This study developed a five-layer Mg alloy laminate(pure Mg/AZ31/AZ91/AZ31/pure Mg)through an innovative synergistic strategy involving Al-element gradient design,extrusion,and short-term annealing.Microstructural cha...This study developed a five-layer Mg alloy laminate(pure Mg/AZ31/AZ91/AZ31/pure Mg)through an innovative synergistic strategy involving Al-element gradient design,extrusion,and short-term annealing.Microstructural characterization revealed hierarchical heterogeneities in grain size,texture intensity,dislocation density,and precipitated phases,accompanied by the formation of annealing twinning in pure Mg layer—a phenomenon rarely documented in Mg alloys.Mechanical tests demonstrated significant strengthening effects in all annealed samples,particularly in the 300℃/30 min annealed sample,which achieved the optimal comprehensive mechanical properties.The enhanced strength originated from the synergistic interaction among element-diffusion-induced solid solution strengthening,nanoscale β-Mg_(17)Al_(12) precipitation,and hetero-deformation-induced(HDI)strengthening.This approach breaks the strength-ductility trade-off induced by traditional annealing processes,offering a new paradigm for designing high-performance Mg alloy laminates.展开更多
A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The resu...A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.展开更多
The effects of artificial aging(T6)on the creep resistance with tensile stresses in the range of 50−80 MPa at 175℃were investigated for an extruded Mg−1.22Al−0.31Ca−0.44Mn(wt.%)alloy.The Guinier-Preston(G.P.)zones pr...The effects of artificial aging(T6)on the creep resistance with tensile stresses in the range of 50−80 MPa at 175℃were investigated for an extruded Mg−1.22Al−0.31Ca−0.44Mn(wt.%)alloy.The Guinier-Preston(G.P.)zones primarily precipitate in the sample aged at 200℃for 1 h(T6-200℃/1h),while the Al_(2)Ca phases mainly precipitate in the sample aged at 275℃for 8 h(T6-275℃/8h).The T6-200℃/1h sample exhibits excellent creep resistance,with a steady-state creep rate one order of magnitude lower than that of the T6-275℃/8h sample.The abnormally high stress exponent(~8.2)observed in the T6-200℃/1h sample is associated with the power-law breakdown mechanism.TEM analysis illuminates that the creep mechanism for the T6-200℃/1h sample is cross-slip between basal and prismatic dislocations,while the T6-275℃/8h sample exhibits a mixed mechanism of dislocation cross-slip and climb.Compared with the Al_(2)Ca phase,the dense G.P.zones effectively impede dislocation climb and glide during the creep process,demonstrating superior creep resistance of the T6-200℃/1h sample.展开更多
The evolution of the S'precipitate in Al−Cu−Mg alloy was investigated using transmission electron microscopy(TEM),high-angle annular dark-field scanning transmission electron microscopy(HAADF−STEM),molecular dynam...The evolution of the S'precipitate in Al−Cu−Mg alloy was investigated using transmission electron microscopy(TEM),high-angle annular dark-field scanning transmission electron microscopy(HAADF−STEM),molecular dynamics(MD)simulations,and other analytical techniques.The precipitation behavior during different aging stages of the supersaturated solid solution formed after rapid cold punching was focused,which induces rapid dissolution of precipitates.The findings reveal that the precipitation sequence is significantly influenced by aging temperature.At higher aging temperatures,which mitigate lattice distortion in the matrix,the precipitation sequence follows the conventional path.Conversely,at lower aging temperatures,where lattice distortion persists,the sequence deviates,suppressing the formation of Guinier−Preston−Bagaryatsky(GPB)zones.MD simulations confirm that the variations in solute atom diffusion rates at different aging temperatures lead to the differences in the S'phase precipitation sequence.展开更多
The dependence of shrinkage porosities on microstructure characteristics of Mg−12Al alloy was investigated.The distribution,morphology,size,and number density of shrinkage porosities were analyzed under different cool...The dependence of shrinkage porosities on microstructure characteristics of Mg−12Al alloy was investigated.The distribution,morphology,size,and number density of shrinkage porosities were analyzed under different cooling rates.The relationship between shrinkage porosities and microstructure characteristics was discussed in terms of temperature conditions,feeding channel characteristics,and feeding capacity.Further,the feeding behavior of the residual liquid phase in the solid skeleton was quantified by introducing permeability.Results show a strong correlation between the solid microstructure skeleton and shrinkage porosity characteristics.An increase in permeability corresponds to a declining number density of shrinkage porosities.This study aims to provide a more complete understanding how to reduce shrinkage porosities by controlling microstructure characteristics.展开更多
Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The tech...Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The techniques of FESEM/EDS,grazing incident beam X-ray diffraction(GIXRD),and electrochemical methods of potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)were used to characterize the coatings.The results revealed that the coatings produced using the bipolar waveform exhibited lower porosity and higher thickness than those produced using the unipolar one.The corrosion performance of the specimens’cut edge was investigated using EIS after 1,8,and 12 h of immersion in a 3.5 wt.%NaCl solution.It was observed that the coating produced using the bipolar waveform demonstrated the highest corrosion resistance after 12 h of immersion,with an estimated corrosion resistance of 5.64 kΩ·cm^(2),which was approximately 3 times higher than that of the unipolar coating.Notably,no signs of galvanic corrosion were observed in the LMCs,and only minor corrosion attacks were observed on the magnesium layer in some areas.展开更多
A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5w...A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.展开更多
In-situ bending and stretching were conducted on hot-rolled and annealed Ti/Al/Mg/Al/Ti laminates,with a focus on crack initiation and propagation of intermetallics and component layers,which helps to clarify their de...In-situ bending and stretching were conducted on hot-rolled and annealed Ti/Al/Mg/Al/Ti laminates,with a focus on crack initiation and propagation of intermetallics and component layers,which helps to clarify their deformation behavior and fracture forms.The results show that delamination is the early fracture form of laminate with or without intermetallics at Al/Mg interface,so Al/Mg interfacial bonding strength determines the mechanical properties of laminate.Various and irregular intermetallics cracks lead to Al/Mg interface delamination in annealed laminate and help to release stress.Necking and fracture of component layers are observed at the late deformation stage,and the sequence is Al,Mg and Ti layers,resulting from their strength.Angle between crack propagation direction and stretching direction of Mg layer both in rolled and annealed laminates is around 45°due to the effect of shear deformation,and crack convergence leads to final complete fracture of Mg layer.展开更多
Mg/Al laminate with ZK60Mg and TiB2/6061Al as constitute layers was fabricated through the porthole die co-extrusion and hot rolling.The effects of rolling and roll temperatures on the microstructure,interfacial struc...Mg/Al laminate with ZK60Mg and TiB2/6061Al as constitute layers was fabricated through the porthole die co-extrusion and hot rolling.The effects of rolling and roll temperatures on the microstructure,interfacial structure,mechanical properties,and crack propagation paths were studied.The results show that the intermetallic compounds layer shows an intermittent form.The strong strain/dislocation hardening ability of Mg/Al laminate is attributed to the coupled effects of interlocking Al/βinterface,strain gradient,andβlayer with nanotwins and stacking faults.The complex dislocation structures such as network,loop,and array are found in the Al layer.Dislocation slip is the main deformation mode of the Al layer,while dislocation slip and dynamic recrystallization are the main deformation modes of the Mg layer.As roll temperature increases,prismatic〈a〉slip replaces the basal〈a〉slip as the most important slip mode.At a rolling temperature of 400℃ and a roll temperature of 150℃,an optimal synergy of mechanical properties is achieved,with ultimate tensile strength,shear strength,and elongation of 262.1 MPa,36.4 MPa,and 18.1%,respectively.As the rolling temperature increases,the fracture mode of Mg/Al laminate changes from discontinuous plastic shrinkage to transverse and longitudinal cracks.With increasing the roll temperature,the through cracks tend to form,indicating the plasticity and bonding quality of Mg/Al laminate are effectively enhanced.展开更多
Fabricating Mg/Al laminate is an effective strategy to circumvent the inherently low formability and poor corrosion resistance of Mg alloys.Here,Mg/Al laminate with good bonding quality and mechanical properties was s...Fabricating Mg/Al laminate is an effective strategy to circumvent the inherently low formability and poor corrosion resistance of Mg alloys.Here,Mg/Al laminate with good bonding quality and mechanical properties was successfully fabricated via porthole die co-extrusion process using ZK60 Mg and TiB_(2)/6061Al composite as constituted layers.Integrating the results from microstructural characterization and mechanical testing,the effects of extrusion temperature on microstructure,interfacial structure,element diffusion,and mechanical properties were investigated.The results show that Mg/Al laminate achieves a sound welding quality by mechanical bonding and diffusion bonding.The obvious intermetallic compounds(βandγ)layer forms at Mg/Al interface,and its thickness increases to 8.3μm as the extrusion temperature reaches 400℃.High extrusion temperature promotes the dynamic recrystallization and grain growth of Mg and Al layers,while the dislocation density decreases.β/γinterface shows a coherent feature,whileγ/Mg interface is semi-coherent with a locally ordered transition zone of 4.5 nm.The rich Mg and Cr layers are found at TiB_(2)/6061 interface,which is conducive to improving the bonding quality.When the extrusion temperature is 370℃,the thickness of diffusion layer is around 5.0μm,and the bonding strength reaches 18.68 MPa,resulting in the best comprehensive mechanical properties.This work provides a new direction for the development of Mg/Al laminate with excellent strength and ductility.展开更多
基金supported by the Joint Foundation of Hubei Province(No.2024AFD113)Hubei Provincial Department of Education Science and Technology Plan Project(No.D20231804)+3 种基金Natural Science Fund Project of Hubei Province(No.2024AFD099)Hubei Province Technological Innovation Special Major Project(No.2023BEB015)Doctoral Scientific Research Foundation of Hubei University of Automotive Technology(No.BK202336)Hubei University of Automotive Technology 2024 Annual Unveiling the List and Taking Command(ULTC)Projects.
文摘This study developed a five-layer Mg alloy laminate(pure Mg/AZ31/AZ91/AZ31/pure Mg)through an innovative synergistic strategy involving Al-element gradient design,extrusion,and short-term annealing.Microstructural characterization revealed hierarchical heterogeneities in grain size,texture intensity,dislocation density,and precipitated phases,accompanied by the formation of annealing twinning in pure Mg layer—a phenomenon rarely documented in Mg alloys.Mechanical tests demonstrated significant strengthening effects in all annealed samples,particularly in the 300℃/30 min annealed sample,which achieved the optimal comprehensive mechanical properties.The enhanced strength originated from the synergistic interaction among element-diffusion-induced solid solution strengthening,nanoscale β-Mg_(17)Al_(12) precipitation,and hetero-deformation-induced(HDI)strengthening.This approach breaks the strength-ductility trade-off induced by traditional annealing processes,offering a new paradigm for designing high-performance Mg alloy laminates.
基金supported by Guangdong Major Project of Basic and Applied Basic Research, China (No. 2020B0301030006)Fundamental Research Funds for the Central Universities, China (No. SWU-XDJH202313)+1 种基金Chongqing Postdoctoral Science Foundation Funded Project, China (No. 2112012728014435)the Chongqing Postgraduate Research and Innovation Project, China (No. CYS23197)。
文摘A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.
基金supported by the National Natural Science Foundation of China (Nos. 52175322, 52271031)the Natural Science Foundation of Jilin Province, China (No. SKL202302015)。
文摘The effects of artificial aging(T6)on the creep resistance with tensile stresses in the range of 50−80 MPa at 175℃were investigated for an extruded Mg−1.22Al−0.31Ca−0.44Mn(wt.%)alloy.The Guinier-Preston(G.P.)zones primarily precipitate in the sample aged at 200℃for 1 h(T6-200℃/1h),while the Al_(2)Ca phases mainly precipitate in the sample aged at 275℃for 8 h(T6-275℃/8h).The T6-200℃/1h sample exhibits excellent creep resistance,with a steady-state creep rate one order of magnitude lower than that of the T6-275℃/8h sample.The abnormally high stress exponent(~8.2)observed in the T6-200℃/1h sample is associated with the power-law breakdown mechanism.TEM analysis illuminates that the creep mechanism for the T6-200℃/1h sample is cross-slip between basal and prismatic dislocations,while the T6-275℃/8h sample exhibits a mixed mechanism of dislocation cross-slip and climb.Compared with the Al_(2)Ca phase,the dense G.P.zones effectively impede dislocation climb and glide during the creep process,demonstrating superior creep resistance of the T6-200℃/1h sample.
基金supported by the China Scholarship Council (CSC) Local Cooperation Program (No. 202308430176)the National Natural Science Foundation of China (No. 52271177)the Hunan Provincial Natural Science Foundation Regional Joint Fund, China (No. 2023JJ50173)。
文摘The evolution of the S'precipitate in Al−Cu−Mg alloy was investigated using transmission electron microscopy(TEM),high-angle annular dark-field scanning transmission electron microscopy(HAADF−STEM),molecular dynamics(MD)simulations,and other analytical techniques.The precipitation behavior during different aging stages of the supersaturated solid solution formed after rapid cold punching was focused,which induces rapid dissolution of precipitates.The findings reveal that the precipitation sequence is significantly influenced by aging temperature.At higher aging temperatures,which mitigate lattice distortion in the matrix,the precipitation sequence follows the conventional path.Conversely,at lower aging temperatures,where lattice distortion persists,the sequence deviates,suppressing the formation of Guinier−Preston−Bagaryatsky(GPB)zones.MD simulations confirm that the variations in solute atom diffusion rates at different aging temperatures lead to the differences in the S'phase precipitation sequence.
基金financially supported by the National Key Research and Development Program of China(No.2021YFB3701000)the National Natural Science Foundation of China(Nos.52471118,52101125,U2037601,and U21A2048)Young Elite Scientists Sponsorship Program by CAST,China(No.2022QNRC001)。
文摘The dependence of shrinkage porosities on microstructure characteristics of Mg−12Al alloy was investigated.The distribution,morphology,size,and number density of shrinkage porosities were analyzed under different cooling rates.The relationship between shrinkage porosities and microstructure characteristics was discussed in terms of temperature conditions,feeding channel characteristics,and feeding capacity.Further,the feeding behavior of the residual liquid phase in the solid skeleton was quantified by introducing permeability.Results show a strong correlation between the solid microstructure skeleton and shrinkage porosity characteristics.An increase in permeability corresponds to a declining number density of shrinkage porosities.This study aims to provide a more complete understanding how to reduce shrinkage porosities by controlling microstructure characteristics.
文摘Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The techniques of FESEM/EDS,grazing incident beam X-ray diffraction(GIXRD),and electrochemical methods of potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)were used to characterize the coatings.The results revealed that the coatings produced using the bipolar waveform exhibited lower porosity and higher thickness than those produced using the unipolar one.The corrosion performance of the specimens’cut edge was investigated using EIS after 1,8,and 12 h of immersion in a 3.5 wt.%NaCl solution.It was observed that the coating produced using the bipolar waveform demonstrated the highest corrosion resistance after 12 h of immersion,with an estimated corrosion resistance of 5.64 kΩ·cm^(2),which was approximately 3 times higher than that of the unipolar coating.Notably,no signs of galvanic corrosion were observed in the LMCs,and only minor corrosion attacks were observed on the magnesium layer in some areas.
基金Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team Construction Project(2022KXJ-071)2022 Qin Chuangyuan Achievement Transformation Incubation Capacity Improvement Project(2022JH-ZHFHTS-0012)+8 种基金Shaanxi Province Key Research and Development Plan-“Two Chains”Integration Key Project-Qin Chuangyuan General Window Industrial Cluster Project(2023QCY-LL-02)Xixian New Area Science and Technology Plan(2022-YXYJ-003,2022-XXCY-010)2024 Scientific Research Project of Shaanxi National Defense Industry Vocational and Technical College(Gfy24-07)Shaanxi Vocational and Technical Education Association 2024 Vocational Education Teaching Reform Research Topic(2024SZX354)National Natural Science Foundation of China(U24A20115)2024 Shaanxi Provincial Education Department Service Local Special Scientific Research Program Project-Industrialization Cultivation Project(24JC005,24JC063)Shaanxi Province“14th Five-Year Plan”Education Science Plan,2024 Project(SGH24Y3181)National Key Research and Development Program of China(2023YFB4606400)Longmen Laboratory Frontier Exploration Topics Project(LMQYTSKT003)。
文摘A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.
基金financially supported by Shanxi provincial Youth Fund(No.201801D221101)the National Natural Science Foundation of China(Nos.52005362,U1810208,U1710254)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi,China(Nos.2019L0149,2019L0994)。
文摘In-situ bending and stretching were conducted on hot-rolled and annealed Ti/Al/Mg/Al/Ti laminates,with a focus on crack initiation and propagation of intermetallics and component layers,which helps to clarify their deformation behavior and fracture forms.The results show that delamination is the early fracture form of laminate with or without intermetallics at Al/Mg interface,so Al/Mg interfacial bonding strength determines the mechanical properties of laminate.Various and irregular intermetallics cracks lead to Al/Mg interface delamination in annealed laminate and help to release stress.Necking and fracture of component layers are observed at the late deformation stage,and the sequence is Al,Mg and Ti layers,resulting from their strength.Angle between crack propagation direction and stretching direction of Mg layer both in rolled and annealed laminates is around 45°due to the effect of shear deformation,and crack convergence leads to final complete fracture of Mg layer.
基金supported by the National Natural Science Foundation of China(Nos.52175338 and 52222510)Science Fund for Distinguished Young Scholars of Shandong Province(No.ZR2021JQ21)+1 种基金Key Research and Development Program of Shandong Province(No.2021ZLGX01)The Excellent Young Team Project of Central Universities(No.2023QNTD002).
文摘Mg/Al laminate with ZK60Mg and TiB2/6061Al as constitute layers was fabricated through the porthole die co-extrusion and hot rolling.The effects of rolling and roll temperatures on the microstructure,interfacial structure,mechanical properties,and crack propagation paths were studied.The results show that the intermetallic compounds layer shows an intermittent form.The strong strain/dislocation hardening ability of Mg/Al laminate is attributed to the coupled effects of interlocking Al/βinterface,strain gradient,andβlayer with nanotwins and stacking faults.The complex dislocation structures such as network,loop,and array are found in the Al layer.Dislocation slip is the main deformation mode of the Al layer,while dislocation slip and dynamic recrystallization are the main deformation modes of the Mg layer.As roll temperature increases,prismatic〈a〉slip replaces the basal〈a〉slip as the most important slip mode.At a rolling temperature of 400℃ and a roll temperature of 150℃,an optimal synergy of mechanical properties is achieved,with ultimate tensile strength,shear strength,and elongation of 262.1 MPa,36.4 MPa,and 18.1%,respectively.As the rolling temperature increases,the fracture mode of Mg/Al laminate changes from discontinuous plastic shrinkage to transverse and longitudinal cracks.With increasing the roll temperature,the through cracks tend to form,indicating the plasticity and bonding quality of Mg/Al laminate are effectively enhanced.
基金supports from the National Natural Science Foundation of China(52175338 and 52222510)Science Fund for Distinguished Young Scholars of Shandong Province(ZR2021JQ21)Key Research and Development Program of Shandong Province(2021ZLGX01).
文摘Fabricating Mg/Al laminate is an effective strategy to circumvent the inherently low formability and poor corrosion resistance of Mg alloys.Here,Mg/Al laminate with good bonding quality and mechanical properties was successfully fabricated via porthole die co-extrusion process using ZK60 Mg and TiB_(2)/6061Al composite as constituted layers.Integrating the results from microstructural characterization and mechanical testing,the effects of extrusion temperature on microstructure,interfacial structure,element diffusion,and mechanical properties were investigated.The results show that Mg/Al laminate achieves a sound welding quality by mechanical bonding and diffusion bonding.The obvious intermetallic compounds(βandγ)layer forms at Mg/Al interface,and its thickness increases to 8.3μm as the extrusion temperature reaches 400℃.High extrusion temperature promotes the dynamic recrystallization and grain growth of Mg and Al layers,while the dislocation density decreases.β/γinterface shows a coherent feature,whileγ/Mg interface is semi-coherent with a locally ordered transition zone of 4.5 nm.The rich Mg and Cr layers are found at TiB_(2)/6061 interface,which is conducive to improving the bonding quality.When the extrusion temperature is 370℃,the thickness of diffusion layer is around 5.0μm,and the bonding strength reaches 18.68 MPa,resulting in the best comprehensive mechanical properties.This work provides a new direction for the development of Mg/Al laminate with excellent strength and ductility.