The dependence of perpendicular magnetic anisotropy (PMA) on the barrier layer MgO thickness in MgO/CoFeB /Ta multilayers is investigated. The results show that the strongest PMA occurs in a small window of about 2 ...The dependence of perpendicular magnetic anisotropy (PMA) on the barrier layer MgO thickness in MgO/CoFeB /Ta multilayers is investigated. The results show that the strongest PMA occurs in a small window of about 2 4nm with the increase of MgO thickness from 1-1Onto. The crystalline degree of MgO and the change of interatomic distance along the out-of-plane direction may be the main reasons for the change of PMA in these multilayers. Moreover, the roughnesses of 2- and 4-nm-thick MgO samples are 3.163 and 1.8 nm, respectively, and both the samples show PMA. These results could be used to tune the magnetic characteristic of the ultra thin CoFeB film for future applications in perpendicular magnetic devices.展开更多
To study the influence of CoFeB/MgO interface on tunneling magnetoresistance (TMR), different structures of magnetic tunnel junctions (MTJs) are successfully prepared by the magnetron sputtering technique and char...To study the influence of CoFeB/MgO interface on tunneling magnetoresistance (TMR), different structures of magnetic tunnel junctions (MTJs) are successfully prepared by the magnetron sputtering technique and characterized by atomic force microscopy, a physical property measurement system, x-ray photoelectron spectroscopy, and transmission electron microscopy. The experimental results show that TMR of the CoFeB/Mg/MgO/CoFeB structure is evidently improved in comparison with the CoFeB/MgO/CoFeB structure because the inserted Mg layer prevents Fe-oxide formation at the CoFeB/MgO interface, which occurs in CoFeB/MgO/CoFeB MTJs. The inherent properties of the CoFeB/MgO/CoFeB, CoFeB/Fe-oxide/MgO/CoFeB and CoFeB/Mg/MgO/CoFeB MTJs are simulated by using the theories of density functions and non-equilibrium Green functions. The simulated results demonstrate that TMR of CoFeB/Fe-oxide/MgO/CoFeB MTJs is severely decreased and is only half the value of the CoFeB/Mg/MgO/CoFeB MTJs. Based on the experimental results and theoretical analysis, it is believed that in CoFeB/MgO/CoFeB MTJs, the interface oxidation of the CoFeB layer is the main reason to cause a remarkable reduction of TMR, and the inserted Mg layer may play an important role in protecting Fe atoms from oxidation, and then increasing TMR.展开更多
Perpendicular magnetic anisotropy-based magnetic tunnel junctions(p-MTJs) with low Gilbert damping constant(α) are of particular interest for fast and low-power consumption magnetic random-access memory(MRAM). Howeve...Perpendicular magnetic anisotropy-based magnetic tunnel junctions(p-MTJs) with low Gilbert damping constant(α) are of particular interest for fast and low-power consumption magnetic random-access memory(MRAM). However, obtaining a faster switching speed and lower power consumption is still a big challenge. Herein, we report a Mo-based perpendicular double free layer structure with a low Gilbert damping constant of 0.02 relative to W-based films, as measured by time-resolved magnetooptical Kerr effect equipment. To show the influence of different film structures on the Gilbert damping constant, we measured the Mo-based single free layer. Thereafter, we deposited the full stacks with the Mo-based double free layer and obtained a high tunneling magnetoresistance of 136.3% and high thermal stability. The results of high-resolution transmission electron microscopy(HR-TEM) and energy-dispersive X-ray spectroscopy(EDS) showed that the Mo-based films had better crystallinity,sharper interfaces, and weaker diffusion than the W-based films and thus produced a weaker external contribution of the Gilbert damping constant. As a result of the weak spin-orbit coupling in the Mo-based structure, the intrinsic contribution of the Gilbert damping constant was also weak, thereby leading to the small Gilbert damping constant of the Mo-based stacks. In addition, the macro-spin simulation results demonstrated that the magnetization switching by the spin transfer torque of the Mo-based MTJs was faster than that of the W-based MTJs. These findings help to understand the mechanism behind the good performance of Mo-based p-MTJ films and show the great promise of these structures in low-power consumption MRAM or other spintronic devices.展开更多
基金Supported by the National Basic Research Program of China under Grant No 2011CB921804the Beijing Key Subject Foundation of Condensed Matter Physics under Grant No 0114023
文摘The dependence of perpendicular magnetic anisotropy (PMA) on the barrier layer MgO thickness in MgO/CoFeB /Ta multilayers is investigated. The results show that the strongest PMA occurs in a small window of about 2 4nm with the increase of MgO thickness from 1-1Onto. The crystalline degree of MgO and the change of interatomic distance along the out-of-plane direction may be the main reasons for the change of PMA in these multilayers. Moreover, the roughnesses of 2- and 4-nm-thick MgO samples are 3.163 and 1.8 nm, respectively, and both the samples show PMA. These results could be used to tune the magnetic characteristic of the ultra thin CoFeB film for future applications in perpendicular magnetic devices.
基金Supported by the National Defense Advance Research Foundation under Grant No 9140A08XXXXXX0DZ106the Basic Research Program of Ministry of Education of China under Grant No JY10000925005+2 种基金the Scientific Research Program Funded by Shaanxi Provincial Education Department under Grant No 11JK0912the Scientific Research Foundation of Xi'an University of Science and Technology under Grant No 2010011the Doctoral Research Startup Fund of Xi'an University of Science and Technology under Grant No 2010QDJ029
文摘To study the influence of CoFeB/MgO interface on tunneling magnetoresistance (TMR), different structures of magnetic tunnel junctions (MTJs) are successfully prepared by the magnetron sputtering technique and characterized by atomic force microscopy, a physical property measurement system, x-ray photoelectron spectroscopy, and transmission electron microscopy. The experimental results show that TMR of the CoFeB/Mg/MgO/CoFeB structure is evidently improved in comparison with the CoFeB/MgO/CoFeB structure because the inserted Mg layer prevents Fe-oxide formation at the CoFeB/MgO interface, which occurs in CoFeB/MgO/CoFeB MTJs. The inherent properties of the CoFeB/MgO/CoFeB, CoFeB/Fe-oxide/MgO/CoFeB and CoFeB/Mg/MgO/CoFeB MTJs are simulated by using the theories of density functions and non-equilibrium Green functions. The simulated results demonstrate that TMR of CoFeB/Fe-oxide/MgO/CoFeB MTJs is severely decreased and is only half the value of the CoFeB/Mg/MgO/CoFeB MTJs. Based on the experimental results and theoretical analysis, it is believed that in CoFeB/MgO/CoFeB MTJs, the interface oxidation of the CoFeB layer is the main reason to cause a remarkable reduction of TMR, and the inserted Mg layer may play an important role in protecting Fe atoms from oxidation, and then increasing TMR.
基金supported by the National Key R&D Program of China(Grant No.2018YFB0407602)the National Natural Science Foundation of China(Grant Nos.92164206,12104031,11904016,and 61627813)+4 种基金the Science and Technology Major Project of Anhui Province(Grant No.202003a05020050)the International Collaboration Project(Grant No.B16001)the National Key Technology Program of China(Grant No.2017ZX01032101)the Beihang Hefei Innovation Research Institute Project(Grant Nos.BHKX-19-01,and BHKX-19-02)the Guangdong Provincial Department of Science and Technology(Grant No.2020A1515011425)。
文摘Perpendicular magnetic anisotropy-based magnetic tunnel junctions(p-MTJs) with low Gilbert damping constant(α) are of particular interest for fast and low-power consumption magnetic random-access memory(MRAM). However, obtaining a faster switching speed and lower power consumption is still a big challenge. Herein, we report a Mo-based perpendicular double free layer structure with a low Gilbert damping constant of 0.02 relative to W-based films, as measured by time-resolved magnetooptical Kerr effect equipment. To show the influence of different film structures on the Gilbert damping constant, we measured the Mo-based single free layer. Thereafter, we deposited the full stacks with the Mo-based double free layer and obtained a high tunneling magnetoresistance of 136.3% and high thermal stability. The results of high-resolution transmission electron microscopy(HR-TEM) and energy-dispersive X-ray spectroscopy(EDS) showed that the Mo-based films had better crystallinity,sharper interfaces, and weaker diffusion than the W-based films and thus produced a weaker external contribution of the Gilbert damping constant. As a result of the weak spin-orbit coupling in the Mo-based structure, the intrinsic contribution of the Gilbert damping constant was also weak, thereby leading to the small Gilbert damping constant of the Mo-based stacks. In addition, the macro-spin simulation results demonstrated that the magnetization switching by the spin transfer torque of the Mo-based MTJs was faster than that of the W-based MTJs. These findings help to understand the mechanism behind the good performance of Mo-based p-MTJ films and show the great promise of these structures in low-power consumption MRAM or other spintronic devices.