Mg/Al/Fe layered double hydroxide(MAF-LDH1) was prepared by solvothermal method with the sodium dodecyl sulfate as the template, and the ethanol system was benefit to growth of sample. The nature in the resulting MAF-...Mg/Al/Fe layered double hydroxide(MAF-LDH1) was prepared by solvothermal method with the sodium dodecyl sulfate as the template, and the ethanol system was benefit to growth of sample. The nature in the resulting MAF-LDH was investigated by X-ray diffraction, field emission scanning electron microscopy, Fourier transformed infrared spectra, thermogravimetric analysis, and N2 adsorption-desorption.The morphology of MAF-LDH1 is petal-like with the size of 400-500 nm and the thickness about 10-20 nm. The adsorption performance of the samples was evaluated by absorption of the Congo red(CR) solutions. Compared with Mg/Al layered double hydroxide(MA-LDH), the maximum adsorption capacities of the MAF-LDH1 samples were 943.4 mg/g which was greatly enhanced. Furthermore, after seven cycling tests, the adsorption performance was still up to 90%. Theoretical calculation results revealed that the adsorption process was spontaneous and followed the pseudo-second-order kinetic model and Freundlich model. This work provides a promising alternative strategy to enhance the adsorptive properties of hydrotalcite-like materials.展开更多
The effects of Al(Fe,Mn)Si particles controlled by different hot-rolling deformations on the microstructure evolution,texture evolution,and formabilities of Al−Mg−Si−Zn alloy were systematically investigated using OM,...The effects of Al(Fe,Mn)Si particles controlled by different hot-rolling deformations on the microstructure evolution,texture evolution,and formabilities of Al−Mg−Si−Zn alloy were systematically investigated using OM,SEM,TEM,XRD,and tensile tests.The results indicate that Al(Fe,Mn)Si particles with different size and number distribution characteristics can be obtained by adjusting the hot-rolling deformation degree(59%,74%and 87%),and these differences in particle distribution are the main factors affecting the recrystallization nucleation and grain growth during solution treatment.After T4P treatment,the grain orientations in the Al−Mg−Si−Zn alloy sheets with 59%and 74%hot-rolling deformation tend to be randomly distributed.In comparison,the sheet with 87%hot-rolling deformation consists of R{124}<211>,CubeND{100}<013>,Copper{112}<111>and Brass{011}<211>texture components.The medium size and number of Al(Fe,Mn)Si particles obtained at 74%hot-rolling deformation cause fine grains and randomly distributed texture,which significantly improves the formability of Al−Mg−Si−Zn alloy.展开更多
基金Funded by the Science and Technology Development Plan Project of Shandong Province,China(No.2013GSF11714)the Open Project of Hunan Sustentation Fund:Key Laboratory of Applied Environmental Photocatalysis,China(No.ccsu-KF-1501)
文摘Mg/Al/Fe layered double hydroxide(MAF-LDH1) was prepared by solvothermal method with the sodium dodecyl sulfate as the template, and the ethanol system was benefit to growth of sample. The nature in the resulting MAF-LDH was investigated by X-ray diffraction, field emission scanning electron microscopy, Fourier transformed infrared spectra, thermogravimetric analysis, and N2 adsorption-desorption.The morphology of MAF-LDH1 is petal-like with the size of 400-500 nm and the thickness about 10-20 nm. The adsorption performance of the samples was evaluated by absorption of the Congo red(CR) solutions. Compared with Mg/Al layered double hydroxide(MA-LDH), the maximum adsorption capacities of the MAF-LDH1 samples were 943.4 mg/g which was greatly enhanced. Furthermore, after seven cycling tests, the adsorption performance was still up to 90%. Theoretical calculation results revealed that the adsorption process was spontaneous and followed the pseudo-second-order kinetic model and Freundlich model. This work provides a promising alternative strategy to enhance the adsorptive properties of hydrotalcite-like materials.
基金the National Key R&D Program of China(Nos.2020YFF0218200,2016YFB0300802)for financial support。
文摘The effects of Al(Fe,Mn)Si particles controlled by different hot-rolling deformations on the microstructure evolution,texture evolution,and formabilities of Al−Mg−Si−Zn alloy were systematically investigated using OM,SEM,TEM,XRD,and tensile tests.The results indicate that Al(Fe,Mn)Si particles with different size and number distribution characteristics can be obtained by adjusting the hot-rolling deformation degree(59%,74%and 87%),and these differences in particle distribution are the main factors affecting the recrystallization nucleation and grain growth during solution treatment.After T4P treatment,the grain orientations in the Al−Mg−Si−Zn alloy sheets with 59%and 74%hot-rolling deformation tend to be randomly distributed.In comparison,the sheet with 87%hot-rolling deformation consists of R{124}<211>,CubeND{100}<013>,Copper{112}<111>and Brass{011}<211>texture components.The medium size and number of Al(Fe,Mn)Si particles obtained at 74%hot-rolling deformation cause fine grains and randomly distributed texture,which significantly improves the formability of Al−Mg−Si−Zn alloy.