To further expand the application of Mg alloys at high temperatures,the oxidation resistance of Mg-0.3Ca and Mg-3.6Ca alloys with protective coating under flame exposure was studied.Results show that the oxidation res...To further expand the application of Mg alloys at high temperatures,the oxidation resistance of Mg-0.3Ca and Mg-3.6Ca alloys with protective coating under flame exposure was studied.Results show that the oxidation resistance of Mg-Ca alloys under flame exposure is significantly improved by the protective coating,and Mg-3.6Ca alloy shows better oxidation resistance performance.The surface temperature of Mg-Ca alloys is reduced by the coating,therefore improving the oxidation resistance under flame exposure.However,the thermal insulation effect of the coating on Mg-3.6Ca alloy is better,which can be attributed to the Ca accumulation on the surface film.In addition,the surface film with Ca accumulation layer plays a crucial role in protecting the alloy.No obvious Ca accumulation layer exists on the Mg-0.3Ca alloy surface,presenting a restricted protective effect.Nevertheless,the surface film containing Ca accumulation layer is formed on Mg-3.6 Ca alloy,which shows an excellent protective effect.展开更多
The oxidation behavior and mechanism of Mg-Ca alloys in air and under flame exposure were studied.Results show that for the oxidation in air,the Mg-Ca-O oxide film with Ca accumulation and low Mg vapor pressure on the...The oxidation behavior and mechanism of Mg-Ca alloys in air and under flame exposure were studied.Results show that for the oxidation in air,the Mg-Ca-O oxide film with Ca accumulation and low Mg vapor pressure on the surface of Mg-Ca alloys with high Ca content shows good protective effect.However,the falling off phenomenon of the oxide film on Mg_(2)Ca results in the further oxidation.Hence,the Mg-Ca alloys with high Ca content only show good protective effect.For the oxidation in flame,the molten alloys release the Ca atoms to diffuse outward.The Mg-Ca-O oxide film with high Ca accumulation layer forms in Mg-Ca alloys with high Ca content.Despite the high Mg vapor pressure in the molten alloy,the Mg-Ca-O oxide film with high Ca accumulation layer shows excellent protective effect.展开更多
The phase equilibria in Mg-rich corner of Mg-Ca-Gd and Mg-Ca-Nd ternary systems at 400℃ were determined through the equilibrated alloy method by using XRD, SEM, EPMA and DSC. Partial isothermal sections in Mg-rich co...The phase equilibria in Mg-rich corner of Mg-Ca-Gd and Mg-Ca-Nd ternary systems at 400℃ were determined through the equilibrated alloy method by using XRD, SEM, EPMA and DSC. Partial isothermal sections in Mg-rich corner of Mg-Ca-Gd and Mg-Ca-Nd ternary systems at 400 ℃ were constructed from 13 alloys. A three-phase region of a-Mg, Mg41RE5 and Mg2Ca was determined in both ternary systems. It is formed by a similar ternary eutectic reaction L→a-Mg+Mg2Ca+Mg41RE5 at 499.6 ℃ and 505.6 ℃, respectively. It is found that the maximum solubility of Ca in Mg5Gd is 3.68% (molar fraction) and 3% of Gd can be dissolved in Mg2Ca in the Mg-Ca-Gd system at 400 ℃. While in the Mg-Ca-Nd system, the maximum solubility of Ca in Mg41Nd5 is 3.57% and 1.24% of Nd can be dissolved in Mg2Ca at 400 ℃. Other three-phase equilibria existing in Mg-rich corner of Mg-Ca-Gd system are a-Mg+MgsGd+T and MgsGd+Mg2Ca+T and the three-phase equilibrium in Mg-rich corner of Mg-Ca-Nd system is Mg3Nd+Mg2Ca+ Mg41Nd5.展开更多
The corrosion degradation behavior of a Mg-Ca alloy with high Ca content aiming for a potential bone repair material in the simulated body fluid(SBF) was investigated.The microstructure and phase constitution of the...The corrosion degradation behavior of a Mg-Ca alloy with high Ca content aiming for a potential bone repair material in the simulated body fluid(SBF) was investigated.The microstructure and phase constitution of the pristine Mg-30%Ca(mass fraction) alloy were characterized with scanning electron microscopy(SEM) and X-ray diffraction(XRD).The Mg-30%Ca alloy samples were immersed in the SBF for 90 d,and the morphology,composition and cytotoxicity of the final corrosion product were examined.It is found that Mg-30%Ca alloy is composed of α-Mg and Mg2 Ca phases.During the corrosion process in the SBF,the Mg2 Ca phase acts as an anode and the α-Mg phase acts as a cathode.The final corrosion product of the Mg-30%Ca alloy in SBF includes a small amount of black precipitates and white suspended particles.The white suspended particles are Mg(OH)2 and the black particles are believed to have a core-shell structure.The cytotoxicity experiments indicate that these black precipitates do not induce toxicity to cells.展开更多
This work reported the effect of extrusion speeds on the microstructures and mechanical properties of Mg-Ca binary alloy.The results showed that yield strength of the as-extruded Mg-1.2wt.%Ca alloys decrease from∼360...This work reported the effect of extrusion speeds on the microstructures and mechanical properties of Mg-Ca binary alloy.The results showed that yield strength of the as-extruded Mg-1.2wt.%Ca alloys decrease from∼360MPa to∼258MPa as the ram speed increases from 0.4mm/s to 2.4 mm/s,and the elongation increases from∼3.9%to∼12.2%.The microstructure changes from bimodal grain feature to the complete dynamical recrystallization(DRX)with increase of the extrusion speed.The ultrafine DRXed grains in size of∼0.85μm,the numerous nano-Mg_(2)Ca particles dispersing along the grain boundaries and interiors,as well as the high density of residual dislocations,should account for the high strength.It is believed that the high degree of dynamic recrystallization and the resulting texture randomization play the critical roles in the ductility enhancement of the high-speed extruded Mg alloys.展开更多
The influence of hydrofluoric acid(HF) treatment on the corrosion behavior of the Mg-0.5Ca alloys was investigated by immersion specimen in sodium hydroxide and HF solutions with various concentrations and durations...The influence of hydrofluoric acid(HF) treatment on the corrosion behavior of the Mg-0.5Ca alloys was investigated by immersion specimen in sodium hydroxide and HF solutions with various concentrations and durations at room temperature.Microstructural evolutions of the specimens were characterized by atomic force microscopy,X-ray diffraction,field-emission scanning electron microscopy.The corrosion resistance was examined through potentiodynamic polarization and immersion test in Kokubo solution.The results revealed that the fluoride treated Mg-0.5Ca alloys produced by immersion in 40% HF provided more uniform,dense and thicker coating layer(12.6 μm) compared with the 35% HF treated specimen.The electrochemical test showed that the corrosion resistance of fluoride treated specimen was 35 times higher compared with the untreated Mg-0.5Ca alloy specimen in Kokubo solution.In vitro degradation rate of the fluoride treated specimens was much lower than untreated Mg-0.5Ca alloy in Kokubo solution.After immersion test the surface of 40% HF treated sample showed a few corrosion dots,while untreated specimens were fully covered by corrosion products and delamination.Fluoride treated Mg-0.5Ca alloy with 40% HF is a promising candidate as biodegradable implants due to its low degradation kinetics and good biocompatibility.展开更多
Highly porous Mg-Ca-Zn-Co alloy scaffolds for tissue engineering applications were produced by powder metallurgy based space holder-water leaching method.Mg-Ca-Zn-Co alloy foam can be used as a scaffold material in ti...Highly porous Mg-Ca-Zn-Co alloy scaffolds for tissue engineering applications were produced by powder metallurgy based space holder-water leaching method.Mg-Ca-Zn-Co alloy foam can be used as a scaffold material in tissue engineering.Carbamide was used as a space holder material.Fluoride conversion coating was synthesized on the alloy by immersion treatment in hydrofluoric acid(HF).Increasing Zn content of the alloy increased the elastic modulus.Ca addition prevented the oxidation of the specimens during sintering.Electrochemical corrosion behaviour of the specimens was examined in simulated body fluid.Corrosion rate decreased with Zn addition from1.0%up to3.0%(mass fraction)and then increased.Mass loss of the specimens initially decreased with Zn addition up to about3%and then increased.Fluoride conversion coating increased the corrosion resistance of the specimens.展开更多
The binary Mg-Ca alloys are drawing increasing attention as temporary implant materials because of their excellent biocompatibility,biodegradability,and good mechanical properties.However,their applications are limite...The binary Mg-Ca alloys are drawing increasing attention as temporary implant materials because of their excellent biocompatibility,biodegradability,and good mechanical properties.However,their applications are limited due to their high degradation rates in the human physiological environment,the consequent release of hydrogen gas,and rapid loss in mechanical properties.Furthermore,biocompatibility depends upon the degradability of the material.Various researchers have demonstrated that these issues can be addressed by control of Ca content,thermo-mechanical processing to obtain suitable microstructures,deposition of surface coatings,etc.In this manuscript,a detailed review of published literature on Mg-Ca alloys is presented.The challenges and future directions of research in this area are also described.展开更多
The production cost will be greatly reduced if nitrogen can be used instead of inert gas in the spray forming process of magnesium alloys, but the heat from the reaction between magnesium alloys and nitrogen makes mag...The production cost will be greatly reduced if nitrogen can be used instead of inert gas in the spray forming process of magnesium alloys, but the heat from the reaction between magnesium alloys and nitrogen makes magnesium alloy burn easily. To solve the problem above, the ignition point of Mg-Ca alloy under nitrogen atmosphere was studied using a home-made experimental device and DSC-DTA. Results show that under nitrogen atmosphere, Ca addition has a great effect on the ignition point of Mg alloy. The ignition point of the Mg-5Ca bulk even exceeds 1,030℃, and the alloy can be held for 30 min at 900℃ without burning;while the average ignition point of Mg-5Ca powders is lower than 700℃, and it increases with the increasing particle size. Moreover, the purity of nitrogen must be in a certain scope;Mg-Ca alloy shows a higher ignition point under nitrogen with a purity of 99.5%. Based on the experimental results, the best adding content of Ca and the purity of nitrogen were determined, and the security and economic performance of preparing magnesium alloys by spray deposition were improved with nitrogen as atomizing gas.展开更多
基金General Project of Natural Science Research in Higher Education Institutions in Jiangsu Province(23KJB430039)Major Natural Science Research Project of Higher Education Institutions in Jiangsu Province(21KJA460007)National Natural Science Foundation of China(51905462)。
文摘To further expand the application of Mg alloys at high temperatures,the oxidation resistance of Mg-0.3Ca and Mg-3.6Ca alloys with protective coating under flame exposure was studied.Results show that the oxidation resistance of Mg-Ca alloys under flame exposure is significantly improved by the protective coating,and Mg-3.6Ca alloy shows better oxidation resistance performance.The surface temperature of Mg-Ca alloys is reduced by the coating,therefore improving the oxidation resistance under flame exposure.However,the thermal insulation effect of the coating on Mg-3.6Ca alloy is better,which can be attributed to the Ca accumulation on the surface film.In addition,the surface film with Ca accumulation layer plays a crucial role in protecting the alloy.No obvious Ca accumulation layer exists on the Mg-0.3Ca alloy surface,presenting a restricted protective effect.Nevertheless,the surface film containing Ca accumulation layer is formed on Mg-3.6 Ca alloy,which shows an excellent protective effect.
基金National Natural Science Foundation of China(52405425)Project of Natural Science Research in Higher Education Institutions in Jiangsu Province(23KJB430039)+1 种基金Major Natural Science Research Project of Higher Education Institutions in Jiangsu Province(21KJA460007)333 High Level Talent Training Project in Jiangsu Province(2022-3-12-182)。
文摘The oxidation behavior and mechanism of Mg-Ca alloys in air and under flame exposure were studied.Results show that for the oxidation in air,the Mg-Ca-O oxide film with Ca accumulation and low Mg vapor pressure on the surface of Mg-Ca alloys with high Ca content shows good protective effect.However,the falling off phenomenon of the oxide film on Mg_(2)Ca results in the further oxidation.Hence,the Mg-Ca alloys with high Ca content only show good protective effect.For the oxidation in flame,the molten alloys release the Ca atoms to diffuse outward.The Mg-Ca-O oxide film with high Ca accumulation layer forms in Mg-Ca alloys with high Ca content.Despite the high Mg vapor pressure in the molten alloy,the Mg-Ca-O oxide film with high Ca accumulation layer shows excellent protective effect.
基金Projects(50731002,50971136) supported by the National Natural Science Foundation of China
文摘The phase equilibria in Mg-rich corner of Mg-Ca-Gd and Mg-Ca-Nd ternary systems at 400℃ were determined through the equilibrated alloy method by using XRD, SEM, EPMA and DSC. Partial isothermal sections in Mg-rich corner of Mg-Ca-Gd and Mg-Ca-Nd ternary systems at 400 ℃ were constructed from 13 alloys. A three-phase region of a-Mg, Mg41RE5 and Mg2Ca was determined in both ternary systems. It is formed by a similar ternary eutectic reaction L→a-Mg+Mg2Ca+Mg41RE5 at 499.6 ℃ and 505.6 ℃, respectively. It is found that the maximum solubility of Ca in Mg5Gd is 3.68% (molar fraction) and 3% of Gd can be dissolved in Mg2Ca in the Mg-Ca-Gd system at 400 ℃. While in the Mg-Ca-Nd system, the maximum solubility of Ca in Mg41Nd5 is 3.57% and 1.24% of Nd can be dissolved in Mg2Ca at 400 ℃. Other three-phase equilibria existing in Mg-rich corner of Mg-Ca-Gd system are a-Mg+MgsGd+T and MgsGd+Mg2Ca+T and the three-phase equilibrium in Mg-rich corner of Mg-Ca-Nd system is Mg3Nd+Mg2Ca+ Mg41Nd5.
基金Project(51271131)supported by the National Natural Science Foundation of China
文摘The corrosion degradation behavior of a Mg-Ca alloy with high Ca content aiming for a potential bone repair material in the simulated body fluid(SBF) was investigated.The microstructure and phase constitution of the pristine Mg-30%Ca(mass fraction) alloy were characterized with scanning electron microscopy(SEM) and X-ray diffraction(XRD).The Mg-30%Ca alloy samples were immersed in the SBF for 90 d,and the morphology,composition and cytotoxicity of the final corrosion product were examined.It is found that Mg-30%Ca alloy is composed of α-Mg and Mg2 Ca phases.During the corrosion process in the SBF,the Mg2 Ca phase acts as an anode and the α-Mg phase acts as a cathode.The final corrosion product of the Mg-30%Ca alloy in SBF includes a small amount of black precipitates and white suspended particles.The white suspended particles are Mg(OH)2 and the black particles are believed to have a core-shell structure.The cytotoxicity experiments indicate that these black precipitates do not induce toxicity to cells.
基金This work is supported by National Natural Science Foundation of China(Nos.51525101,U1610253,51701211,and 51971053)funded by the Project of Promoting Talents in Liaoning province(No.XLYC1808038)+2 种基金H.C.Pan acknowledges the financial assistance from the State Key Laboratory of Solidification Processing in NPU(No.SKLSP201920)the Fundamental Research Funds for the Central Universities(No.N2002011)joint R&D fund of Liaoning-Shenyang National Research Center for Materials Science(No.2019JH3/30100040).
文摘This work reported the effect of extrusion speeds on the microstructures and mechanical properties of Mg-Ca binary alloy.The results showed that yield strength of the as-extruded Mg-1.2wt.%Ca alloys decrease from∼360MPa to∼258MPa as the ram speed increases from 0.4mm/s to 2.4 mm/s,and the elongation increases from∼3.9%to∼12.2%.The microstructure changes from bimodal grain feature to the complete dynamical recrystallization(DRX)with increase of the extrusion speed.The ultrafine DRXed grains in size of∼0.85μm,the numerous nano-Mg_(2)Ca particles dispersing along the grain boundaries and interiors,as well as the high density of residual dislocations,should account for the high strength.It is believed that the high degree of dynamic recrystallization and the resulting texture randomization play the critical roles in the ductility enhancement of the high-speed extruded Mg alloys.
基金supported financially by Ministry of Higher Education of Malaysia under the Vote Number 78610
文摘The influence of hydrofluoric acid(HF) treatment on the corrosion behavior of the Mg-0.5Ca alloys was investigated by immersion specimen in sodium hydroxide and HF solutions with various concentrations and durations at room temperature.Microstructural evolutions of the specimens were characterized by atomic force microscopy,X-ray diffraction,field-emission scanning electron microscopy.The corrosion resistance was examined through potentiodynamic polarization and immersion test in Kokubo solution.The results revealed that the fluoride treated Mg-0.5Ca alloys produced by immersion in 40% HF provided more uniform,dense and thicker coating layer(12.6 μm) compared with the 35% HF treated specimen.The electrochemical test showed that the corrosion resistance of fluoride treated specimen was 35 times higher compared with the untreated Mg-0.5Ca alloy specimen in Kokubo solution.In vitro degradation rate of the fluoride treated specimens was much lower than untreated Mg-0.5Ca alloy in Kokubo solution.After immersion test the surface of 40% HF treated sample showed a few corrosion dots,while untreated specimens were fully covered by corrosion products and delamination.Fluoride treated Mg-0.5Ca alloy with 40% HF is a promising candidate as biodegradable implants due to its low degradation kinetics and good biocompatibility.
基金Project(214M438)supported by the Scientific and Technological Research Council of Turkey(TUBITAK)Projects(20795,42796)supported partially by Scientific Research Projects Coordination Unit of Istanbul University,Turkey
文摘Highly porous Mg-Ca-Zn-Co alloy scaffolds for tissue engineering applications were produced by powder metallurgy based space holder-water leaching method.Mg-Ca-Zn-Co alloy foam can be used as a scaffold material in tissue engineering.Carbamide was used as a space holder material.Fluoride conversion coating was synthesized on the alloy by immersion treatment in hydrofluoric acid(HF).Increasing Zn content of the alloy increased the elastic modulus.Ca addition prevented the oxidation of the specimens during sintering.Electrochemical corrosion behaviour of the specimens was examined in simulated body fluid.Corrosion rate decreased with Zn addition from1.0%up to3.0%(mass fraction)and then increased.Mass loss of the specimens initially decreased with Zn addition up to about3%and then increased.Fluoride conversion coating increased the corrosion resistance of the specimens.
文摘The binary Mg-Ca alloys are drawing increasing attention as temporary implant materials because of their excellent biocompatibility,biodegradability,and good mechanical properties.However,their applications are limited due to their high degradation rates in the human physiological environment,the consequent release of hydrogen gas,and rapid loss in mechanical properties.Furthermore,biocompatibility depends upon the degradability of the material.Various researchers have demonstrated that these issues can be addressed by control of Ca content,thermo-mechanical processing to obtain suitable microstructures,deposition of surface coatings,etc.In this manuscript,a detailed review of published literature on Mg-Ca alloys is presented.The challenges and future directions of research in this area are also described.
基金financially supported by the National Natural Science Foundation of China under grant No.50904035the University-Industry Cooperation Projects(grant No.2009B090300148,2010B090400244),Guangdong Province of China
文摘The production cost will be greatly reduced if nitrogen can be used instead of inert gas in the spray forming process of magnesium alloys, but the heat from the reaction between magnesium alloys and nitrogen makes magnesium alloy burn easily. To solve the problem above, the ignition point of Mg-Ca alloy under nitrogen atmosphere was studied using a home-made experimental device and DSC-DTA. Results show that under nitrogen atmosphere, Ca addition has a great effect on the ignition point of Mg alloy. The ignition point of the Mg-5Ca bulk even exceeds 1,030℃, and the alloy can be held for 30 min at 900℃ without burning;while the average ignition point of Mg-5Ca powders is lower than 700℃, and it increases with the increasing particle size. Moreover, the purity of nitrogen must be in a certain scope;Mg-Ca alloy shows a higher ignition point under nitrogen with a purity of 99.5%. Based on the experimental results, the best adding content of Ca and the purity of nitrogen were determined, and the security and economic performance of preparing magnesium alloys by spray deposition were improved with nitrogen as atomizing gas.