Direct aldol condensation of various aromatic, heteroaromatic, α,β-unsaturated aldehydes and aliphatic aldehydes with acyldiazomethane was realized using Mgl2 etherate (Mgl2.(Et2O)n) as a promoter in the presenc...Direct aldol condensation of various aromatic, heteroaromatic, α,β-unsaturated aldehydes and aliphatic aldehydes with acyldiazomethane was realized using Mgl2 etherate (Mgl2.(Et2O)n) as a promoter in the presence of diisopropyl amine (DIPEA) in excellent yields in a short time under mild conditions with high chemoselectivity. Iodide counterion, and a non-coordinating less ploar reaction media (i.e., CH2C12) are among the critical factors for this unique reactivity.展开更多
Regioselective addition reactions of silyl enolates to a, b-unsaturated aldehyde and its acetal catalyzed by MgI2 etherate give aldol adducts (1, 2-addition) preferentially over Michael adducts (1, 4-addition). This ...Regioselective addition reactions of silyl enolates to a, b-unsaturated aldehyde and its acetal catalyzed by MgI2 etherate give aldol adducts (1, 2-addition) preferentially over Michael adducts (1, 4-addition). This unique regioselectivity is distinctly different with other Lewis acidic promoters and may be attributed to the high oxyphilicity of IMg+.展开更多
The structure-performance relationship of Cu/Al_(2)O_(3) catalysts in the hydrogenation of diethyl oxalate(DEO)for the synthesis of alcohol ether esters has been investigated by various characterization techniques inc...The structure-performance relationship of Cu/Al_(2)O_(3) catalysts in the hydrogenation of diethyl oxalate(DEO)for the synthesis of alcohol ether esters has been investigated by various characterization techniques including XRD,XPS,N2O titration,and 27Al MAS-NMR.The results showed that when the crystal configurations of Al_(2)O_(3) were the same,increasing the specific surface area could effectively refine the size of copper nanoparticles(Cu NPs),and ultimately improve the conversion of DEO.Meanwhile,the smaller size ofγ-Al_(2)O_(3)(HSAl and SBAl)loaded Cu NPs promotes the reaction towards the deep hydrogenation to produce ethanol(EtOH)and ethylene glycol(EG).Besides,the larger size of Cu NPs on the surface of amorphous Al_(2)O_(3)(HTAl and SolAl)resulted in a lower conversion rate,where ethyl glycolate(Egly)is the main product.Despite there are differences in Al^(3+)ionic coordination in Al_(2)O_(3) with different crystal structures,the experimental data showed that the differences in Al^(3+)ionic coordination did not significantly affect the catalytic performance in the hydrogenation reaction.The formation of alcohol-ether ester chemicals is critically dependent on the interactions between Cu sites and acidic sites.Among them,EG and EtOH were dehydrated to form 2-ethoxyethanol via the SN2 mechanism,while Egly and EtOH were reacted to form ethyl ethoxyacetate(EEA)via the SN2 mechanism.This study provides a theoretical basis for the optimization of the coal-based glycol processes to achieve a diversified product portfolio.展开更多
Heterogeneous precious metal catalysts are prone to agglomeration during preparation,requiring high usage with consequently high costs.Maximizing the efficiency of precious-metal utilization is of great significance i...Heterogeneous precious metal catalysts are prone to agglomeration during preparation,requiring high usage with consequently high costs.Maximizing the efficiency of precious-metal utilization is of great significance in the design of supported precious metal catalysts.Herein,2,2'-bipyridyl-5,5'-dicarboxylic acid was used as the ligand in constructing the UiO-67-Ce-BPyDC framework with Ce^(4+)coordination.This framework enables precise adsorption and coordination of Pd2+at the nitrogen sites of pyridine,promoting high dispersion of the Pd species at a single site,thereby facilitating controlled palladium loading.This precursor was used to fabricate supported Pd-based catalysts on CeO_(2)(Pd-N/CeO_(2)-P)via pyrolysis.Notably,because the Pd species are homogeneously distributed on CeO_(2)with strong interactions,Pd-N/CeO_(2)-P exhibits remarkable efficiency in cleaving the C-O bonds of diphenyl ether(DPE)to produce cyclohexanol,with a selectivity of 72.1%.The origin of the high selectivity of cyclohexanol is further elucidated using theoretical calculations;that is,DPE undergoes not only hydrogenolysis on Pd-N/CeO_(2)-P,but also hydrolysis to produce more cyclohexanol.This study not only demonstrates a successful strategy for designing highly dispersed metal catalysts,but also underscores the importance of such tailored catalysts in the advancement of sustainable lignin depolymerization technologies.展开更多
Chiral aryl cyclohex-3-en ether scaffold is widely present in bioactive natural products and drugs.The exploitation of efficient and enantioselective methods for the construction of aryl cyclohex-3-en ether scaffold i...Chiral aryl cyclohex-3-en ether scaffold is widely present in bioactive natural products and drugs.The exploitation of efficient and enantioselective methods for the construction of aryl cyclohex-3-en ether scaffold is significant.Herein we disclose a chiral N,N’-dioxide/Lewis acid complex-catalyzed asymmetric inverse-electron-demand Diels-Alder(IEDDA)reaction using electron-deficient 3-carboalkoxyl-2-pyrones and less electron-enriched aryl enol ethers as reactants.A wide range of non-and 1,2-disubstituted acyclic aryl enol ethers are applicable to deliver diverse chiral bridged bicyclic lactones in high yields and stereoselectivities(up to 96%yield,>20:1 dr,97:3 er).The bridged bicyclic lactone core can be easily converted into chiral aryl cyclohex-3-en ether scaffold.Notably,DFT calculations revealed a stepwise and endo mechanism to explain the high enantioselectivity controlled by the cooperative effect of the steric factors and the dispersion interactions between ligands and enol ethers.展开更多
基金the National Natural Science Foundation of China (Nos. 21372203 and 21272076)for the financial support
文摘Direct aldol condensation of various aromatic, heteroaromatic, α,β-unsaturated aldehydes and aliphatic aldehydes with acyldiazomethane was realized using Mgl2 etherate (Mgl2.(Et2O)n) as a promoter in the presence of diisopropyl amine (DIPEA) in excellent yields in a short time under mild conditions with high chemoselectivity. Iodide counterion, and a non-coordinating less ploar reaction media (i.e., CH2C12) are among the critical factors for this unique reactivity.
基金We are grateful for the financial supports from the National Outstanding Youth Fund No.29925204)the Foundation for University Key Teacher by the Ministry of Education of Chinaa Visiting Fund of the National Laboratory of Applied Organic Chemistry.
文摘Regioselective addition reactions of silyl enolates to a, b-unsaturated aldehyde and its acetal catalyzed by MgI2 etherate give aldol adducts (1, 2-addition) preferentially over Michael adducts (1, 4-addition). This unique regioselectivity is distinctly different with other Lewis acidic promoters and may be attributed to the high oxyphilicity of IMg+.
文摘The structure-performance relationship of Cu/Al_(2)O_(3) catalysts in the hydrogenation of diethyl oxalate(DEO)for the synthesis of alcohol ether esters has been investigated by various characterization techniques including XRD,XPS,N2O titration,and 27Al MAS-NMR.The results showed that when the crystal configurations of Al_(2)O_(3) were the same,increasing the specific surface area could effectively refine the size of copper nanoparticles(Cu NPs),and ultimately improve the conversion of DEO.Meanwhile,the smaller size ofγ-Al_(2)O_(3)(HSAl and SBAl)loaded Cu NPs promotes the reaction towards the deep hydrogenation to produce ethanol(EtOH)and ethylene glycol(EG).Besides,the larger size of Cu NPs on the surface of amorphous Al_(2)O_(3)(HTAl and SolAl)resulted in a lower conversion rate,where ethyl glycolate(Egly)is the main product.Despite there are differences in Al^(3+)ionic coordination in Al_(2)O_(3) with different crystal structures,the experimental data showed that the differences in Al^(3+)ionic coordination did not significantly affect the catalytic performance in the hydrogenation reaction.The formation of alcohol-ether ester chemicals is critically dependent on the interactions between Cu sites and acidic sites.Among them,EG and EtOH were dehydrated to form 2-ethoxyethanol via the SN2 mechanism,while Egly and EtOH were reacted to form ethyl ethoxyacetate(EEA)via the SN2 mechanism.This study provides a theoretical basis for the optimization of the coal-based glycol processes to achieve a diversified product portfolio.
基金Project supported by the National Natural Science Foundation of China(22221001,22131007,22102193)the National Key R&D Program of China(2021YFA1501101,2022YFA1504601)+1 种基金the 111 Project(B20027)a Startup Program of the State Key Laboratory for Oxo Synthesis and Selective Oxidation of LICP(EOSX0184)。
文摘Heterogeneous precious metal catalysts are prone to agglomeration during preparation,requiring high usage with consequently high costs.Maximizing the efficiency of precious-metal utilization is of great significance in the design of supported precious metal catalysts.Herein,2,2'-bipyridyl-5,5'-dicarboxylic acid was used as the ligand in constructing the UiO-67-Ce-BPyDC framework with Ce^(4+)coordination.This framework enables precise adsorption and coordination of Pd2+at the nitrogen sites of pyridine,promoting high dispersion of the Pd species at a single site,thereby facilitating controlled palladium loading.This precursor was used to fabricate supported Pd-based catalysts on CeO_(2)(Pd-N/CeO_(2)-P)via pyrolysis.Notably,because the Pd species are homogeneously distributed on CeO_(2)with strong interactions,Pd-N/CeO_(2)-P exhibits remarkable efficiency in cleaving the C-O bonds of diphenyl ether(DPE)to produce cyclohexanol,with a selectivity of 72.1%.The origin of the high selectivity of cyclohexanol is further elucidated using theoretical calculations;that is,DPE undergoes not only hydrogenolysis on Pd-N/CeO_(2)-P,but also hydrolysis to produce more cyclohexanol.This study not only demonstrates a successful strategy for designing highly dispersed metal catalysts,but also underscores the importance of such tailored catalysts in the advancement of sustainable lignin depolymerization technologies.
基金National Natural Science Foundation of China(Nos.22001177,22203023)Guangdong Pearl River Talent Program(no.2021QN020268)+3 种基金the Natural Science Foundation of Guangdong Province(Nos.2024A1515012381,2022A1515011859)Shenzhen Bay Laboratory Startup Fund(No.S201100003)Major Program of Shenzhen Bay Laboratory(No.S211101001-4)Shenzhen Bay Qihang Fellow Program(No.QH23001)for generous financial support.
文摘Chiral aryl cyclohex-3-en ether scaffold is widely present in bioactive natural products and drugs.The exploitation of efficient and enantioselective methods for the construction of aryl cyclohex-3-en ether scaffold is significant.Herein we disclose a chiral N,N’-dioxide/Lewis acid complex-catalyzed asymmetric inverse-electron-demand Diels-Alder(IEDDA)reaction using electron-deficient 3-carboalkoxyl-2-pyrones and less electron-enriched aryl enol ethers as reactants.A wide range of non-and 1,2-disubstituted acyclic aryl enol ethers are applicable to deliver diverse chiral bridged bicyclic lactones in high yields and stereoselectivities(up to 96%yield,>20:1 dr,97:3 er).The bridged bicyclic lactone core can be easily converted into chiral aryl cyclohex-3-en ether scaffold.Notably,DFT calculations revealed a stepwise and endo mechanism to explain the high enantioselectivity controlled by the cooperative effect of the steric factors and the dispersion interactions between ligands and enol ethers.