Laboratory experiments and thermodynamic calculations were performed to investigate the interfacial reactions between the MgO-C refractory and the steel with and without the lanthanum(La)addition.Following a reaction ...Laboratory experiments and thermodynamic calculations were performed to investigate the interfacial reactions between the MgO-C refractory and the steel with and without the lanthanum(La)addition.Following a reaction time of 50 min,a reaction layer comprised MgO and CaS with a thickness of 30μm was observed at the interface between the La-free steel and refractory.The MgO layer was observed in La-bearing steel after just 10 min of reaction.The addition of La to the steel accelerated the formation of the MgO layer.As the reaction time increased,a La-containing layer was formed at the La-bearing steel/refractory interface.This La-containing layer progressed through stages from La_(2)O_(2)S+La2O3→La-Ca-O-S→La-Ca-O→La-Ca-Al-O.Furthermore,the evolution of oxide inclusions in the La-free steel followed the sequence of MgO⋅Al_(2)O_(3),Ti-Ca-Al-O and Ti-Mg-Al-O→MgO·Al_(2)O_(3)and MgO with increasing the reaction time.In contrast,the sequence for the La-bearing steel was:La_(2)O_(2)S and La2O3→La_(2)O_(2)S and La-Ti-Al-Mg-O→La-Ti-Al-Mg-O,MgO and MgO·Al_(2)O_(3).The average penetration depth of the La-bearing steel into the refractory was notably lower than that of the La-free steel,revealing that the incorporation of rare earth element La in steel exhibits a significant inhibitory effect on the penetration of molten steel into the MgO-C refractory.展开更多
Nitrogen gas pressure sintering was successfully employed to achieve the in-situ formation of Si_(3)N_(4)-bonded MgO-C refractories.The primary objective was to investigate the influence of different gas pressures on ...Nitrogen gas pressure sintering was successfully employed to achieve the in-situ formation of Si_(3)N_(4)-bonded MgO-C refractories.The primary objective was to investigate the influence of different gas pressures on the mechanical properties and microstructure of MgO-C refractories.The results indicate that higher nitrogen pressure promotes the transformation of silicon nitride from theαphase to theβphase.This phase transition positively impacts the mechanical properties of Si_(3)N_(4)-bonded MgO-C refractories,leading to an enhancement in their overall strength.Notably,when the nitrogen pressure was set at 3 MPa,exceptional compressive strength of 109.7 MPa and an elastic modulus of 142.4 GPa were achieved by these prepared refractories.These findings highlight the great potential for utilizing gas pressure sintered Si_(3)N_(4)-MgO-C refractories.展开更多
Wetting phenomena between MgO C and CaO SiO2 slags were investigated by varying carbon content.A sessile drop technique was adopted to study the wetting phenomena in conjunction with a high speed camera for the observ...Wetting phenomena between MgO C and CaO SiO2 slags were investigated by varying carbon content.A sessile drop technique was adopted to study the wetting phenomena in conjunction with a high speed camera for the observation of intrinsic wetting phenomena.The results show that the high content of SiO2 and the presence of Al2O3 in slags enhance the diffusion of Mg2+,leading to the promotion of reactive wetting.The carbon in MgO C refractory impedes the penetration of slags by repelling the slag and slowing the diffusion of Mg2+.This accounts for the non-wetting behavior of the slag on MgO C refractory with 17% (mass fraction) carbon similar to that of graphite.展开更多
In-situ magnesia-rich spinel fiber was formed resulting from the addition of ferrocene into MgO-C refractory matrixes. The formation of in-situ spinel fiber was detected to start at 1300 ℃. The amount, diameter and l...In-situ magnesia-rich spinel fiber was formed resulting from the addition of ferrocene into MgO-C refractory matrixes. The formation of in-situ spinel fiber was detected to start at 1300 ℃. The amount, diameter and length of the fibers increased with rising temperature. Ferrocene may have catalytic effects on the growth of the fibers in two aspects. First, the reaction between MgO and C and the decomposition of Al4C3 may be catalyzed at high temperature. Suitable concentration gaseous phase is then created for vapor-vapor reaction which could result in the in-situ formation of fibers. Second, Fe nanoparticle produced from ferrocene can act as catalytic droplets and catalyze the growth of the fibers. The fibers are formed via the vapor-liquid-solid and vapor-solid mechanisms. In terms of chemical thermodynamics, the partial pressure of CO and Mg(g) are found to play an important role in the in-situ fibers formation. Different concentration of vapors affects the size, amount and composition of the fibers at different temperatures. The mechanical properties of MgO-C brick was found to be improved by ferrocene addition.展开更多
The influence of V2O3, FeO, TiO2, MnO and MgO in vanadium slag on the corrosion mechanism of MgO-C bricks was studied by stationary immersion tests at vanadium-extracting temperature. Experimental results show that Fe...The influence of V2O3, FeO, TiO2, MnO and MgO in vanadium slag on the corrosion mechanism of MgO-C bricks was studied by stationary immersion tests at vanadium-extracting temperature. Experimental results show that FeO, TiO2, and MnO could enhance the corrosion rate and V2O3 and MgO could decrease it. Microstructure and phase composition of worn samples were investigated by SEM-EDS, revealing the presence of Fe particles, produced by graphite reduction, and (Mg,Fe,Mn)O solid solution at the interface. The formation process of (Mg,Fe,Mn)O solid solution was discussed and the corrosion mechnism of MgO-C bricks was thus proposed.展开更多
The effect of Al content in molten steel on the interaction between SPHC steel(0.005-0.068 wt.%Al,and 19×10^(-4)-58×10^(-4)wt.%O)and MgO-C refractory(11.63 wt.%C)was investigated.Non-metallic inclusions in t...The effect of Al content in molten steel on the interaction between SPHC steel(0.005-0.068 wt.%Al,and 19×10^(-4)-58×10^(-4)wt.%O)and MgO-C refractory(11.63 wt.%C)was investigated.Non-metallic inclusions in the steel were examined at various periods(0,5,15,30,45,and 60 min)as well as the MgO-C interface after 60 min of corrosion at 1600℃.The results show that when MgO-C refractory comes into contact with SPHC steel,the refractory interface consists of three layers arranged from the innermost to the outermost,including the original refractory layer,the dense MgO layer,and the iron infiltration layer.The carbon in the MgO-C refractories and the Al content in the molten steel undergo a reaction with the MgO in the refractories,resulting in an increase in Mg concentration in the steel.Increasing Al content in the molten steel from 0.005 to 0.068 wt.%causes a spinel layer to appear at the interface,and the disappearance time of Al_(2)O_(3) inclusions in the steel decreases from 60 to 30 min,while the average MgO content in inclusions increases.Therefore,controlling the Al content in the molten steel and the smelting duration can help regulate the formation of spinel inclusionsinthe steel.展开更多
This standard specifies the classification,specification, test method, quality appraisal procedure,labeling, packing, transportation, storage and quality certification of silica brick for coke oven.
This study aims to provide the basic knowledge for furnace refractory design by investigating refractory property changes occurred in a hydrogen atmosphere.Since refractory bricks are thermodynamically stable in a hyd...This study aims to provide the basic knowledge for furnace refractory design by investigating refractory property changes occurred in a hydrogen atmosphere.Since refractory bricks are thermodynamically stable in a hydrogen atmosphere at 1100°C,we tried to find out the minute changes.In this experiment,a refractory brick was prepared by andalusite,mullite chamotte,and clay as raw materials and heated to 1100°C in a 100%hydrogen atmosphere for 72 h.It was found that the strength of the brick was decreased and the color was changed to black by the reduction of impurities.And in addition,this study covered research on the slaking risk of MgO raw materials because the minimum temperature is expected to 400°C in fluidized reduction furnaces unlike shaft furnaces.展开更多
Al_(4)SiC_(4) was synthesized from Al powder, silicon carbide, and graphite by microwave sintering, and characterized by XRD and SEM. Then the synthesized material was added to the magnesia carbon refractory brick to ...Al_(4)SiC_(4) was synthesized from Al powder, silicon carbide, and graphite by microwave sintering, and characterized by XRD and SEM. Then the synthesized material was added to the magnesia carbon refractory brick to study its effect on the oxidation resistance, apparent porosity, bulk density, elastic modulus, and modulus of rupture. It is found that Al_(4)SiC_(4) can be synthesized by microwave sintering at 1 300 ℃ and the addition of Al_(4)SiC_(4)-containing material as an antioxidant can enhance the oxidation resistance of the magnesia carbon refractory brick.展开更多
The interaction between the slag containing titanium oxides(TiO2of 2.0 %-20.0%)and a MgO-C based refractory was investigated by immersion test.The relationship between TiO2 content in slag and corrosion rate of the re...The interaction between the slag containing titanium oxides(TiO2of 2.0 %-20.0%)and a MgO-C based refractory was investigated by immersion test.The relationship between TiO2 content in slag and corrosion rate of the refractory was studied.The microstructure and compositions of the corroded refractory were analyzed by SEM and X-ray diffraction.The corrosion mechanism of MgO-C based refractory in the slag containing titanium was proposed,and the effects of TiO2 content,slag basicity(ωCaO/ωSiO2)and temperature in molten bath on the corrosion rate of the refractory were obtained.展开更多
MgO-C refractories with stainless steel fibers were prepared to investigate the effects of stainless steel fibers addition on the thermal shock resistance,oxidation resistance,and microstructure of MgO-C refractories,...MgO-C refractories with stainless steel fibers were prepared to investigate the effects of stainless steel fibers addition on the thermal shock resistance,oxidation resistance,and microstructure of MgO-C refractories,and the optimum amount of stainless steel fibers was determined.The results showed that adding stainless steel fiber in MgO-C refractories can increase flexural strength and thermal shock resistance,with an optimal addition of 2 wt.%,owing to the bridging effect and crack deflection toughening of stainless steel fibers inside the material.The formation of MgAl1.9Fe0.1O4 composite spinel,which was responsible for higher oxidation resistance,produced volume expansion and prevented the diffusion of oxygen.The strengthening mechanism is physical embedding at room temperature,while it is reaction bonding at high temperature.展开更多
In establishing a plant or factory, the cost-benefit analysis is needed to determine the viability for such financial investment on the project. In this paper, the cost establishing a factory of 200,000 bricks per ann...In establishing a plant or factory, the cost-benefit analysis is needed to determine the viability for such financial investment on the project. In this paper, the cost establishing a factory of 200,000 bricks per annum capacity, for the production of high quality refractory bricks from locally available raw materials in Nigeria was evaluated. The evaluation was conducted on the virgin refractory material (100%) as well as with varied percentages (10% - 40%) of alumina additions. The result of cost benefit analysis indicated that, the project was viable, with the highest cost at N1,203.66 per brick as against N1,800 (at 3 years projections) of the imported brick. The payback period for the capital investment was very short (within two years). The findings will aid investors in decision makings.展开更多
1 Scope This standard specifies the classification, technical requirements, test methods, quality appraisal procedures, packing, marking, transportation, storage, and quality certificate of silica refractory bricks.
1 Scope This standard specifies the classification, shape and dimension, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage, and quality certificate of high a...1 Scope This standard specifies the classification, shape and dimension, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage, and quality certificate of high alumina insulating bricks.展开更多
Conventional MgO-C bricks(graphite content>14 wt.%)produce a great deal of greenhouse gas emission,while low-carbon MgO-C bricks have serious thermal shock resistance during high-temperature service.To enhance the ...Conventional MgO-C bricks(graphite content>14 wt.%)produce a great deal of greenhouse gas emission,while low-carbon MgO-C bricks have serious thermal shock resistance during high-temperature service.To enhance the high-temperature mechanical property and thermal shock resistance of low-carbon MgO-C bricks,a novel route of introducing ZrSiO_(4) powder into low-carbon MgO-C bricks was reported in such refractories with 2 wt.% flaky graphite.The results indicate that the low-carbon MgO-C brick with 0.5 wt.%ZrSiO_(4) addition has the maximum hot modulus of rupture at 1400℃ and the corresponding specimen fired in the carbon embedded atmosphere has the maximum residual strength ratio(98.6%)after three thermal shock cycles.It is found that some needle-like AlON and plate-like Al_(2)O_(3)-ZrO_(2) composites were in situ formed in the matrices after the low-carbon MgO-C bricks were coked at 1400℃,which can enhance the high-temperature mechanical property and thermal shock resistance due to the effect of fiber toughening and particle toughening.Moreover,CO_(2) emission of the newly developed low-carbon MgO-C bricks is reduced by 58.3% per ton steel after using them as the working lining of a 90 t vacuum oxygen decarburization ladle.展开更多
This standard specifies the classification,dimensions, technical requirement, testing method.inspection principle, package, marking, packing,transportation, storage and quality certificate.
This standard specifies the sort, technical requirement, test method, inspection rules, marking, packing, transportation, storage and quality certification of high alumina refractory bricks for electric arc furnace ro...This standard specifies the sort, technical requirement, test method, inspection rules, marking, packing, transportation, storage and quality certification of high alumina refractory bricks for electric arc furnace roofs.展开更多
To solve the problem of poor high-temperature service performance caused by low carbonization of MgO-C refractories,low-carbon MgO–C refractories with excellent thermal shock,oxidation and corrosion resistances were ...To solve the problem of poor high-temperature service performance caused by low carbonization of MgO-C refractories,low-carbon MgO–C refractories with excellent thermal shock,oxidation and corrosion resistances were successfully designed by using SiC whiskers as reinforcing phases and introducing micro-Al_(2)O_(3) powders as additives.The results indicated that the addition of micro-Al_(2)O_(3) powders optimized the internal structure of the material,like the columnar β-Si_(3)N_(4) with a stepped distribution and the mosaic structure formed between granular and flaky Mg_(2)SiO_(4),which synergistically strengthened and toughened the material and gave the material excellent mechanical properties and thermal shock resistance.Specifically,the cold modulus of rupture and cold crushing strength after thermal shock were increased by 4.1 and 20.3 MPa,respectively.Moreover,the addition of micro-Al_(2)O_(3) powders promoted the formation of fine particles of Mg_(2)SiO_(4),MgAl_(2)O_(4) and MgO,as well as a dense protective layer of Mg_(2)SiO_(4) in the material under high-temperature environment.Furthermore,spinel and high-temperature solid solution were formed in the corrosion environment.The oxidation and corrosion resistances were greatly improved by 41%and 15%,respectively.展开更多
This standard specifies the classification, shape, dimension, technical requirements, test method, inspection rules, packing, marking, transportation, storage and quality certification of fireclay refractory bricks fo...This standard specifies the classification, shape, dimension, technical requirements, test method, inspection rules, packing, marking, transportation, storage and quality certification of fireclay refractory bricks for hot blast stove.展开更多
基金the support from the National Key R&D Program(No.2023YFB3709900)the National Key R&D Program(No.2023YFB3709901)+2 种基金the National Natural Science Foundation of China(Grant No.U22A20171)the Hebei Natural Science Foundation(Grant No.52304340)the High Steel Center(HSC)at North China University of Technology.
文摘Laboratory experiments and thermodynamic calculations were performed to investigate the interfacial reactions between the MgO-C refractory and the steel with and without the lanthanum(La)addition.Following a reaction time of 50 min,a reaction layer comprised MgO and CaS with a thickness of 30μm was observed at the interface between the La-free steel and refractory.The MgO layer was observed in La-bearing steel after just 10 min of reaction.The addition of La to the steel accelerated the formation of the MgO layer.As the reaction time increased,a La-containing layer was formed at the La-bearing steel/refractory interface.This La-containing layer progressed through stages from La_(2)O_(2)S+La2O3→La-Ca-O-S→La-Ca-O→La-Ca-Al-O.Furthermore,the evolution of oxide inclusions in the La-free steel followed the sequence of MgO⋅Al_(2)O_(3),Ti-Ca-Al-O and Ti-Mg-Al-O→MgO·Al_(2)O_(3)and MgO with increasing the reaction time.In contrast,the sequence for the La-bearing steel was:La_(2)O_(2)S and La2O3→La_(2)O_(2)S and La-Ti-Al-Mg-O→La-Ti-Al-Mg-O,MgO and MgO·Al_(2)O_(3).The average penetration depth of the La-bearing steel into the refractory was notably lower than that of the La-free steel,revealing that the incorporation of rare earth element La in steel exhibits a significant inhibitory effect on the penetration of molten steel into the MgO-C refractory.
基金the financial support from the National Natural Science Foundation of China(U21A2057 and 52402034)the Key Research and Development Program of Hubei Province(2023BAB106).
文摘Nitrogen gas pressure sintering was successfully employed to achieve the in-situ formation of Si_(3)N_(4)-bonded MgO-C refractories.The primary objective was to investigate the influence of different gas pressures on the mechanical properties and microstructure of MgO-C refractories.The results indicate that higher nitrogen pressure promotes the transformation of silicon nitride from theαphase to theβphase.This phase transition positively impacts the mechanical properties of Si_(3)N_(4)-bonded MgO-C refractories,leading to an enhancement in their overall strength.Notably,when the nitrogen pressure was set at 3 MPa,exceptional compressive strength of 109.7 MPa and an elastic modulus of 142.4 GPa were achieved by these prepared refractories.These findings highlight the great potential for utilizing gas pressure sintered Si_(3)N_(4)-MgO-C refractories.
基金supported by the R&D Center for Valuable Recycling(Global-Top Environmental Technology Development Program)funded by the Ministry of Environment(Project No.:11-C22-ID)
文摘Wetting phenomena between MgO C and CaO SiO2 slags were investigated by varying carbon content.A sessile drop technique was adopted to study the wetting phenomena in conjunction with a high speed camera for the observation of intrinsic wetting phenomena.The results show that the high content of SiO2 and the presence of Al2O3 in slags enhance the diffusion of Mg2+,leading to the promotion of reactive wetting.The carbon in MgO C refractory impedes the penetration of slags by repelling the slag and slowing the diffusion of Mg2+.This accounts for the non-wetting behavior of the slag on MgO C refractory with 17% (mass fraction) carbon similar to that of graphite.
基金Funded by the National Natural Science Foundation of China (No.50872125)
文摘In-situ magnesia-rich spinel fiber was formed resulting from the addition of ferrocene into MgO-C refractory matrixes. The formation of in-situ spinel fiber was detected to start at 1300 ℃. The amount, diameter and length of the fibers increased with rising temperature. Ferrocene may have catalytic effects on the growth of the fibers in two aspects. First, the reaction between MgO and C and the decomposition of Al4C3 may be catalyzed at high temperature. Suitable concentration gaseous phase is then created for vapor-vapor reaction which could result in the in-situ formation of fibers. Second, Fe nanoparticle produced from ferrocene can act as catalytic droplets and catalyze the growth of the fibers. The fibers are formed via the vapor-liquid-solid and vapor-solid mechanisms. In terms of chemical thermodynamics, the partial pressure of CO and Mg(g) are found to play an important role in the in-situ fibers formation. Different concentration of vapors affects the size, amount and composition of the fibers at different temperatures. The mechanical properties of MgO-C brick was found to be improved by ferrocene addition.
基金Item Sponsored by National Natural Science Foundation of China (51090382)
文摘The influence of V2O3, FeO, TiO2, MnO and MgO in vanadium slag on the corrosion mechanism of MgO-C bricks was studied by stationary immersion tests at vanadium-extracting temperature. Experimental results show that FeO, TiO2, and MnO could enhance the corrosion rate and V2O3 and MgO could decrease it. Microstructure and phase composition of worn samples were investigated by SEM-EDS, revealing the presence of Fe particles, produced by graphite reduction, and (Mg,Fe,Mn)O solid solution at the interface. The formation process of (Mg,Fe,Mn)O solid solution was discussed and the corrosion mechnism of MgO-C bricks was thus proposed.
基金supported by the National Natural Science Foundation of China(51974017).
文摘The effect of Al content in molten steel on the interaction between SPHC steel(0.005-0.068 wt.%Al,and 19×10^(-4)-58×10^(-4)wt.%O)and MgO-C refractory(11.63 wt.%C)was investigated.Non-metallic inclusions in the steel were examined at various periods(0,5,15,30,45,and 60 min)as well as the MgO-C interface after 60 min of corrosion at 1600℃.The results show that when MgO-C refractory comes into contact with SPHC steel,the refractory interface consists of three layers arranged from the innermost to the outermost,including the original refractory layer,the dense MgO layer,and the iron infiltration layer.The carbon in the MgO-C refractories and the Al content in the molten steel undergo a reaction with the MgO in the refractories,resulting in an increase in Mg concentration in the steel.Increasing Al content in the molten steel from 0.005 to 0.068 wt.%causes a spinel layer to appear at the interface,and the disappearance time of Al_(2)O_(3) inclusions in the steel decreases from 60 to 30 min,while the average MgO content in inclusions increases.Therefore,controlling the Al content in the molten steel and the smelting duration can help regulate the formation of spinel inclusionsinthe steel.
文摘This standard specifies the classification,specification, test method, quality appraisal procedure,labeling, packing, transportation, storage and quality certification of silica brick for coke oven.
基金supported by the Korea Planning & Evaluation Institute of Industrial Technology (KEIT)the Ministry of Trade, Industry & Energy (MOTIE, Korea) of the Republic of Korea (No. RS2023-00262421)
文摘This study aims to provide the basic knowledge for furnace refractory design by investigating refractory property changes occurred in a hydrogen atmosphere.Since refractory bricks are thermodynamically stable in a hydrogen atmosphere at 1100°C,we tried to find out the minute changes.In this experiment,a refractory brick was prepared by andalusite,mullite chamotte,and clay as raw materials and heated to 1100°C in a 100%hydrogen atmosphere for 72 h.It was found that the strength of the brick was decreased and the color was changed to black by the reduction of impurities.And in addition,this study covered research on the slaking risk of MgO raw materials because the minimum temperature is expected to 400°C in fluidized reduction furnaces unlike shaft furnaces.
基金This work was funded by Luoyang Major Science and Technology Innovation Project(2301009A)Henan Province Key Research and Development Project(231111230200)。
文摘Al_(4)SiC_(4) was synthesized from Al powder, silicon carbide, and graphite by microwave sintering, and characterized by XRD and SEM. Then the synthesized material was added to the magnesia carbon refractory brick to study its effect on the oxidation resistance, apparent porosity, bulk density, elastic modulus, and modulus of rupture. It is found that Al_(4)SiC_(4) can be synthesized by microwave sintering at 1 300 ℃ and the addition of Al_(4)SiC_(4)-containing material as an antioxidant can enhance the oxidation resistance of the magnesia carbon refractory brick.
文摘The interaction between the slag containing titanium oxides(TiO2of 2.0 %-20.0%)and a MgO-C based refractory was investigated by immersion test.The relationship between TiO2 content in slag and corrosion rate of the refractory was studied.The microstructure and compositions of the corroded refractory were analyzed by SEM and X-ray diffraction.The corrosion mechanism of MgO-C based refractory in the slag containing titanium was proposed,and the effects of TiO2 content,slag basicity(ωCaO/ωSiO2)and temperature in molten bath on the corrosion rate of the refractory were obtained.
基金supported by the Scientific and Technological Research Project of the Henan Provincial Department of Science and Technology of China(No.212102210579).
文摘MgO-C refractories with stainless steel fibers were prepared to investigate the effects of stainless steel fibers addition on the thermal shock resistance,oxidation resistance,and microstructure of MgO-C refractories,and the optimum amount of stainless steel fibers was determined.The results showed that adding stainless steel fiber in MgO-C refractories can increase flexural strength and thermal shock resistance,with an optimal addition of 2 wt.%,owing to the bridging effect and crack deflection toughening of stainless steel fibers inside the material.The formation of MgAl1.9Fe0.1O4 composite spinel,which was responsible for higher oxidation resistance,produced volume expansion and prevented the diffusion of oxygen.The strengthening mechanism is physical embedding at room temperature,while it is reaction bonding at high temperature.
文摘In establishing a plant or factory, the cost-benefit analysis is needed to determine the viability for such financial investment on the project. In this paper, the cost establishing a factory of 200,000 bricks per annum capacity, for the production of high quality refractory bricks from locally available raw materials in Nigeria was evaluated. The evaluation was conducted on the virgin refractory material (100%) as well as with varied percentages (10% - 40%) of alumina additions. The result of cost benefit analysis indicated that, the project was viable, with the highest cost at N1,203.66 per brick as against N1,800 (at 3 years projections) of the imported brick. The payback period for the capital investment was very short (within two years). The findings will aid investors in decision makings.
文摘1 Scope This standard specifies the classification, technical requirements, test methods, quality appraisal procedures, packing, marking, transportation, storage, and quality certificate of silica refractory bricks.
文摘1 Scope This standard specifies the classification, shape and dimension, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage, and quality certificate of high alumina insulating bricks.
基金Enterprise Research and Development Project of Beijing Lirr High-Temperature Materials Co.,Ltd.(2020-02)Key Scientific Research Project for Universities and Colleges in Henan Province(19A430028)+1 种基金the Excellent Youth Research Project of Anhui Province(2022AH030135)the PhD Research Funding of Suzhou University(2021BSK041).
文摘Conventional MgO-C bricks(graphite content>14 wt.%)produce a great deal of greenhouse gas emission,while low-carbon MgO-C bricks have serious thermal shock resistance during high-temperature service.To enhance the high-temperature mechanical property and thermal shock resistance of low-carbon MgO-C bricks,a novel route of introducing ZrSiO_(4) powder into low-carbon MgO-C bricks was reported in such refractories with 2 wt.% flaky graphite.The results indicate that the low-carbon MgO-C brick with 0.5 wt.%ZrSiO_(4) addition has the maximum hot modulus of rupture at 1400℃ and the corresponding specimen fired in the carbon embedded atmosphere has the maximum residual strength ratio(98.6%)after three thermal shock cycles.It is found that some needle-like AlON and plate-like Al_(2)O_(3)-ZrO_(2) composites were in situ formed in the matrices after the low-carbon MgO-C bricks were coked at 1400℃,which can enhance the high-temperature mechanical property and thermal shock resistance due to the effect of fiber toughening and particle toughening.Moreover,CO_(2) emission of the newly developed low-carbon MgO-C bricks is reduced by 58.3% per ton steel after using them as the working lining of a 90 t vacuum oxygen decarburization ladle.
文摘This standard specifies the sort, technical requirement, test method, inspection rules, marking, packing, transportation, storage and quality certification of high alumina refractory bricks for electric arc furnace roofs.
基金the Scientific Research Fund of Hunan Provincial Education Department(22B0856)the Hengyang"Xiaohe"Science and Technology Talent Special Project([2023]45)+3 种基金the Guidance Plan Project of Hengyang City([2023]40)the National Natural Science Foundation of China(U20A20239)the College Students'Innovation and Entrepreneurship Training Project(S202311528055)the Characteristic Application Discipline of Material Science Engineering in Hunan Province([2022]351).
文摘To solve the problem of poor high-temperature service performance caused by low carbonization of MgO-C refractories,low-carbon MgO–C refractories with excellent thermal shock,oxidation and corrosion resistances were successfully designed by using SiC whiskers as reinforcing phases and introducing micro-Al_(2)O_(3) powders as additives.The results indicated that the addition of micro-Al_(2)O_(3) powders optimized the internal structure of the material,like the columnar β-Si_(3)N_(4) with a stepped distribution and the mosaic structure formed between granular and flaky Mg_(2)SiO_(4),which synergistically strengthened and toughened the material and gave the material excellent mechanical properties and thermal shock resistance.Specifically,the cold modulus of rupture and cold crushing strength after thermal shock were increased by 4.1 and 20.3 MPa,respectively.Moreover,the addition of micro-Al_(2)O_(3) powders promoted the formation of fine particles of Mg_(2)SiO_(4),MgAl_(2)O_(4) and MgO,as well as a dense protective layer of Mg_(2)SiO_(4) in the material under high-temperature environment.Furthermore,spinel and high-temperature solid solution were formed in the corrosion environment.The oxidation and corrosion resistances were greatly improved by 41%and 15%,respectively.
文摘This standard specifies the classification, shape, dimension, technical requirements, test method, inspection rules, packing, marking, transportation, storage and quality certification of fireclay refractory bricks for hot blast stove.