For a highly efficient recycling of a wastewater containing a high concentration of MgCl_(2),Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high conce...For a highly efficient recycling of a wastewater containing a high concentration of MgCl_(2),Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high concentration MgCl_(2)solution at different pH values and Al/P molar ratios was investigated.The results showed that P507 formed organic complexes of Al_(x)(OH)_y^(Z+)-P507 at pH of 2.0-4.0.At pH of 4.0-5.0,Al(Ⅲ)precipitated and transferred into Al(OH)_(3)with a flocculent amorphous morphology.Active sites on the Al(OH)_(3)surface enhanced the removal efficiency of P507.At pH of 6.0-6.5,Al(Ⅲ)and Mg(Ⅱ)formed layered crystalline Al(OH)_(3)and MgAl_(2)(OH)_(8with)small pore channels and fewer active sites,resulting in a reduced removal efficiency of P507.When the Al/P molar ratio exceeded 13 and the pH was between 4.0 and 5.0,the removal rates of both Al(Ⅲ)and P507 were higher than98%,while the concentration loss of Mg(Ⅱ)was only 0.2%-0.9%.展开更多
This study was conducted in two sections.Initially,the effects of NaCl,MgCl_(2),and urea were investigated on extracting copper and iron from chalcopyrite.Subsequently,CuFe_(2)O_(4)-based electrodes for supercapacitor...This study was conducted in two sections.Initially,the effects of NaCl,MgCl_(2),and urea were investigated on extracting copper and iron from chalcopyrite.Subsequently,CuFe_(2)O_(4)-based electrodes for supercapacitors were synthesized using the extracted solution.The first phase revealed that 3 mol/L NaCl achieved the highest extraction performance,yielding 60%Cu and 23%Fe.MgCl_(2)at 1.5 mol/L extracted 52%Cu and 27%Fe,while a combination of 0.5 mol/L MgCl_(2)and 1.6 mol/L urea yielded 57%Cu and 20%Fe.Urea effectively reduced iron levels.CuFe_(2)O_(4)-based electrodes were then successfully synthesized via a hydrothermal method using a MgCl_(2)-urea solution.Characterization studies confirmed CuFe_(2)O_(4)formation with a 2D structure and 45−50 nm wall thickness on nickel foam.Electrochemical analysis showed a specific capacitance of 725 mF/cm^(2)at 2 mA/cm^(2)current density,with energy and power densities of 12.3 mW·h/cm^(2)and 175 mW/cm^(2),respectively.These findings suggest that chalcopyrite has the potential for direct use in energy storage.展开更多
A comprehensive electrochemical assessment of Fe^(2+)behavior in a MgCl_(2)−NaCl−KCl melt was reported,involving cyclic voltammetry(CV),square wave voltammetry(SWV),and chronoamperometry(CA)analyses.Reduction of Fe^(2...A comprehensive electrochemical assessment of Fe^(2+)behavior in a MgCl_(2)−NaCl−KCl melt was reported,involving cyclic voltammetry(CV),square wave voltammetry(SWV),and chronoamperometry(CA)analyses.Reduction of Fe^(2+)in MgCl_(2)−NaCl−KCl was observed to occur in a single step involving two electrons,exhibiting quasi-reversible behavior.The diffusion coefficient of Fe^(2+)(5.75×10^(-5)cm^(2)/s)in this system was experimentally determined at 973 K,with an associated diffusion activation energy of 25.06 kJ/mol in the range of 973−1048 K,and an estimated standard rate constant for Fe^(2+)/Fe of around 1×10^(-3)cm/s.The nucleation of Fe on the tungsten electrode in the MgCl_(2)−NaCl−KCl molten salt is insensitive to temperature and overpotential.It is found that the nucleation mode is related to the concentration of Fe^(2+)surrounding the electrode and evolves from an instantaneous to a progressive process,accompanied by a deterioration of magnesium electrolysis due to Fe impurities.展开更多
CuInSe_(2) is an N-type diamond-like semiconductors thermoelectric candidate for power generation at medium temperature with its environmentally friendly and cost-effective properties.However,the intrinsic high therma...CuInSe_(2) is an N-type diamond-like semiconductors thermoelectric candidate for power generation at medium temperature with its environmentally friendly and cost-effective properties.However,the intrinsic high thermal conductivity of CuInSe_(2) limits the enhancement of its thermoelectric performance.Herein,we investigate the thermoelectric performance of N-type CuInSe_(2) materials by incorporating ZnSe through a solid solution strategy.A series of(CuInSe_(2))_(1-x)(ZnSe)_(x)(x=0.0,0.2,0.4,0.6,0.8,1.0)samples were synthesized,forming continuous solid solutions,while introducing minor porosity.ZnSe solid solution effectively reduces the lattice thermal conductivity of the CuInSe_(2) matrix at near-room temperatures,but has a weaker effect at higher temperatures.Due to the intrinsic low carrier concentration of the system,resulting in high resistivity,the maximum figure of merit(ZT)of(CuInSe_(2))0.8(ZnSe)0.2 reaches 0.08 at 773 K.Despite the relatively low ZT,the solid solution strategy proves effective in reducing the lattice thermal conductivity near-room temperature and offers potential for cost-effective thermoelectric materials.展开更多
Li_(6)ZnO_(4)was chemically modified by nickel addition,in order to develop different compositions of the solid solution Li_(6)Zn_(1-x)Ni_(x)O_(4).These materials were evaluated bifunctionally;analyzing their CO_(2)ca...Li_(6)ZnO_(4)was chemically modified by nickel addition,in order to develop different compositions of the solid solution Li_(6)Zn_(1-x)Ni_(x)O_(4).These materials were evaluated bifunctionally;analyzing their CO_(2)capture performances,aswell as on their catalytic properties for H_(2)production via dry reforming of methane(DRM).The crystal structures of Li_(6)Zn_(1-x)Ni_(x)O_(4)solid solution samples were determined through X-ray diffraction,which confirmed the integration of nickel ions up to a concentration around 20 mol%,meanwhile beyond this value,a secondary phase was detected.These results were supported by XPS and TEM analyses.Then,dynamic and isothermal thermogravimetric analyses of CO_(2)capture revealed that Li_(6)Zn_(1-x)Ni_(x)O_(4)solid solution samples exhibited good CO_(2)chemisorption efficiencies,similarly to the pristine Li_(6)ZnO_(4)chemisorption trends observed.Moreover,a kinetic analysis of CO_(2)isothermal chemisorptions,using the Avrami-Erofeev model,evidenced an increment of the constant rates as a function of the Ni content.Since Ni^(2+)ions incorporation did not reduce the CO_(2)capture efficiency and kinetics,the catalytic properties of thesematerialswere evaluated in the DRM process.Results demonstrated that nickel ions favored hydrogen(H_(2))production over the pristine Li_(6)ZnO_(4)phase,despite a second H2 production reaction was determined,methane decomposition.Thereby,Li_(6)Zn_(1-x)Ni_(x)O_(4)ceramics can be employed as bifunctional materials.展开更多
Most studies have shown that oxygen vacancies on Ce_(x)Zr_(1-x)O_(2) solid solution are important for enhancing the catalytic oxidation performance.However,a handful of studies investigated the different roles of surf...Most studies have shown that oxygen vacancies on Ce_(x)Zr_(1-x)O_(2) solid solution are important for enhancing the catalytic oxidation performance.However,a handful of studies investigated the different roles of surface and subsurface oxygen vacancies on the performance and mechanisms of catalysts.Herein,a series of zirconium doping on CeO_(2) samples(CeO_(2),Ce_(0.95)Zr_(0.05)O_(2),and Ce_(0.8)5Zr_(0.15)O_(2))with various surface-to-subsurface oxygen vacancies ratios have been synthesized and applied in toluene catalytic oxidation.The obtained Ce_(0.95)Zr_(0.05)O_(2) exhibits an excellent catalytic performance with a 90%toluene conversion at 295℃,which is 68℃lower than that of CeO_(2).Additionally,the obtained Ce_(0.95)Zr_(0.05)O_(2)catalyst also exhibited good catalytic stability and water resistance.The XRD and HRTEM results show that Zr ions are incorporated into CeO_(2) lattice,forming Ce_(x)Zr_(1-x)O_(2) solid solution.Temperature-programmed experiments reveal that Ce_(0.95)Zr_(0.05)O_(2) shows excellent lowtemperature reducibility and abundant surface oxygen species.In-situ DRIFTS tests were used to probe the reaction mechanism,and the function of Zr doping in promoting the activation of oxygen was further determined.Density functional theory(DFT)calculations indicate that the vacancy formation energy and O_(2) adsorption energy are both lower on Ce_(0.95)Zr_(0.05)O_(2),confirming the reason for its superior catalytic performance.展开更多
To separate the phosphorus-containing phase from steel slag,the effects of B_(2)O_(3)and Na_(2)B_(4)O_(7)on the enrichment of phosphorus-containing phases in Ca_(2)SiO_(4)–Ca_(3)(PO_(4))_(2)(C_(2)S–C_(3)P)solid solu...To separate the phosphorus-containing phase from steel slag,the effects of B_(2)O_(3)and Na_(2)B_(4)O_(7)on the enrichment of phosphorus-containing phases in Ca_(2)SiO_(4)–Ca_(3)(PO_(4))_(2)(C_(2)S–C_(3)P)solid solution were comparatively analyzed through theoretical calculations and experimental investigations.The results indicate that the optimum reaction temperature between B_(2)O_(3)and C_(2)S–C_(3)P is 800℃.The phase compositions of C_(2)S–C_(3)P equilibrium system with 5 wt.%B_(2)O_(3)at 800℃ included Ca_(3)(PO_(4))_(2),CaSiO_(3)and Ca11B_(2)Si_(4)O_(22),among which the content of Ca_(3)(PO_(4))_(2)was the highest.For C_(2)S–C_(3)P with 5 wt.%Na_(2)B_(4)O_(7)equilibrium system,Ca_(3)(PO_(4))_(2),CaSiO_(3),Ca11B_(2)Si_(4)O_(22)and Na_(2)Ca_(2)P_(2)O_(8)were independent at 390–690℃.Ca_(3)(PO_(4))_(2)and Ca_(2)SiO_(4)precipitated in the solid solution when the addition of B_(2)O_(3)was more than 6 wt.%,and the content of Ca_(3)(PO_(4))_(2)raised with the increase in the addition of B_(2)O_(3).The main phases in the C_(2)S–C_(3)P solid solution with Na_(2)B_(4)O_(7)were(Ca_(2)SiO_(4))0.05[Ca_(3)(PO_(4))_(2)],Ca_(2)SiO_(4)and Na_(3)Ca_(6)(PO_(4))_(5)at 650℃.And when the addition of Na_(2)B_(4)O_(7)exceeded 6 wt.%,the content of Na_(3)Ca_(6)(PO_(4))_(5)increased significantly.There was no precipitation of Ca_(3)(PO_(4))_(2)or boron-containing phase in the samples with Na_(2)B_(4)O_(7),but a small proportion of Ca_(3)(PO_(4))_(2)transformed into(Ca_(2)SiO_(4))0.05[Ca_(3)(PO_(4))_(2)],and Ca^(2+)was partially replaced by Na^(+)to generate Na_(3)Ca_(6)(PO_(4))_(5).As a result,the temperature for Na_(2)B_(4)O_(7)to enrich the phosphorus-containing phase in C_(2)S–C_(3)P solid solution was lower than that for B_(2)O_(3).However,the grade of the phosphorus-containing phase for Na_(2)B_(4)O_(7)was lower than that for B_(2)O_(3).展开更多
The low-dose X-ray induced long afterglow near infrared(NIR)luminescence from Cr^(3+)doped Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions was investigated.The structure analysis shows the good formation of Zn_(1-x)Cd...The low-dose X-ray induced long afterglow near infrared(NIR)luminescence from Cr^(3+)doped Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions was investigated.The structure analysis shows the good formation of Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions,which possesses a cubic spinel structure with Fd3m space group.The formation of Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions induces the obvious increase of long afterglow near infrared luminescence excited by low-dose X-ray,When the content of doped Cd^(2+)reaches 0.1,the low-dose X-ray induced long afterglow NIR luminescence is the maximum.More importantly,only 5 s Xray irradiation can induce more than 6 h NIR afterglow emission,of which the afterglow luminescent intensity is still 5 times stronger than the background intensity after 6 h.The thermoluminescent results show that under the 5 s exposure of X-ray,the trap density of Zn_(0.9)Cd_(0.1)Ga_(2)O_(4):Cr^(3+)is much higher than that of ZnGa_(2)O_(4):Cr^(3+).The replacement of Cd^(2+)ions with large radius at Zn^(2+)sites causes the increase of de fects and dislocations,which results in the obvious increase of trap co ncentrations.And the addition of high-z number elements Cd^(2+)would enhance the X-ray absorption of the solid solutions,which thus can be easily excited by low-dose X-ray.Zn_(0.9)Cd_(0.1)Ga_(2)O_(4):1%Cr^(3+)solid solution is a potential candidate of lowdose X-ray induced long afterglow luminescent materials.展开更多
基金financial supports from the National Key Research and Development Program of China(No.2022YFB3504501)the National Natural Science Foundation of China(Nos.52274355,91962211)the Gansu Province Science and Technology Major Special Project,China(No.22ZD6GD061)。
文摘For a highly efficient recycling of a wastewater containing a high concentration of MgCl_(2),Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high concentration MgCl_(2)solution at different pH values and Al/P molar ratios was investigated.The results showed that P507 formed organic complexes of Al_(x)(OH)_y^(Z+)-P507 at pH of 2.0-4.0.At pH of 4.0-5.0,Al(Ⅲ)precipitated and transferred into Al(OH)_(3)with a flocculent amorphous morphology.Active sites on the Al(OH)_(3)surface enhanced the removal efficiency of P507.At pH of 6.0-6.5,Al(Ⅲ)and Mg(Ⅱ)formed layered crystalline Al(OH)_(3)and MgAl_(2)(OH)_(8with)small pore channels and fewer active sites,resulting in a reduced removal efficiency of P507.When the Al/P molar ratio exceeded 13 and the pH was between 4.0 and 5.0,the removal rates of both Al(Ⅲ)and P507 were higher than98%,while the concentration loss of Mg(Ⅱ)was only 0.2%-0.9%.
文摘This study was conducted in two sections.Initially,the effects of NaCl,MgCl_(2),and urea were investigated on extracting copper and iron from chalcopyrite.Subsequently,CuFe_(2)O_(4)-based electrodes for supercapacitors were synthesized using the extracted solution.The first phase revealed that 3 mol/L NaCl achieved the highest extraction performance,yielding 60%Cu and 23%Fe.MgCl_(2)at 1.5 mol/L extracted 52%Cu and 27%Fe,while a combination of 0.5 mol/L MgCl_(2)and 1.6 mol/L urea yielded 57%Cu and 20%Fe.Urea effectively reduced iron levels.CuFe_(2)O_(4)-based electrodes were then successfully synthesized via a hydrothermal method using a MgCl_(2)-urea solution.Characterization studies confirmed CuFe_(2)O_(4)formation with a 2D structure and 45−50 nm wall thickness on nickel foam.Electrochemical analysis showed a specific capacitance of 725 mF/cm^(2)at 2 mA/cm^(2)current density,with energy and power densities of 12.3 mW·h/cm^(2)and 175 mW/cm^(2),respectively.These findings suggest that chalcopyrite has the potential for direct use in energy storage.
基金the financial support provided by the National Key R&D Program of China(No.2022YFB3709300).
文摘A comprehensive electrochemical assessment of Fe^(2+)behavior in a MgCl_(2)−NaCl−KCl melt was reported,involving cyclic voltammetry(CV),square wave voltammetry(SWV),and chronoamperometry(CA)analyses.Reduction of Fe^(2+)in MgCl_(2)−NaCl−KCl was observed to occur in a single step involving two electrons,exhibiting quasi-reversible behavior.The diffusion coefficient of Fe^(2+)(5.75×10^(-5)cm^(2)/s)in this system was experimentally determined at 973 K,with an associated diffusion activation energy of 25.06 kJ/mol in the range of 973−1048 K,and an estimated standard rate constant for Fe^(2+)/Fe of around 1×10^(-3)cm/s.The nucleation of Fe on the tungsten electrode in the MgCl_(2)−NaCl−KCl molten salt is insensitive to temperature and overpotential.It is found that the nucleation mode is related to the concentration of Fe^(2+)surrounding the electrode and evolves from an instantaneous to a progressive process,accompanied by a deterioration of magnesium electrolysis due to Fe impurities.
基金supported by the Fundamental Research Funds for the Central Universities under Grant No.2024BRB010。
文摘CuInSe_(2) is an N-type diamond-like semiconductors thermoelectric candidate for power generation at medium temperature with its environmentally friendly and cost-effective properties.However,the intrinsic high thermal conductivity of CuInSe_(2) limits the enhancement of its thermoelectric performance.Herein,we investigate the thermoelectric performance of N-type CuInSe_(2) materials by incorporating ZnSe through a solid solution strategy.A series of(CuInSe_(2))_(1-x)(ZnSe)_(x)(x=0.0,0.2,0.4,0.6,0.8,1.0)samples were synthesized,forming continuous solid solutions,while introducing minor porosity.ZnSe solid solution effectively reduces the lattice thermal conductivity of the CuInSe_(2) matrix at near-room temperatures,but has a weaker effect at higher temperatures.Due to the intrinsic low carrier concentration of the system,resulting in high resistivity,the maximum figure of merit(ZT)of(CuInSe_(2))0.8(ZnSe)0.2 reaches 0.08 at 773 K.Despite the relatively low ZT,the solid solution strategy proves effective in reducing the lattice thermal conductivity near-room temperature and offers potential for cost-effective thermoelectric materials.
基金This work was carried out in the framework of PAPIIT-UNAM(IN-205823)project.
文摘Li_(6)ZnO_(4)was chemically modified by nickel addition,in order to develop different compositions of the solid solution Li_(6)Zn_(1-x)Ni_(x)O_(4).These materials were evaluated bifunctionally;analyzing their CO_(2)capture performances,aswell as on their catalytic properties for H_(2)production via dry reforming of methane(DRM).The crystal structures of Li_(6)Zn_(1-x)Ni_(x)O_(4)solid solution samples were determined through X-ray diffraction,which confirmed the integration of nickel ions up to a concentration around 20 mol%,meanwhile beyond this value,a secondary phase was detected.These results were supported by XPS and TEM analyses.Then,dynamic and isothermal thermogravimetric analyses of CO_(2)capture revealed that Li_(6)Zn_(1-x)Ni_(x)O_(4)solid solution samples exhibited good CO_(2)chemisorption efficiencies,similarly to the pristine Li_(6)ZnO_(4)chemisorption trends observed.Moreover,a kinetic analysis of CO_(2)isothermal chemisorptions,using the Avrami-Erofeev model,evidenced an increment of the constant rates as a function of the Ni content.Since Ni^(2+)ions incorporation did not reduce the CO_(2)capture efficiency and kinetics,the catalytic properties of thesematerialswere evaluated in the DRM process.Results demonstrated that nickel ions favored hydrogen(H_(2))production over the pristine Li_(6)ZnO_(4)phase,despite a second H2 production reaction was determined,methane decomposition.Thereby,Li_(6)Zn_(1-x)Ni_(x)O_(4)ceramics can be employed as bifunctional materials.
基金supported by the National Natural Science Foundation(No.51678291)the Basic Science(Natural Science)Research in Higher Education in Jiangsu Province(No.23KJA610003)the High-level Scientific Research Foundation for the introduction of talent in Nanjing Institute of Technology(No.YKJ201999)。
文摘Most studies have shown that oxygen vacancies on Ce_(x)Zr_(1-x)O_(2) solid solution are important for enhancing the catalytic oxidation performance.However,a handful of studies investigated the different roles of surface and subsurface oxygen vacancies on the performance and mechanisms of catalysts.Herein,a series of zirconium doping on CeO_(2) samples(CeO_(2),Ce_(0.95)Zr_(0.05)O_(2),and Ce_(0.8)5Zr_(0.15)O_(2))with various surface-to-subsurface oxygen vacancies ratios have been synthesized and applied in toluene catalytic oxidation.The obtained Ce_(0.95)Zr_(0.05)O_(2) exhibits an excellent catalytic performance with a 90%toluene conversion at 295℃,which is 68℃lower than that of CeO_(2).Additionally,the obtained Ce_(0.95)Zr_(0.05)O_(2)catalyst also exhibited good catalytic stability and water resistance.The XRD and HRTEM results show that Zr ions are incorporated into CeO_(2) lattice,forming Ce_(x)Zr_(1-x)O_(2) solid solution.Temperature-programmed experiments reveal that Ce_(0.95)Zr_(0.05)O_(2) shows excellent lowtemperature reducibility and abundant surface oxygen species.In-situ DRIFTS tests were used to probe the reaction mechanism,and the function of Zr doping in promoting the activation of oxygen was further determined.Density functional theory(DFT)calculations indicate that the vacancy formation energy and O_(2) adsorption energy are both lower on Ce_(0.95)Zr_(0.05)O_(2),confirming the reason for its superior catalytic performance.
基金funding support from the National Key R&D Program of China(2020YFC1909105)the 2023 Basic Research Foundation Project for Universities in the Inner Mongolia Autonomous Region(2023RCTD006)+1 种基金the Major Science and Technology Project of Inner Mongolia Autonomous Region(2021ZD0016)the National Natural Science Foundation of China(51664044).
文摘To separate the phosphorus-containing phase from steel slag,the effects of B_(2)O_(3)and Na_(2)B_(4)O_(7)on the enrichment of phosphorus-containing phases in Ca_(2)SiO_(4)–Ca_(3)(PO_(4))_(2)(C_(2)S–C_(3)P)solid solution were comparatively analyzed through theoretical calculations and experimental investigations.The results indicate that the optimum reaction temperature between B_(2)O_(3)and C_(2)S–C_(3)P is 800℃.The phase compositions of C_(2)S–C_(3)P equilibrium system with 5 wt.%B_(2)O_(3)at 800℃ included Ca_(3)(PO_(4))_(2),CaSiO_(3)and Ca11B_(2)Si_(4)O_(22),among which the content of Ca_(3)(PO_(4))_(2)was the highest.For C_(2)S–C_(3)P with 5 wt.%Na_(2)B_(4)O_(7)equilibrium system,Ca_(3)(PO_(4))_(2),CaSiO_(3),Ca11B_(2)Si_(4)O_(22)and Na_(2)Ca_(2)P_(2)O_(8)were independent at 390–690℃.Ca_(3)(PO_(4))_(2)and Ca_(2)SiO_(4)precipitated in the solid solution when the addition of B_(2)O_(3)was more than 6 wt.%,and the content of Ca_(3)(PO_(4))_(2)raised with the increase in the addition of B_(2)O_(3).The main phases in the C_(2)S–C_(3)P solid solution with Na_(2)B_(4)O_(7)were(Ca_(2)SiO_(4))0.05[Ca_(3)(PO_(4))_(2)],Ca_(2)SiO_(4)and Na_(3)Ca_(6)(PO_(4))_(5)at 650℃.And when the addition of Na_(2)B_(4)O_(7)exceeded 6 wt.%,the content of Na_(3)Ca_(6)(PO_(4))_(5)increased significantly.There was no precipitation of Ca_(3)(PO_(4))_(2)or boron-containing phase in the samples with Na_(2)B_(4)O_(7),but a small proportion of Ca_(3)(PO_(4))_(2)transformed into(Ca_(2)SiO_(4))0.05[Ca_(3)(PO_(4))_(2)],and Ca^(2+)was partially replaced by Na^(+)to generate Na_(3)Ca_(6)(PO_(4))_(5).As a result,the temperature for Na_(2)B_(4)O_(7)to enrich the phosphorus-containing phase in C_(2)S–C_(3)P solid solution was lower than that for B_(2)O_(3).However,the grade of the phosphorus-containing phase for Na_(2)B_(4)O_(7)was lower than that for B_(2)O_(3).
基金Project supported by the State Key Research Project of Shandong Natural Science Foundation(ZR2020KB019)the fund of"Two-Hundred Talent"Plan of Yantai City+1 种基金the National Natural Science Foundation of China(11974013)the Natural Science Foundation of Fujian Province(2022J011270)。
文摘The low-dose X-ray induced long afterglow near infrared(NIR)luminescence from Cr^(3+)doped Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions was investigated.The structure analysis shows the good formation of Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions,which possesses a cubic spinel structure with Fd3m space group.The formation of Zn_(1-x)Cd_(x)Ga_(2)O_(4)spinel solid solutions induces the obvious increase of long afterglow near infrared luminescence excited by low-dose X-ray,When the content of doped Cd^(2+)reaches 0.1,the low-dose X-ray induced long afterglow NIR luminescence is the maximum.More importantly,only 5 s Xray irradiation can induce more than 6 h NIR afterglow emission,of which the afterglow luminescent intensity is still 5 times stronger than the background intensity after 6 h.The thermoluminescent results show that under the 5 s exposure of X-ray,the trap density of Zn_(0.9)Cd_(0.1)Ga_(2)O_(4):Cr^(3+)is much higher than that of ZnGa_(2)O_(4):Cr^(3+).The replacement of Cd^(2+)ions with large radius at Zn^(2+)sites causes the increase of de fects and dislocations,which results in the obvious increase of trap co ncentrations.And the addition of high-z number elements Cd^(2+)would enhance the X-ray absorption of the solid solutions,which thus can be easily excited by low-dose X-ray.Zn_(0.9)Cd_(0.1)Ga_(2)O_(4):1%Cr^(3+)solid solution is a potential candidate of lowdose X-ray induced long afterglow luminescent materials.