories.Under the condition of induction sintering,the solid solution of yttrium ions in CaO is increased by using the coupling of electromagnetic and thermal fields.Compared with the MgO–CaO refractories with high Y_(2)O_(3) content prepared by traditional sintering,the induction sintered refractories have higher densification,which further increases the corrosion resistance.The results provide a new path for developing long-life MgO–CaO based refractories.
文摘Magnesiu-Calcia materials containing 22 -53 wt% CaO hare been investigated Jot refinery slag corrosion and penetration resistance by Scanning Electron Microscopy ( SEM) .nd XRD. The corrosion and penetration resistance of MgO-CaO materials is enhanced with the increase of CaO content in specimens. It can be explained that, with increase of CaO content, the specimens reacted will+ slag form higher melting point minerals of C3S ant C2S, creating a dense surface layer, which stopped others from penetrating further. Thus , the corrosion and penetration resistame was improved. No matter what kinds of slag were chosen, the depth of penetration decreased will+ increase of CaO con,tent.
文摘Corrosion resistance and penetration resistance of MgO-CaO materials with different CaO contents (22%, 42%, 49%, 53%, in mass)to refining AOD slag or VOD slag were investigated using static crucible technique by visual observation, SEM and XRD. The corrosion resistance and penetration resistance of speci-mens decrease with the increase of CaO content. This may be caused by the formation of C3S and C2S during the reactions between specimens and the slag. The formed C3S and C2S can restrain the further penetration to the matrix. The higher the CaO content, the more the C2S or C3S formed, the lower the porosity of the speci-mens, and the lower the penetration depth and corrosion rate. The corrosion resistance to AOD slag is better than that to VOD slag, because the reaction between AOD slag and the matrix is slighter than that between VOD slag and the matrix.
基金support from the National Natural Science Foundation of China(Grant Nos.U1860205 and 52204352)Youth Project of Hubei Natural Science Foundation(Grant No.2022CFB593)+1 种基金Key R&D Project of Hubei Province(Grant No.2022BAA021)Guiding Project of Scientific Research Plan of Hubei Provincial Department of Education(Grant No.B2022019).
文摘The interaction of MgO-MgAl_(2)O_(4)-based and MgO-Cr_(2)O_(3)-based refractories with X70 molten steel was studied by immersion experiments at 1560℃.The effects of immersion time(30 and 60 min)on the contents of total oxygen(TO),Al,Nb,Si,Mn,and Cr as well as the composition,number density,and size distribution of inclusions in the molten steel were investigated.The influence of the penetration and erosion degree of the molten steel to the refractory on the steel-refractory interface layer was analyzed.The results show that,at 1560℃,the MgO-MgAl_(2)O_(4)-based refractory can better control the contents of TO and the composition of molten steel compared with the MgO-Cr_(2)O_(3)-based refractory.The TO content is only 16×10^(-4) wt.%in the molten steel after reacted with the Mg0-MgAl_(2)O_(4)-based refractory at the end point of refining,4 accounting for 11.5%of that reacted with the MgO-Cr_(2)O_(3)-based refractory(139×10^(-4) wt.%).The number density of inclusions is only 14 mm^(-2),and the average size ofinclusions is only 1.31μm,with thelargest proportion of inclusions in 1-2μm(70%).The Al_(2)O_(3)-MnS-CaO complex inclusions in the original steel changed to complex inclusions dominated by Cr-Nb-Mn-S-O and MgO.Al_(2)O_(3),corresponding to the MgO-Cr_(2)O_(3)-based and MgO-MgAl_(2)O_(4)-based refractories,respectively.The MgO.Al_(2)O_(3) layer was formed at the reaction interface between MgO-MgAl_(2)O_(4)-based refractory and molten steel,which is helpful to restrict the erosion of refractories and the pollution of molten steel.The damage mechanism of the MgO-Cr_(2)O_(3)-based refractory is mainly permeation and chemical reaction,while the damage of the MgO-MgAl_(2)O_(4)-based refractory is mainlyscouring erosion.
文摘1 Scope This standard specifies the definition and test methods of flowability of dense and insulating refractory castables, and moulding equipment, moulding methods, curing and drying conditions of castables samples.
文摘1 Scope This standard specifies the terms, definition, di-mension series, size designation representation, dimen-sion standard representation, brick dimension, and di- mension characteristics of general refractory bricks.
文摘This standard specifies the definitions, theory, apparatus, specimens, procedures, test results and disposal, test error and report of test method for refractoriness under load of refractory products (non-differential, with rising temperature).
文摘This standard specifies the terms and definitions, theory, apparatus, specimens, test procedures, calcu- lation results, apparatus check and test reports, etc. of abrasion resistance at ambient temperature of refractory products.
文摘1 Scope This standard specifies the terms, definitions, classifications, brands, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage and quality certificate of ceramic fiher and the products.
基金supports received from Scientific Research Fund of Liaoning Province Education Department(Grant No.JYTQN 2023025)Scientific Research Fund of Liaoning Province Education Department(Grant No.JYTQN 2023025)+3 种基金the Natural Science Foundation of Liaoning Province(Grant No.2024-MS-075)the National Natural Science Foundation of China(32201179)National Key R&D Program of China(2023YFC2508200)Liaoning Provincial Natural Science Foundation Joint Fund(General Support Program Project)(2023-MSBA-093).
文摘Refractory wounds cause significant harm to the health of patients and the most common treatments in clinical practice are surgical debridement and wound dressings.However,certain challenges,including surgical difficulty,lengthy recovery times,and a high recurrence rate persist.Conductive hydrogel dressings with combined monitoring and therapeutic properties have strong advantages in promoting wound healing due to the stimulation of endogenous current on wounds and are the focus of recent advancements.Therefore,this review introduces the mechanism of conductive hydrogel used for wound monitoring and healing,the materials selection of conductive hydrogel dressings used for wound monitoring,focuses on the conductive hydrogel sensor to monitor the output categories of wound status signals,proving invaluable for non-invasive,real-time evaluation of wound condition to encourage wound healing.Notably,the research of artificial intelligence(AI)model based on sensor derived data to predict the wound healing state,AI makes use of this abundant data set to forecast and optimize the trajectory of tissue regeneration and assess the stage of wound healing.Finally,refractory wounds including pressure ulcers,diabetes ulcers and articular wounds,and the corresponding wound monitoring and healing process are discussed in detail.This manuscript supports the growth of clinically linked disciplines and offers motivation to researchers working in the multidisciplinary field of conductive hydrogel dressings.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFF0609000)National Natural Science Foundation of China(Grant Nos.52171034 and 52101037)Postdoctoral Fellowship Program of CPSFara(No.GZB20230944).
文摘Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-deposited and remelted were developed to refine the microstructure and enhance the oxidation resistance of refractory high entropy alloy using electron beam freeform fabrication(EBF3).Finer and short-range ordering structures were observed in the remelted sample,whereas the Al-deposited sample showcased the formation of silicide and intermetallic phases.High-temperature cyclic and isothermal oxidation tests at 1000℃ were carried out.The total weight gain after 60 h of cyclic oxidation decreased by 17.49%and 30.46%for the remelted and deposited samples,respectively,compared to the as-cast state.Oxidation kinetics reveal an evident lower mass gain and oxidation rate in the treated samples.A multilayer oxide consisting of TiO_(2)+Al_(2)O_(3)+SiO_(2)+AlNbO_(4) was studied for its excellent oxidation resistance.The oxidation behavior of rutile,corundum and other oxides was analyzed using first principles calculations and chemical defect analysis.Overall,this research,which introduces novel treatments,offers promising insights for enhancing the inherent oxidation resistance of refractory high entropy alloys.
基金Supported by the Shanghai Science and Technology Committee Project Foundation(No.21Y11909700)Guangci Innovative Technology Sailing Plan(Ruijin Hospital 2022).
文摘AIM:To assess the efficacy and safety of ultrasound cycloplasty(UCP)in lowering intraocular pressure(IOP)among Chinese patients suffering from refractory glaucoma.METHODS:In this 12-month retrospective study,28 patients with refractory glaucoma(IOP≥25 mm Hg)were treated with 8-second UCP using either 8 or 10 probe sectors.The principal measure of efficacy was the decrease in IOP at the following intervals after UCP:1d,1,3,6,and 12mo,with each measurement compared to baseline.RESULTS:Mean IOP(in mm Hg)was reduced from 46.8±8.9 to 24.5±3.2,27.0±4.8,29.1±4.6,26.1±4.5,and 28.3±4.8 at 1d,1,3,6,and 12mo postoperatively,respectively.Compared to baseline,IOP reductions at these time points were 45.0%,39.9%,35.3%,41.4%,and 36.7%,respectively.Most patients experienced relief from ocular pain after surgery.No cases of choroidal detachment or hypotony was observed.CONCLUSION:UCP is effective in reducing IOP among Chinese patients with refractory glaucoma and shows a favorable safety profile.
基金financial support from the Na-tional Natural Science Foundation of China(No.52231006)National Key Research and Development Program of China(No.2017YFB0702003)the National Natural Science Foundation of China(No.51871217).
文摘Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uniform deformation that occurs at room temperature.Once cracks nucleate,they will rapidly propagate into vertical splitting cracks.Here,we introduce multiple phases including FCC and HCP phases into the NbMoTa RMEA via appropriate addition of carbon.The results show that multiple-phase synergy effectively suppresses non-uniform deformation,thereby delaying the onset of vertical splitting cracks.An optimal combination of compressive strength-plasticity is achieved by the(NbMoTa)_(92.5)C_(7.5) alloy.The significant improvement in room-temperature mechanical properties can be attributed to its hierarchical microstructure:in the mesoscale,the BCC matrix is divided by eutectic structures;while at the microscale,the BCC matrix is further refined by abundant lath-like FCC precipitates.The FCC precip-itates contain high-density stacking faults,acting as a dislocation source under compressive loading.The HCP phase in the eutectic microstructures,in turn,acts as a strong barrier to dislocation movement and simultaneously increases the dislocation storage capacity.These findings open a new route to tailor the microstructure and mechanical properties of RH/MEAs.
基金supported by the National Natural Science Foundation of China(Nos.52171166 and U20A20231)the Natural Science Foundation of Hunan Province,China(Nos.2024JJ2060 and 2024JJ5406)+1 种基金the Key Laboratory of Materials in Dynamic Extremes of Sichuan Province(No.2023SCKT1102)the Postgraduate Scientific Research Innovation Project of National University of Defense Technology(No.XJJC2024065).
文摘Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ordering characteristic is destroyed after dislocation shearing.Meanwhile,the local chemical order(LCO)cannot provide an adequate strengthening effect due to its small size.
基金supported by the National Natural Science Foundation of China(Nos.52371128,52304378,52101031 and 92163107).
文摘Grain boundary engineering plays a significant role in the improvement of strength and plasticity of alloys. However, in refractory high-entropy alloys, the susceptibility of grain boundaries to oxygen presents a bottleneck in achieving high mechanical performance. Creating a large number of clean grain boundaries in refractory high-entropy alloys is a challenge. In this study, an ultrafine-grained (UFG) NbMoTaW alloy with high grain-boundary cohesion was prepared by powder metallurgy, taking advantages of rapid hot-pressing sintering and full-process inert atmosphere protection from powder synthesis to sintering. By oxygen control and an increase in the proportion of grain boundaries, the segregation of oxygen and formation of oxides at grain boundaries were strongly mitigated, thus the intrinsic high cohesion of the interfaces was preserved. Compared to the coarse-grained alloys prepared by arc-melting and those sintered by traditional powder metallurgy methods, the UFG NbMoTaW alloy demonstrated simultaneously increased strength and plasticity at ambient temperature. The highly cohesive grain boundaries not only reduce brittle fractures effectively but also promote intragranular deformation. Consequently, the UFG NbMoTaW alloy achieved a high yield strength even at elevated temperatures, with a remarkable performance of 1117 MPa at 1200 ℃. This work provides a feasible solution for producing refractory high-entropy alloys with low impurity content, refined microstructure, and excellent mechanical performance.
基金the financial support received from the Key Program of National Natural Science Foundation of China(No.52130406)the National Key R&D Program of China(Nos.2021YFC2901000 and 2022YFC2905800)+1 种基金the General Program of National Natural Science Foundation of China(No.52274253)Natural Science Foundation Innovation Group Project of Hubei Province,China(No.2023AFA044)。
文摘Hydrogen-based mineral phase transformation(HMPT)technology has demonstrated its effectiveness in separating iron and enriching rare earths from Bayan Obo refractory ores.However,further research is needed to clarify the phase composition and floatability of rare earths obtained after HMPT owing to the associated phase transformations.This study explored the mineralogical characteristics and separation behavior of rare earths in HMPT-treated iron tailings.Process mineralogy studies conducted via BGRIMM process mineralogy analysis and X-ray diffraction revealed that the main valuable minerals in the tailings included rare-earth oxides(9.15wt%),monazite(5.31wt%),and fluorite(23.52wt%).The study also examined the impact of mineral liberation and gangue mineral intergrowth on flotation performance.Flotation tests achieved a rare-earth oxide(REO)grade of 74.12wt% with a recovery of 34.17% in open-circuit flotation,whereas closed-circuit flotation resulted in a REO grade of 60.27wt% with a recovery of 73%.Transmission electron microscopy and scanning electron microscopy coupled with energy-dispersive spectroscopy revealed that monazite remained stable during the HMPT process,while bastnaesite was transformed into Ce_(7)O_(12)and CeF_(3),leading to increased collector consumption.Nonetheless,the HMPT process did not significantly affect the flotation performance of rare earths.The enrichment of fluorite in the tailings highlighted its further recovery potential.The integration of HMPT with magnetic separation and flotation presents an efficient strategy for recovering rare earths,iron,and fluorite from Bayan Obo ores.
基金National Science Foundation of China(Nos.52401212 and52401214)the National Science Foundation of Jiangsu Province(No.BK20241020)+1 种基金the Avi-ation Foundation(No.2023Z0530S6004)the Jiangsu Province University Collaborative Innovation Centre(High-Tech Ships)Pro-gram(No.XTCX202401).
文摘Refractory high-entropy alloys(RHEAs)are promising for high-temperature applications due to their ex-ceptional mechanical properties at high temperatures.However,limited studies on their high-temperature fatigue behavior hinder further development.This study systematically investigates the low-cycle fatigue(LCF)behavior of HfNbTiZr RHEA at room temperature(25℃)and elevated temperatures(350,450,and 600℃)through a combination of experimental analyses and dislocation-based damage-coupled crystal plasticity finite element(CPFE)simulations,to unveil the effects of creep damage on LCF behavior at varying temperatures.The results indicate that the LCF life dramatically decreases at an increased tem-perature,shifting from transgranular fatigue damage at lower temperatures(25-350℃)to a dual damage mechanism involving both intergranular fatigue and creep damage at higher temperatures(450-600℃).At 600℃,creep damage notably contributes to the accumulation of geometrically necessary dislocations(GNDs),crack initiation,and propagation at grain boundaries,and thus accelerates LCF failure.Compara-tive CPFE simulations reveal that creep damage significantly contributes to cyclic softening and reduction in elastic modulus,which also amplifies the strain localization under the LCF loading.The contribution of creep damage to the total stored energy density(SED)representing the overall damage increases with temperatures,accounting for 11%at 600℃.Additionally,CPFE simulations indicate that the creep dam-age notably influences the magnitude of GND density localized at grain boundaries.This study provides critical insights into the fatigue damage mechanisms of RHEAs,offering valuable guidance for their ap-plication in high temperatures.
基金Supported by Natural Science Foundation of Shandong Province,No.ZR2023MH331.
文摘BACKGROUND A case study of multiple distinct levels of skipped thoracolumbar spine infection was reported in which 13 successful vacuum sealing drainage(VSD)surgeries were treated.CASE SUMMARY The patient underwent a total of 13 procedures within our medical facility,including five performed under local anesthesia and eight performed under general anesthesia.The source of the ailment was ultimately identified as Enterobacter cloacae.After the last procedure,the patient's symptoms were alleviated,and the recovery process was satisfactory.Three months post-operation,the Japanese Orthopaedic Association scores had improved to 100%.Imageological examination revealed a satisfactory position of internal fixation,and the abnormal signals in the vertebral body and intervertebral space had been eliminated when compared to the pre-operative results.CONCLUSION The study demonstrates that the extreme lateral approach debridement combined with multiple VSD operations is a secure and successful method of treatment for recurrent spinal infection,providing an alternative to traditional surgery.