Uniform lithium(Li)deposition in all-solid-state Li metal batteries is greatly influenced by the anode/electrolyte interface.Herein,a Mg-modified interface was constructed via the simple in-situ electrochemical reduct...Uniform lithium(Li)deposition in all-solid-state Li metal batteries is greatly influenced by the anode/electrolyte interface.Herein,a Mg-modified interface was constructed via the simple in-situ electrochemical reduction of Mg^(2+)from Mg(TFSI)_(2) in polyethylene oxide(PEO)and a Li bis(trifluoromethane)sulfoni mide(Li TFSI)formulae.As confirmed by cryogenic transmission electron microscopy,the anode/electrolyte interface exhibited hybrids consisting of crystalline Mg,Li_(2)O,and Li dots embedded in an amorphous polymer electrolyte.The crystalline Mg dots guided the uniform Li nucleation and growth,inducing a smoother anode/electrolyte interface compared with the pristine electrolyte.With 1 wt%Mg(TFSI)_(2) in the PEO-Li TFSI electrolyte,the Mg-modified electrolyte enabled the Li/Li symmetric cells with cycling performance of over 1700 and 1400 h at current densities of 0.1 and 0.2 m A cm^(-2),respectively.Moreover,the full LFP/Li cells using the novel Mg-modified electrolyte delivered a cycling lifespan of over 450 cycles with negligible capacity loss.展开更多
An effect of Mg introduction on efficiency of high-loaded nickel catalysts in dehydrogenation of decahydroquinoline(10HQ)was inves-tigated.10HQ dehydrogenation is key process for the liquid organic hydrogen carrier(LO...An effect of Mg introduction on efficiency of high-loaded nickel catalysts in dehydrogenation of decahydroquinoline(10HQ)was inves-tigated.10HQ dehydrogenation is key process for the liquid organic hydrogen carrier(LOHC)storage technology using the quinoline/10HQ pair as H_(2)-lean/H_(2)-rich substrates.An influence of synthesis technique of Ni/Mg/Al catalysts on their properties has been demonstrated.The catalysts were synthesized through coprecipitation of Ni,Mg,Al precursors to obtain layered double hydroxides(LDH)or via syn-thesis of(∼72 wt%)Ni-Al_(2)O_(3) system-also through coprecipitation,followed by modifying with a magnesium-containing precursor.For the catalysts of the first series,the inclusion of magnesium into LDH lattice led to a significant increase in catalytic activity in hydrogen extraction(10HQ dehydrogenation reaction).Despite the decrease in the content of catalytically active nickel,a significant increase in the yield of the dehydrogenation product was observed.This regularity is presumably associated with appearance of basic sites,that accelerates the dehydrogenation reaction.In the case of the second series,activity of pre-reduced(600°C,H_(2))catalysts in dehydrogenation of 10HQ also significantly depends on a MgO content and is maximal at Mg:Ni weight ratio 0.056.Using an in-depth study of structure of the original and reduced catalyst samples(Ni-Al_(2)O_(3) and Ni-MgNiOx-Al_(2)O_(3)),it was shown that this regularity is associated with the increased resistance of catalytically active Ni particles to agglomeration during the reductive activation.Also,using the Ni-MgNiOx-Al_(2)O_(3)catalyst for hydrogen storage process(hydrogenation reaction),the possibility of deep quinoline hydrogenation(up to 10HQ)in a flow-type reactor was demonstrated for the first time.展开更多
基金financial support from the National Natural Science Foundation of China(Grant no.51722210,51972285,U1802254,11904317,and 21902144)the Natural Science Foundation of Zhejiang Province(Grant no.LY17E020010 and LD18E020003)the Innovation Fund of the Zhejiang Kechuang New Materials Research Institute(Grant no.ZKN-18P05)。
文摘Uniform lithium(Li)deposition in all-solid-state Li metal batteries is greatly influenced by the anode/electrolyte interface.Herein,a Mg-modified interface was constructed via the simple in-situ electrochemical reduction of Mg^(2+)from Mg(TFSI)_(2) in polyethylene oxide(PEO)and a Li bis(trifluoromethane)sulfoni mide(Li TFSI)formulae.As confirmed by cryogenic transmission electron microscopy,the anode/electrolyte interface exhibited hybrids consisting of crystalline Mg,Li_(2)O,and Li dots embedded in an amorphous polymer electrolyte.The crystalline Mg dots guided the uniform Li nucleation and growth,inducing a smoother anode/electrolyte interface compared with the pristine electrolyte.With 1 wt%Mg(TFSI)_(2) in the PEO-Li TFSI electrolyte,the Mg-modified electrolyte enabled the Li/Li symmetric cells with cycling performance of over 1700 and 1400 h at current densities of 0.1 and 0.2 m A cm^(-2),respectively.Moreover,the full LFP/Li cells using the novel Mg-modified electrolyte delivered a cycling lifespan of over 450 cycles with negligible capacity loss.
基金supported by the Ministry of Science and Higher Education of the Russian Federation within governmental order for Boreskov Institute of Catalysis SB RAS (projects FWUR-2024–0038, FWUR-2024–0032 and FWUR2024–0039)
文摘An effect of Mg introduction on efficiency of high-loaded nickel catalysts in dehydrogenation of decahydroquinoline(10HQ)was inves-tigated.10HQ dehydrogenation is key process for the liquid organic hydrogen carrier(LOHC)storage technology using the quinoline/10HQ pair as H_(2)-lean/H_(2)-rich substrates.An influence of synthesis technique of Ni/Mg/Al catalysts on their properties has been demonstrated.The catalysts were synthesized through coprecipitation of Ni,Mg,Al precursors to obtain layered double hydroxides(LDH)or via syn-thesis of(∼72 wt%)Ni-Al_(2)O_(3) system-also through coprecipitation,followed by modifying with a magnesium-containing precursor.For the catalysts of the first series,the inclusion of magnesium into LDH lattice led to a significant increase in catalytic activity in hydrogen extraction(10HQ dehydrogenation reaction).Despite the decrease in the content of catalytically active nickel,a significant increase in the yield of the dehydrogenation product was observed.This regularity is presumably associated with appearance of basic sites,that accelerates the dehydrogenation reaction.In the case of the second series,activity of pre-reduced(600°C,H_(2))catalysts in dehydrogenation of 10HQ also significantly depends on a MgO content and is maximal at Mg:Ni weight ratio 0.056.Using an in-depth study of structure of the original and reduced catalyst samples(Ni-Al_(2)O_(3) and Ni-MgNiOx-Al_(2)O_(3)),it was shown that this regularity is associated with the increased resistance of catalytically active Ni particles to agglomeration during the reductive activation.Also,using the Ni-MgNiOx-Al_(2)O_(3)catalyst for hydrogen storage process(hydrogenation reaction),the possibility of deep quinoline hydrogenation(up to 10HQ)in a flow-type reactor was demonstrated for the first time.