期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Hydriding/dehydriding properties of Mg-Ni-based ternary alloys synthesized by mechanical grinding 被引量:1
1
作者 陈玉安 杨丽玲 +2 位作者 林嘉靖 程绩 潘复生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期624-629,共6页
The Mg-Ni-based ternary alloys Mg2-xTixNi(x=0,0.2,0.4)and Mg2Ni1-xZrx(x=0,0.2,0.4)were successfully synthesized by mechanical grinding.The phases in the alloys and the hydriding/dehydriding properties of the alloys we... The Mg-Ni-based ternary alloys Mg2-xTixNi(x=0,0.2,0.4)and Mg2Ni1-xZrx(x=0,0.2,0.4)were successfully synthesized by mechanical grinding.The phases in the alloys and the hydriding/dehydriding properties of the alloys were investigated.Mg2Ni and Mg are the main hydrogen absorption phases in the alloys by XRD analysis.Hydriding kinetics curves of the alloys indicate that the hydrogen absorption rate increases after partial substitution of Ti for Mg and Zr for Ni.According to the measurement of pressure-concentration-isotherms and Van't Hoff equation,the relationship between ln p(H2)and 1 000/T was established.It is found that while increasing the content of correspondingly substituted elements at the same temperature,the equilibrium pressure of dehydriding increases,the enthalpy change and the stability of the alloy hydride decrease. 展开更多
关键词 mg-ni-based hydrogen storage alloy mechanical grinding p-C-T measurement hydriding properties enthalpy change
在线阅读 下载PDF
Gaseous hydrogen storage properties of Mg-Y-Ni-Cu alloys prepared by melt spinning 被引量:3
2
作者 Yanghuan Zhang Yaqin Li +4 位作者 Wei Zhang Zeming Yuan Zhonghui Hou Yan Qi Shihai Guo 《Journal of Rare Earths》 SCIE EI CAS CSCD 2019年第7期750-759,共10页
For purpose of promoting the hydrogen absorption and desorption thermodynamics and kinetics properties of Mg-Ni-based alloys, partially substituting Y and Cu for Mg and Ni respectively and melt spinning technique were... For purpose of promoting the hydrogen absorption and desorption thermodynamics and kinetics properties of Mg-Ni-based alloys, partially substituting Y and Cu for Mg and Ni respectively and melt spinning technique were applied for getting Mg25-xYxNi9 Cu(χ = 0-7) alloys. Their microstructures and phases were characterized with the help of X-ray diffraction and transmission electron microscopy. Their hydrogen absorbing and desorbing properties were tested by a Sievert apparatus, DSC, and TGA, which were connected with a H2 detector. In order to estimate the dehydrogenation activation energy of alloy hydride, both Arrhenius and Kissinger methods were applied for calculation. It is found that their hydriding kinetics notably declines, however, their hydrogen desorption kinetics conspicuously improves, with spinning rate and Y content increasing. Their hydrogen desorption activation energy markedly decreases under the same constraint, and it is found that melt spinning and Y substituting Mg improve the real driving force for dehydrogenation. As for the tendency of hydrogen absorption capacity,it presents an elevation firstly and soon after a decline with the rising of spinning rate, however, it always lowers with Y content growing. With Y content and spinning rate increasing, their thermodynamic parameters(△H and △S absolute values) visibly decrease, and the starting hydrogen desorption temperatures of alloy hydrides obviously lower. 展开更多
关键词 mg-ni-based alloy MELT SPINNING Activation energy Hydrogen storage kinetics Thermodynamics RARE earths
原文传递
Structure and hydrogen storage characteristics of as-spun Mg-Y-Ni-Cu alloys 被引量:2
3
作者 Yanghuan Zhang Pengpeng Wang +3 位作者 Zhonghui Hou Zeming Yuan Yan Qi Shihai Guo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第8期1727-1734,共8页
Experimental alloys with compositions of Mg(25-x)YxNi9Cu(x=0,1,3,5,7)have been successfully prepared through melt spinning method.The phase compositions and microstructures were measured by X-Ray diffraction(XRD)and h... Experimental alloys with compositions of Mg(25-x)YxNi9Cu(x=0,1,3,5,7)have been successfully prepared through melt spinning method.The phase compositions and microstructures were measured by X-Ray diffraction(XRD)and high-resolution transmission electron microscopy(HRTEM).The de-/hydrogenation properties were measured by utilizing Sievert apparatus,differential scanning calorimetry(DSC)and thermal gravimetric analyzer(TGA)connected with a H2 detector.The Arrhenius and Kissinger methods were adopted to calculate their dehydrogenation activation energies.The results show that hydrogen absorption kinetics of the alloys notably decline while their hydrogen desorption kinetics conspicuously improve with spinning rate increasing.The dehydrogenation activation energy markedly decreases with spinning rate increasing,which makes the hydrogen desorption kinetics improve.The thermodynamic parameters(H and S absolute values)clearly decrease with spinning rate increasing.The hydrogen absorption capacity exhibits different trends with spinning rate rising.Specifically,hydrogen absorption capacity increases at the beginning and declines later for Y1 alloy,but that of Y7 alloy always decreases with spinning rate growing. 展开更多
关键词 mg-ni-based alloy Thermodynamics Activation energy MELT SPINNING Hydrogen storage kinetics
原文传递
Improvement of corrosion resistance in NaOH solution and glass forming ability of as-cast Mg-based bulk metallic glasses by microalloying 被引量:2
4
作者 Peng Hao Li Shuangshou Huang Tianyou 《China Foundry》 SCIE CAS 2011年第1期5-8,共4页
The influences of the addition of Ag on the glass forming ability (GFA) and corrosion behavior were investigated in the Mg-Ni-based alloy system by X-ray diffraction (XRD) and electrochemical polarization in 0.1 mol/L... The influences of the addition of Ag on the glass forming ability (GFA) and corrosion behavior were investigated in the Mg-Ni-based alloy system by X-ray diffraction (XRD) and electrochemical polarization in 0.1 mol/L NaOH solution.Results shows that the GFA of the Mg-Ni-based BMGs can be improved dramatically by the addition of an appropriate amount of Ag;and the addition element Ag can improve the corrosion resistance of Mg-Ni-based bulk metallic glass.The large difference in atomic size and large negative mixing enthalpy in alloy system can contribute to the high GFA.The addition element Ag improves the forming speed and the stability of the passive film,which is helpful to decrease the passivation current density and to improve the corrosion resistance of Mg-Ni-based bulk metallic glass. 展开更多
关键词 mg-ni-based alloy glass forming ability corrosion resistance
在线阅读 下载PDF
Structure and Electrochemical Hydrogen Storage Properties of as-Milled Mg-Ce-Ni-Al-Based Alloys 被引量:1
5
作者 Yanghuan Zhang Zhenyang Li +3 位作者 Wei Zhang Wengang Bu Yan Qi Shihai Guo 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2020年第5期630-642,共13页
At room temperature,crystalline Mg-based alloys,including Mg2 Ni,MgNi,REMg12 and La2 Mg17,have been proved with weak electrochemical hydrogen storage performances.For improving their electrochemical property,the Mg is... At room temperature,crystalline Mg-based alloys,including Mg2 Ni,MgNi,REMg12 and La2 Mg17,have been proved with weak electrochemical hydrogen storage performances.For improving their electrochemical property,the Mg is partially substituted by Ce in Mg-Ni-based alloys and the surface modification treatment is performed by mechanical coating Ni.Mechanical milling is utilized to synthesize the amorphous and nanocrystalline Mg1-xCexNi0.9Al0.1(x=0,0.02,0.04,0.06,0.08)+50 wt%Ni hydrogen storage alloys.The effects made by Ce substitution and mechanical milling on the electrochemical hydrogen storage property and structure have been analyzed.It shows that the as-milled alloys electrochemically absorb and desorb hydrogen well at room temperature.The as-milled alloys,without any activation,can reach their maximal discharge capacities during first cycling.The maximal value of the 30-h-milled alloy depending on Ce content is 578.4 mAh/g,while that of the x=0.08 alloy always grows when prolonging milling duration.The maximal discharge capacity augments from337.4 to 521.2 mAh/g when milling duration grows from 5 to 30 h.The cycle stability grows with increasing Ce content and milling duration.Concretely,the S100 value augments from 55 to 82%for the alloy milled for 30 h with Ce content rising from 0 to 0.08 and from 66 to 82%when milling the x=0.08 alloy mechanically from 5 to 30 h.The alloys’electrochemical dynamics parameters were measured as well which have maximum values depending on Ce content and keep growing up with milling duration extending. 展开更多
关键词 mg-ni-based alloy Ce substituting Mg Surface modification Mechanical milling Electrochemical performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部