期刊文献+
共找到34,686篇文章
< 1 2 250 >
每页显示 20 50 100
Development of site-selective photo crosslinking between tyrosine and sulfonium in methyllysine readers
1
作者 Yingxiao Gao Feng Feng +2 位作者 Ting Luo Yusong Han Mingxuan Wu 《Chinese Chemical Letters》 2025年第10期366-371,共6页
Reader proteins that bind specific methyllysine are important to biological functions of lysine methylation,but readers of many methyllysine sites are still unknown.Therefore,development of covalent probes is importan... Reader proteins that bind specific methyllysine are important to biological functions of lysine methylation,but readers of many methyllysine sites are still unknown.Therefore,development of covalent probes is important to identify readers from cell samples so as to understand biological roles of lysine methylation.Generally,readers bind methyllysine via aromatic cages that contain tryptophan,tyrosine and phenylalanine,that offer a unique motif for selective crosslinking.We recently reported a site-selective tryptophan crosslinking strategy based on dimethylsulfonium that mimics dimethyllysine to crosslink tryptophan in aromatic cages of readers.Since tyrosine is a key residue for binding affinity to methyllysine,especially some readers that do not contain tryptophan residues in the binding pocket.Here we developed strategies of site-selective crosslinking to tyrosine.Ultraviolet(UV)source was applied to excite tyrosine at neutral pH or phenoxide at basic p H,and subsequent single-electron transfer(SET)from Tyr*to sulfonium inside the binding pocket enables selective crosslinking.In consequence,methyllysine readers with tyrosine-containing aromatic cages could be selectively crosslinked by site-specific sulfonium peptide probes.In addition,we expanded substrates from aromatic cages to tyrosine residues of proximate contact with sulfonium probes.The pair of LgBiT and SmBiT exhibited orthogonal crosslinking in complicated cell samples.As a result,we may expand sulfonium tools to target local tyrosine in future investigations. 展开更多
关键词 Lysine methylation methyllysine readers Dimethylsulfonium TYROSINE Site-selective crosslinking
原文传递
Use of DNA methylation patterns for early detection and management of lung cancer:Are we there yet?
2
作者 MILICA KONTIC FILIP MARKOVIC 《Oncology Research》 2025年第4期781-793,共13页
Detecting lung cancer early is crucial for improving survival rates,yet it remains a significant challenge due to many cases being diagnosed at advanced stages.This review aims to provide advances in epigenetics which... Detecting lung cancer early is crucial for improving survival rates,yet it remains a significant challenge due to many cases being diagnosed at advanced stages.This review aims to provide advances in epigenetics which have highlighted DNA methylation patterns as promising biomarkers for early detection,prognosis,and treatment response in lung cancer.Techniques like bisulfite conversion followed by PCR,digital droplet polymerase chain reaction,and next-generation sequencing are commonly used for detecting these methylation patterns,which occur early in the cancer development process and can be detected in non-invasive samples like blood and sputum.Key genes such as SHOX2 and RASSF1A have demonstrated high sensitivity and specificity in clinical studies,making them crucial for diagnostic purposes.However,several challenges remain to be overcome before these biomarkers can be widely adopted for use in clinical practice.Standardizing the assays and validating their effectiveness are critical steps.Additionally,integrating methylation biomarkers with existing diagnostic tools could significantly enhance the accuracy of lung cancer detection,providing a more comprehensive diagnostic approach.Although progress has been made in understanding and utilizing DNA methylation patterns for lung cancer detection,more research and extensive clinical trials are necessary to fully harness their potential.These efforts will help establish the robustness of methylation patterns as biomarkers and therapeutic targets,ultimately leading to better prevention,diagnosis,and treatment strategies for lung cancer.In conclusion,DNA methylation states represent a promising avenue for advancing early detection,accurate diagnosis,and management of lung cancer. 展开更多
关键词 Lung cancer DNA methylation EPIGENETICS HYPERmethylATION Early detection
暂未订购
New perspectives on DNA methylation modifications in ocular diseases
3
作者 Fei-Fei Zong Da-Dong Jia +6 位作者 Guang-Kun Huang Meng Pan Hao Hu Shi-Yi Song Liang Xiao Ru-Weng Wang Liang Liang 《International Journal of Ophthalmology(English edition)》 2025年第2期340-350,共11页
The methylation of DNA is a prevalent epigenetic modification that plays a crucial role in the pathological progression of ocular diseases.DNA methylation can regulate gene expression,thereby affecting cell function a... The methylation of DNA is a prevalent epigenetic modification that plays a crucial role in the pathological progression of ocular diseases.DNA methylation can regulate gene expression,thereby affecting cell function and signal transduction.Ophthalmic diseases are a kind of complex diseases,and their pathogenesis involves many factors such as genetic,environmental and individual differences.In addition,inflammation,oxidative stress and lipid metabolism,which abnormal DNA methylation is closely related to,are also considered to be major factors in eye diseases.The current understanding of DNA methylation in eye diseases is becoming more complex and comprehensive.In addition to the simple suppression of gene expression by hypermethylation,factors such as hypomethylation or demethylation,DNA methylation in non-promoter regions,interactions with other epigenetic modifications,and dynamic changes in DNA methylation must also be considered.Interestingly,although some genes are at abnormal methylation levels,their expression is not significantly changed,which indirectly reflects the complexity of gene regulation.This review aims to summarize and compare some relevant studies,and provide with new ideas and methods for the prevention and treatment of different eye diseases,such as glaucoma,retinoblastoma,and diabetic retinopathy. 展开更多
关键词 DNA methylation modification EPIGENETIC GLAUCOMA RETINOBLASTOMA diabetic retinopathy methylase inhibitors
原文传递
Distinguishing between wild-caught and captive-bred Common Pheasantusing methylation rate of skeletal muscle DNA
4
作者 Wenhui Wang Lijun Lin +15 位作者 Yue Ma Yan Cui Qi Zhang Jincheng Yang Yongheng Zhou Liangyu Cui Boyang Liu Chang Su Mengjia Yu Yuwei Gao Peng Gao Yujia Du Yu Zhou Elizabeth Kamili Shuhui Yang Yanchun Xu 《Avian Research》 2025年第2期264-274,共11页
Illegal hunting and trafficking of wildlife and their derivatives extort unprecedented population decline of relatively many species pushing them towards extinction.Notwithstanding contemporary counteracting intervent... Illegal hunting and trafficking of wildlife and their derivatives extort unprecedented population decline of relatively many species pushing them towards extinction.Notwithstanding contemporary counteracting interventions at international,regional,national and local levels,wildlife farming is advocated as an alternative approach to minimize pressure on wild populations.For wildlife farming to be an effective conservation tool,the integration of wildlife forensics is inevitable to allow distinction between captive-bred and wild-caught species.To this end,we analyzed methylation rates of skeletal muscle samples(pectoralis major,triceps brachii,gastrocnemius,biceps femoris,and neck muscles)from 60 captive-bred and 30 wild-caught Common Pheasant.A total of 13,507 differentially methylated regions were identified between five wild-caught and five captive-bred individuals through whole-genome methylation sequencing(WGBS).Based on the selected five methylation sites,LOC116231076,LOC116242223,ATAD2B,EGFL6,and HS2ST,quantitative detection technique was developed using methylation-sensitive high-resolution melting curve(MS-HRM)to measure methylation rates.The results showed significant differences in methylation rates at all differential sites between wild-caught and captive-bred individuals(|t|=0.67–33.10,P=0.000–0.042).The discrimination accuracy rate of each locus was highest in the gastrocnemius muscle and lowest in the neck muscle.The discrimination accuracy rate on LOC116231076,LOC116242223,ATAD2B,EGFL6,and HS2ST methylation sites for gastrocnemius muscle was 64.98%,100.00%,68.54%,63.79%,and 63.70%,respectively;and for neck muscle it was 67.42%,68.06%,83.61%,65.04%,and68.85%,respectively.The united discrimination accuracy rate of the five loci were 100.00%for gastrocnemius muscle,99.78%for biceps femoris muscle,97.52%for pectoralis major muscle,93.96%for triceps brachii muscle,and 91.63%for neck muscle,respectively.The panel also revealed excellent repeatability,reproducibility,sensitivity and universality to mammals and avian species.This study establishes an effective,accurate and low-cost identification technology for the identification of wild and farmed Common Pheasant,and also provides a reference for the development of identification methods for other species. 展开更多
关键词 CAPTIVE Common Pheasant DNA methylation methylation-sensitive high-resolution melting curve Source identification WILD
在线阅读 下载PDF
DNMT1 promotes the proliferation and migration of gastric cancer cells by inducing microRNA-125a-5p methylation to promote SERPINE1 protein
5
作者 Hui Xie Hui Wang +4 位作者 Ru-Hong Li Yue-Wen Zhang Xi-Rui Fan Xiao-Xue He Ao-Ran Guan 《World Journal of Gastrointestinal Oncology》 2025年第3期188-201,共14页
BACKGROUND Gastric cancer(GC)is a malignant tumor originating from gastric mucosal epithelial cells that has high morbidity and mortality.microRNAs(miR)are important diagnostic markers and therapeutic targets in this ... BACKGROUND Gastric cancer(GC)is a malignant tumor originating from gastric mucosal epithelial cells that has high morbidity and mortality.microRNAs(miR)are important diagnostic markers and therapeutic targets in this disease.AIM To explore the mechanism of miR-125a-5p in the pathogenesis of GC.METHODS The expression levels of miR-125a-5p,SERPINE1 and DNMT1 in GC cells and tissues were detected by real-time polymerase chain reaction(PCR)and Western blotting.Methylation-specific PCR was used to detect the level of miR-125a-5p methylation.A cell counting kit 8 assay,scratch test,and a Transwell assay were performed to detect the proliferation,migration,and invasiveness of HGC27 cells,respectively.The expression of the epithelial mesenchymal transition(EMT)-related proteins E-cadherin,N-cadherin and vimentin in HGC27 cells was detected by Western blotting,while the expression of vimentin was detected by immunofluorescence.RESULTS This study revealed that miR-125a-5p was expressed at low levels in GC clinical samples and cells and that miR-125a-5p overexpression inhibited the proliferation,migration,invasiveness and EMT of GC cells.Mechanistically,miR-125a-5p can reduce GC cell proliferation,promote E-cadherin expression,inhibit N-cadherin and vimentin expression,and reduce the EMT of GC cells,thus constraining GC cells to a certain extent.Moreover,DNMT1 inhibited miR-125a-5p expression by increasing the methylation of the miR-125a-5p promoter,thereby promoting the expression of SERPINE1,which acts together with miR-125a-5p to exert antagonistic effects on GC.CONCLUSION Our study revealed that DNMT1 promoted SERPINE1 protein expression by inducing miR-125a-5p methylation,which led to the proliferation,migration and occurrence of EMT in GC cells. 展开更多
关键词 Gastric cancer microRNA-125a-5p DNA methyltransferase 1 SERPINE1 methylATION
暂未订购
Methylation status of leptin gene promoter in relatively lean Chinese adults with prediabetes and type 2 diabetes mellitus
6
作者 Shi-Qi Sun Sheng-Ze Liang +1 位作者 Qi Huang Jia-Zhong Sun 《World Journal of Diabetes》 2025年第12期171-178,共8页
BACKGROUND Epigenetic regulation of leptin(LEP)plays a critical role in metabolic disorders,yet its promoter methylation patterns in lean diabetic populations remain poorly characterized.Emerging evidence suggests DNA... BACKGROUND Epigenetic regulation of leptin(LEP)plays a critical role in metabolic disorders,yet its promoter methylation patterns in lean diabetic populations remain poorly characterized.Emerging evidence suggests DNA methylation may precede clinical hyperglycemia,offering potential for early risk stratification.While obesity-associated LEP methylation is well-studied,lean Asian populations who exhibit high diabetes prevalence despite lower adiposity,represent an underexplored cohort.This study hypothesizes that LEP promoter methylation in peripheral leukocytes decreases progressively from normoglycemia to prediabetes and type 2 diabetes mellitus(T2DM),correlating inversely with serum LEP levels in lean Chinese adults[body mass index(BMI)<24 kg/m^(2)].AIM To investigate LEP promoter methylation status and its association with serum LEP levels across glycemic states in lean Chinese adults.METHODS We enrolled 392 participants including 120 normoglycemic controls,94 prediabetes[44 impaired fasting glucose(IFG)/50 impaired glucose tolerance(IGT)],178 T2DM aged 40-60 years with BMI<24 kg/m^(2).Genomic DNA from peripheral leukocytes underwent bisulfite conversion followed by methylation-specific PCR to assess CpG methylation in the LEP promoter.Serum LEP was quantified via enzyme-linked immunosorbent assay,with other parameters measured through standard assays.Statistical analyses included analysis of variance,χ²tests,and Pearson correlation(Bonferroni-corrected P value).RESULTS Methylation frequencies declined progressively:59.2%(controls)reduced to 43.6%(prediabetes;IFG:38.6%,IGT:48%)reduced to 31.5%(T2DM)(all P<0.05 vs controls;T2DM vs IGT:P=0.030).Serum LEP levels increased significantly in T2DM(16.94±4.19μg/L)vs controls(11.33±3.10μg/L;P=0.002),with intermediate values in prediabetes(IFG:13.79±3.32μg/L;IGT:12.62±4.81μg/L).A near-perfect inverse correlation between methylation and LEP levels was observed(r=-0.95,95%CI:-0.97 to-0.92,P<0.001),persisting after adjusting for age and BMI(β=-0.91,P<0.001).CONCLUSION LEP promoter hypomethylation parallels worsening glycemic status in lean Chinese adults,suggesting its potential as a blood-based epigenetic biomarker for diabetes progression,pending validation in longitudinal cohorts. 展开更多
关键词 Leptin gene promoter DNA methylation Type 2 diabetes mellitus PREDIABETES Lean population Epigenetic biomarker methylation-specific PCR
暂未订购
Distribution,Health Risk and Hepatotoxic Implications of Cyclic Volatile Methylsiloxanes in Drinking Water in Shanghai,China
7
作者 Chunlei Wang Yongqing Diao +4 位作者 Chuyi Chen Jielan Hu Yuxin Li Xi Yu Xia Wang 《Biomedical and Environmental Sciences》 2025年第11期1444-1450,共7页
Cyclic volatile methyl siloxanes(cVMSs)are widely used in industrial and consumer products because of their thermal stability,low reactivity,and reduced surface tension[1].Their extensive use has resulted in environme... Cyclic volatile methyl siloxanes(cVMSs)are widely used in industrial and consumer products because of their thermal stability,low reactivity,and reduced surface tension[1].Their extensive use has resulted in environmental pollution globally.Recognized as very persistent and very bioaccumulative(vPvB),compounds such as octamethylcyclotetrasiloxane(D4),decamethylcyclopentasiloxane(D5),and dodecamethylcyclohexasiloxane(D6)are regulated in the European Union[2]and are monitored worldwide. 展开更多
关键词 cyclic volatile methylsiloxanes health risk cyclic volatile methyl siloxanes cvmss SHANGHAI HEPATOTOXIC China consumer products drinking water
暂未订购
KDM2A and KDM2B protect a subset of CpG islands from DNA methylation
8
作者 Yuan Liu Ying Liu +7 位作者 Yunji Zhu Di Hu Hu Nie Yali Xie Rongrong Sun Jin He Honglian Zhang Falong Lu 《Journal of Genetics and Genomics》 2025年第1期39-50,共12页
In the mammalian genome,most CpGs are methylated.However,CpGs within the CpG islands(CGIs)are largely unmethylated,which are important for gene expression regulation.The mechanism underlying the low methylation levels... In the mammalian genome,most CpGs are methylated.However,CpGs within the CpG islands(CGIs)are largely unmethylated,which are important for gene expression regulation.The mechanism underlying the low methylation levels at CGIs remains largely elusive.KDM2 proteins(KDM2A and KDM2B)are H3K36me2 demethylases known to bind specifically at CGIs.Here,we report that depletion of each or both KDM2 proteins,or mutation of all their JmjC domains that harbor the H3K36me2 demethylation activity,leads to an increase in DNA methylation at selective CGIs.The Kdm2a/2b double knockout shows a stronger increase in DNA methylation compared with the single mutant of Kdm2a or Kdm2b,indicating that KDM2A and KDM2B redundantly regulate DNA methylation at CGIs.In addition,the increase of CGI DNA methylation upon mutations of KDM2 proteins is associated with the chromatin environment.Our findings reveal that KDM2A and KDM2B function redundantly in regulating DNA methylation at a subset of CGIs in an H3K36me2 demethylation-dependent manner. 展开更多
关键词 KDM2A KDM2B CpG island DNA methylation H3K36me2 DEmethylATION Embryonic stem cell
原文传递
Reduced non-CpG methylation is a potential epigenetic target after spinal cord injury
9
作者 Zhourui Wu Chen Li +3 位作者 Ran Zhu Yiqiu Cao Thomas C.Chen Liming Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2489-2496,共8页
DNA methylation is a critical epigenetic regulator in the occurrence and development of diseases and is closely related to various functional responses in relation to spinal cord injury.To investigate the role of DNA ... DNA methylation is a critical epigenetic regulator in the occurrence and development of diseases and is closely related to various functional responses in relation to spinal cord injury.To investigate the role of DNA methylation in spinal cord injury,we constructed a library with reduced-representation bisulfite sequencing data obtained at various time points(day 0-42)after spinal cord injury in mice.Global DNA methylation levels,specifically non-CpG(CHG and CHH)methylation levels,decreased modestly following spinal cord injury.Stages post-spinal cord injury were classified as early(day 0-3),intermediate(day7-14),and late(day 28-42)based on similarity and hie rarchical cluste ring of global DNA methylation patterns.The non-CpG methylation level,which included CHG and CHH methylation levels,was markedly reduced despite accounting for a minor proportion of total methylation abundance.At multiple genomic sites,including the 5’untranslated regions,promoter,exon,intron,and 3’untranslated regions,the non-CpG methylation level was markedly decreased following spinal cord injury,whereas the CpG methylation level remained unchanged at these locations.Approximately one-half of the differentially methylated regions were located in intergenic areas;the other differentially methylated regions in both CpG and non-CpG regions were cluste red in intron regions,where the DNA methylation level was highest.The function of genes associated with differentially methylated regions in promoter regions was also investigated.From Gene Ontology analysis results,DNA methylation was implicated in a number of essential functional responses to spinal cord injury,including neuronal synaptic connection creation and axon regeneration.Notably,neither CpG methylation nor non-CpG methylation was implicated in the functional response of glial or inflammatory cells.In summary,our work elucidated the dynamic pattern of DNA methylation in the spinal co rd following injury and identified reduced nonCpG methylation as an epigenetic target after spinal cord injury in mice. 展开更多
关键词 CpG methylation cytosine fraction differentially methylated regions DNA methylation DNA methyltransferases dynamic signatures Gene Ontology non-CpG methylation single-cell RNA-Seq spinal cord injury
暂未订购
Vitamin D receptor regulates methyltransferase like 14 to mitigate colitis-associated colorectal cancer
10
作者 Zheng Wang Lingjuan Jiang +5 位作者 Xiaoyin Bai Mingyue Guo Runing Zhou Qingyang Zhou Hong Yang Jiaming Qian 《Journal of Genetics and Genomics》 2025年第8期1011-1020,共10页
Colitis-associated colorectal cancer(CAC),a serious complication of ulcerative colitis(UC),is associated with a poor prognosis.The vitamin D receptor(VDR)is recognized for its protective role in UC and CAC through the... Colitis-associated colorectal cancer(CAC),a serious complication of ulcerative colitis(UC),is associated with a poor prognosis.The vitamin D receptor(VDR)is recognized for its protective role in UC and CAC through the maintenance of intestinal barrier integrity and the regulation of inflammation.This study demonstrates a significant reduction in m^(6)A-related genes,particularly methyltransferase like 14(METTL14),in UC and CAC patients and identifies an association between METTL14 and VDR.In the azoxymethane(AOM)/dextran sodium sulfate(DSS)-induced mousemodel,vitamin D treatment increases METTL14 expression and reduces tumorburden,while Vdr-knockout mice exhibit lower METTL14 levels and increased tumorigenesis.In vitro,the VDR agonist calcipotriol upregulates METTL14 in NCM460 cells,with this effect attenuated by VDR knockdown.VDRknockdown inDLD-1colon cancer cellsdecreases METTL14 expressionand promotes proliferation,which is reversed by METTL14 overexpression.Mechanistic studies reveal that VDR regulates METTL14 expression via promoter binding,modulating key target genes such as SOX4,DROSH,and PHLPP2.This study highlights the role of the VDR-METTL14 axis as a protective mechanism in CAC and suggests its potential as a therapeutic target for preventing and treating CAC. 展开更多
关键词 Inflammatory bowel disease Vitamin D receptor methyltransferase like 14 Colitis-associated colorectal cancer N^(6)-methyladenosine methylation(m^(6)A)
原文传递
New Convenient Synthesis of 8-C-Methylated Homoisoflavones and Analysis of Their Structure by NMR and Tandem Mass Spectrometry
11
作者 Santosh Kumar Yadav 《International Journal of Organic Chemistry》 CAS 2021年第1期46-54,共9页
Homoisoflavonoids are in the subclass of the larger family of flavonoids having one more alkyl carbon than flavonoids. Among them, 8-C-Methylated homoisoflavones have not been extensively studied for synthesis and bio... Homoisoflavonoids are in the subclass of the larger family of flavonoids having one more alkyl carbon than flavonoids. Among them, 8-C-Methylated homoisoflavones have not been extensively studied for synthesis and biological evaluation. Author’s current objective is to synthesize 8-C-Methylated homoisoflavones by the reaction of 3-C-methylated dihydrochalcones with N,N’-dimethyl (chloromethylene) ammonium chloride generated in situ from DMF and PCl<sub>5</sub> for one carbon extension at about room temperature. The 3-C-methylated dihydrochalcones were synthesized by the reduction of 3-C-methylated chalcones, which were prepared from 3-C-methylated acetophenones and aromatic aldehydes in the presence of base. All the synthesized novel homoisoflavones’s structures were characterized by NMR and Tandem Mass Spectrometry. 展开更多
关键词 8-C-methylated Homoisoflavones 3-C-methylated Dihydrochalcones 3-C-methylated Chalcones 3-C-methylated Acetophenones DImethylFORMAMIDE BF3·Et2O PCl5
在线阅读 下载PDF
Salsolinol as an RNA m~6A methylation inducer mediates dopaminergic neuronal death by regulating YAP1 and autophagy 被引量:2
12
作者 Jianan Wang Yuanyuan Ran +5 位作者 Zihan Li Tianyuan Zhao Fangfang Zhang Juan Wang Zongjian Liu Xuechai Chen 《Neural Regeneration Research》 SCIE CAS 2025年第3期887-899,共13页
Salsolinol(1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline,Sal)is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,an environme... Salsolinol(1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline,Sal)is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,an environmental toxin that causes Parkinson's disease.However,the mechanism by which Sal mediates dopaminergic neuronal death remains unclear.In this study,we found that Sal significantly enhanced the global level of N~6-methyladenosine(m~6A)RNA methylation in PC12 cells,mainly by inducing the downregulation of the expression of m~6A demethylases fat mass and obesity-associated protein(FTO)and alk B homolog 5(ALKBH5).RNA sequencing analysis showed that Sal downregulated the Hippo signaling pathway.The m~6A reader YTH domain-containing family protein 2(YTHDF2)promoted the degradation of m~6A-containing Yes-associated protein 1(YAP1)mRNA,which is a downstream key effector in the Hippo signaling pathway.Additionally,downregulation of YAP1 promoted autophagy,indicating that the mutual regulation between YAP1 and autophagy can lead to neurotoxicity.These findings reveal the role of Sal on m~6A RNA methylation and suggest that Sal may act as an RNA methylation inducer mediating dopaminergic neuronal death through YAP1 and autophagy.Our results provide greater insights into the neurotoxic effects of catechol isoquinolines compared with other studies and may be a reference for assessing the involvement of RNA methylation in the pathogenesis of Parkinson's disease. 展开更多
关键词 ALKBH5 AUTOPHAGY FTO Hippo pathway m~6A Parkinson's disease RNA methylation SALSOLINOL YAP1 YTHDF2
暂未订购
Methylation Modifications in Eukaryotic Messenger RNA 被引量:17
13
作者 Jun Liu Guifang Jia 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2014年第1期21-33,共13页
RNA methylation modifications have been found for decades of years, which occur at different RNA types of numerous species, and their distribution is species-specific. However, people rarely know their biological func... RNA methylation modifications have been found for decades of years, which occur at different RNA types of numerous species, and their distribution is species-specific. However, people rarely know their biological functions. There are several identified methylation modifications in eukaryotic messenger RNA (mRNA), such as NT-methylguanosine (mVG) at the cap, Nr-methyl-2'-O-methyladenosine (m6Am), 2'-O-methylation (Nm) within the cap and the internal positions, and internal N6-methyladenosine (m6A) and 5-methylcytosine (mSC). Among them, mTG cap was studied more clearly and found to have vital roles in several important mRNA processes like mRNA translation, stability and nuclear export, m6A as the most abundant modification in mRNA was found in the 1970s and has been proposed to function in mRNA splicing, translation, stability, transport and so on. mrA has been discovered as the first RNA reversible modification which is demethylated directly by human fat mass and obesity associated protein (FRO) and its homolog protein, alkylation repair ho- molog 5 (ALKBH5). b-TO has a special demethylation mechanism that demethylases m6A to A through two over-oxidative intermediate states: N6-hydroxymethyladenosine (hm6A) and Nr-formyladenosine (frA). The two newly discovered m6A demethylases, bTO and ALKBH5, significantly control energy homeostasis and spermatogenesis, respectively, indicating that the dynamic and reversible mrA, analogous to DNA and histone modifications, plays broad roles in biological kingdoms and brings us an emerging field "RNA Epige- netics". 5-methylcytosine (5mC) as an epigenetic mark in DNA has been studied widely, but mSC in mRNA is seldom explored. The bisulfide sequencing showed mSC is another abundant modification in mRNA, suggesting that it might be another RNA epigenetic mark. This review focuses on the main methylation modifications in mRNA to describe their formation, distribution, function and demethylation from the current knowledge and to provide future 19erspectives on functional studies. 展开更多
关键词 RNA methylation N7-methylguanosine (m7G) N6-methyladenosine (m6A) 5-methylcytosine (mSC)
原文传递
Deoxyribonucleic acid methylation driven aberrations in pancreatic cancer-related pathways 被引量:1
14
作者 Akash Bararia Amlan Das +3 位作者 Sangeeta Mitra Sudeep Banerjee Aniruddha Chatterjee Nilabja Sikdar 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第9期1505-1519,共15页
Pancreatic cancer(PanCa)presents a catastrophic disease with poor overall survival at advanced stages,with immediate requirement of new and effective treatment options.Besides genetic mutations,epigenetic dysregulatio... Pancreatic cancer(PanCa)presents a catastrophic disease with poor overall survival at advanced stages,with immediate requirement of new and effective treatment options.Besides genetic mutations,epigenetic dysregulation of signaling pathway-associated enriched genes are considered as novel therapeutic target.Mechanisms beneath the deoxyribonucleic acid methylation and its utility in developing of epi-drugs in PanCa are under trails.Combinations of epigenetic medicines with conventional cytotoxic treatments or targeted therapy are promising options to improving the dismal response and survival rate of PanCa patients.Recent studies have identified potentially valid pathways that support the prediction that future PanCa clinical trials will include vigorous testing of epigenomic therapies.Epigenetics thus promises to generate a significant amount of new knowledge of biological and medical importance.Our review could identify various components of epigenetic mechanisms known to be involved in the initiation and development of pancreatic ductal adenocarcinoma and related precancerous lesions,and novel pharmacological strategies that target these components could potentially lead to breakthroughs.We aim to highlight the possibilities that exist and the potential therapeutic interventions. 展开更多
关键词 methylation driven pathways Pancreatic cancer methylation markers Signaling pathway targeted therapy PanCa enriched methylated pathway Pre-cancer methylated pathways
暂未订购
Detecting plasma SHOX2, HOXA9, SEPTIN9, and RASSF1A methylation and circulating cancer cells for cholangiocarcinoma clinical diagnosis and monitoring 被引量:1
15
作者 Jing Yu Qiu-Chen Liu +2 位作者 Shuang-Yan Lu Shun Wang Hua Zhang 《World Journal of Gastrointestinal Oncology》 2025年第4期210-222,共13页
BACKGROUND Cholangiocarcinoma(CCA),also known as bile duct cancer,is a devastating malignancy primarily affecting the biliary tract.AIM To assess their performance in clinical diagnosis and monitoring of CCA,plasma me... BACKGROUND Cholangiocarcinoma(CCA),also known as bile duct cancer,is a devastating malignancy primarily affecting the biliary tract.AIM To assess their performance in clinical diagnosis and monitoring of CCA,plasma methylation and circulating tumor cells were detected.METHODS Plasma samples were collected from Hubei Cancer Hospital(n=156).Plasma DNA was tested to detect SHOX2,HOXA9,SEPTIN9,and RASSF1A methylation using TaqMan PCR.Circulating tumor cells(CTCs)were detected in the peripheral blood of patients using the United States Food and Drug Administration-approved cell search system before and after clinical therapy.The CCA diagnostic value was estimated using the area under the curve.The independent prognosis risk factors for patients with CCA were estimated using Cox and logistic regression analyses.RESULTS The sensitivity and specificity of the four DNA plasma methylations exhibited 64.74%sensitivity and 93.88%specificity for detecting CCA.The receiver operating characteristic curve of the combined value for CCA diagnosis in plasma was 0.828±0.032.RASSF1A plasma methylation was related to the prognosis of patients with CCA.We determined the prognostic hazard ratio for CCA using CTC count,tumor stage,methylation,and carbohydrate antigen 19-9 levels as key factors.Our overall survival nomogram achieved a C-index of 0.705(0.605-0.805).CONCLUSION SHOX2,HOXA9,SEPTIN9,and RASSF1A plasma methylation demonstrated increased sensitivity for diagnosing CCA.RASSF1A plasma methylation and CTCs were valuable predictors to assess CCA prognosis and recurrence. 展开更多
关键词 CHOLANGIOCARCINOMA methylATION Circulating cancer cells Diagnosis PROGNOSIS
暂未订购
Dynamic DNA methylation modification in catechins and terpenoids biosynthesis during tea plant leaf development 被引量:1
16
作者 Jiahao Chen Yang Hu +3 位作者 Zhangsheng Zhu Peng Zheng Shaoqun Liu Binmei Sun 《Horticultural Plant Journal》 2025年第2期906-920,共15页
DNA methylation plays important roles in regulating gene expression during development.However,little is known about the influence of DNA methylation on secondary metabolism during leaf development in the tea plant(Ca... DNA methylation plays important roles in regulating gene expression during development.However,little is known about the influence of DNA methylation on secondary metabolism during leaf development in the tea plant(Camellia sinensis).In this study,we combined the methylome,transcriptome,and metabolome to investigate the dynamic changes in DNA methylation and its potential regulatory roles in secondary metabolite biosynthesis.In this study,the level of genomic DNA methylation increased as leaf development progressed from tender to old leaf.It additionally exhibited a similar distribution across the genomic background at the two distinct developmental stages studied.Notably,integrated analysis of transcriptomic and methylomic data showed that DNA hypermethylation primarily occurred in genes of the phenylpropanoid,flavonoid,and terpenoid biosynthesis pathways.The effect of methylation on transcription of these secondary metabolite biosynthesis genes was dependent on the location of methylation(i.e.,in the promoter,gene or intergenic regions)and the sequence context(i.e.,CpG,CHG,or CHH).Changes in the content of catechins and terpenoids were consistent with the changes in gene transcription and the methylation state of structural genes,such as serine carboxypeptidase-like acyltransferases 1A(SCPL1A),leucoanthocyanidin reductase(LAR),and nerolidol synthase(NES).Our study provides valuable information for dissecting the effects of DNA methylation on regulation of genes involved in secondary metabolism during tea leaf development. 展开更多
关键词 Camellia sinensis DNA methylation leaf development CATECHINS TERPENOIDS Gene regulation
在线阅读 下载PDF
Arsenic methylation and microbial communities in paddy soils under alternating anoxic and oxic conditions 被引量:1
17
作者 Jing Liu Rui Pei +2 位作者 Runzeng Liu Chuanyong Jing Wenjing Liu 《Journal of Environmental Sciences》 2025年第2期468-475,共8页
Arsenic(As)methylation in soils affects the environmental behavior of As,excessive accumulation of dimethylarsenate(DMA)in rice plants leads to straighthead disease and a serious drop in crop yield.Understanding the m... Arsenic(As)methylation in soils affects the environmental behavior of As,excessive accumulation of dimethylarsenate(DMA)in rice plants leads to straighthead disease and a serious drop in crop yield.Understanding the mobility and transformation of methylated arsenic in redox-changing paddy fields is crucial for food security.Here,soils including unarsenic contaminated(N-As),low-arsenic(L-As),medium-arsenic(M-As),and high-arsenic(H-As)soils were incubated under continuous anoxic,continuous oxic,and consecutive anoxic/oxic treatments respectively,to profile arsenic methylating process and microbial species involved in the As cycle.Under anoxic-oxic(A-O)treatment,methylated arsenic was significantly increased once oxygen was introduced into the incubation system.The methylated arsenic concentrations were up to 2-24 times higher than those in anoxic(A),oxic(O),and oxic-anoxic(O-A)treatments,under which arsenic was methylated slightly and then decreased in all four As concentration soils.In fact,the most plentiful arsenite S-adenosylmethionine methyltransferase genes(arsM)contributed to the increase in As methylation.Proteobacteria(40.8%-62.4%),Firmicutes(3.5%-15.7%),and Desulfobacterota(5.3%-13.3%)were the major microorganisms related to this process.These microbial increasedmarkedly and played more important roles after oxygen was introduced,indicating that they were potential keystone microbial groups for As methylation in the alternating anoxic(flooding)and oxic(drainage)environment.The novel findings provided newinsights into the reoxidation-driven arsenic methylation processes and the model could be used for further risk estimation in periodically flooded paddy fields. 展开更多
关键词 Arsenic methylation Anoxic-oxic Straighthead disease arsM gene Microbial community
原文传递
DNA methylation regulates the extinction of fear memory 被引量:1
18
作者 Le Jiang Rui-Xue Ma +11 位作者 Er-Shu He Xiao-Ye Zheng Xin Peng Wen-Hao Ma Ying Li Han-Wei li Xue-Yan Zhang Jie-Yu Ji Yan-Jiao Li Shang-Lan Qu Li-Juan Li Zhi-Ting Gong 《World Journal of Psychiatry》 2025年第7期273-283,共11页
BACKGROUND Fear-related disorders,such as post-traumatic stress disorder(PTSD),significantly impact patients and families.Exposure therapy is a common treatment,but imp-roving its effectiveness remains a key challenge... BACKGROUND Fear-related disorders,such as post-traumatic stress disorder(PTSD),significantly impact patients and families.Exposure therapy is a common treatment,but imp-roving its effectiveness remains a key challenge.Fear conditioning and extinction in animal models offer insights into its mechanisms.Our previous research indi-cates that DNA methyltransferases play a role in fear memory renewal.AIM To investigate the role of DNA methylation in the extinction of fear memory,with the goal of identifying potential strategies to enhance the efficacy of exposure therapy for fear-related disorders.METHODS This study investigated the role of DNA methylation in fear memory extinction in mice.DNA methylation was manipulated using N-phthalyl-L-tryptophan(RG108)to reduce methylation and L-methionine injections to enhance it.Neuronal activity,and dendritic spine density was measured following extinction training.RESULTS RG108 suppressed extinction,reduced spine density,and inhibited neuronal activity.Methionine injections facilitated extinction.CONCLUSION DNA methylation is crucial for fear memory extinction.Enhancing methylation may improve the efficacy of exposure therapy,offering a potential strategy to treat fear-related disorders. 展开更多
关键词 RG108 DNA methylation Fear memory Exposure therapy EXTINCTION
暂未订购
Multidrug resistance reversal effect of tenacissoside I through impeding EGFR methylation mediated by PRMT1 inhibition 被引量:1
19
作者 Donghui Liu Qian Wang +8 位作者 Ruixue Zhang Ruixin Su Jiaxin Zhang Shanshan Liu Huiying Li Zhesheng Chen Yan Zhang Dexin Kong Yuling Qiu 《Chinese Journal of Natural Medicines》 2025年第9期1092-1103,共12页
Cancer multidrug resistance(MDR)impairs the therapeutic efficacy of various chemotherapeutics.Novel approaches,particularly the development of MDR reversal agents,are critically needed to address this challenge.This s... Cancer multidrug resistance(MDR)impairs the therapeutic efficacy of various chemotherapeutics.Novel approaches,particularly the development of MDR reversal agents,are critically needed to address this challenge.This study demonstrates that tenacissoside I(TI),a compound isolated from Marsdenia tenacissima(Roxb.)Wight et Arn,traditionally used in clinical practice as an ethnic medicine for cancer treatment,exhibits significant MDR reversal effects in ABCB1-mediated MDR cancer cells.TI reversed the resistance of SW620/AD300 and KBV200 cells to doxorubicin(DOX)and paclitaxel(PAC)by downregulating ABCB1 expression and reducing ABCB1 drug transport function.Mechanistically,protein arginine methyltransferase 1(PRMT1),whose expression correlates with poor prognosis and shows positive association with both ABCB1 and EGFR expressions in tumor tissues,was differentially expressed in TI-treated SW620/AD300 cells.SW620/AD300 and KBV200 cells exhibited elevated levels of EGFR asymmetric dimethylarginine(aDMA)and enhanced PRMT1-EGFR interaction compared to their parental cells.Moreover,TI-induced PRMT1 downregulation impaired PRMT1-mediated aDMA of EGFR,PRMT1-EGFR interaction,and EGFR downstream signaling in SW620/AD300 and KBV200 cells.These effects were significantly reversed by PRMT1 overexpression.Additionally,TI demonstrated resistance reversal to PAC in xenograft models without detectable toxicities.This study establishes TI's MDR reversal effect in ABCB1-mediated MDR human cancer cells through inhibition of PRMT1-mediated aDMA of EGFR,suggesting TI's potential as an MDR modulator for improving chemotherapy outcomes. 展开更多
关键词 Tenacissoside I Multidrug resistance reversal effect PRMT1 Protein methylation EGFR signaling
原文传递
Comprehensive characterization of lncRNA N^(6)-methyladenosine modification dynamics throughout bovine skeletal muscle development 被引量:1
20
作者 Cui Mao Wei You +4 位作者 Yuta Yang Haijian Cheng Xin Hu Xianyong Lan Enliang Song 《Journal of Animal Science and Biotechnology》 2025年第3期1025-1040,共16页
Background N^(6)-methyladenosine(m^(6)A)methylation is a key epigenetic modification that can modulate gene expression and strongly affect mammalian developmental processes.However,the genome-wide methylation of long ... Background N^(6)-methyladenosine(m^(6)A)methylation is a key epigenetic modification that can modulate gene expression and strongly affect mammalian developmental processes.However,the genome-wide methylation of long non-coding RNAs(lncRNAs)and its implications for the development of skeletal muscle remain poorly understood.Bovine skeletal muscle samples from five developmental stages were analyzed in this study to establish lncRNA methylome and transcriptomic maps.Results Globally,59.67%of lncRNAs in skeletal muscle with m^(6)A modifications,and this percentage decreased progressively during development.lncRNA expression levels were positively associated with the number of m^(6)A peaks,with lncRNAs possessing 3 or more peaks showing significantly higher expression levels than those with 1 or 2 peaks.Specific lncRNAs involved in skeletal muscle development were identified through two analytical approaches.The first approach employed weighted gene co-expression network analysis(WGCNA)of transcriptomic data to identify correlations between annotated lncRNAs and growth-related traits,resulting in 21 candidate hub lncRNAs.The intersection of these 21 hub lncRNAs with 151 differentially methylated lncRNAs(DM-lncRNAs)identified 10 shared candidate lncRNAs.The second approach integrated MeRIP-seq and RNA-seq data to identify 36 lncRNAs that were both differentially m^(6)A modified and differentially expressed(dme-lncRNAs).GO and KEGG enrichment analyses of cis-target genes associated with these dme-lncRNAs identified eight candidate lncRNAs.Combining the results from the two approaches identified 16 key m^(6)A-modified lncRNAs likely involved in skeletal muscle development.Conclusions These findings highlight the regulatory and functional significance of dynamic lncRNA methylation in skeletal muscle development. 展开更多
关键词 BOVINE LncRNA m^(6)A methylation Muscle development
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部