Chemical oxygen demand (COD) is an important index to measure the degree of water pollution. In this paper, near-infrared technology is used to obtain 148 wastewater spectra to predict the COD value in wastewater. Fir...Chemical oxygen demand (COD) is an important index to measure the degree of water pollution. In this paper, near-infrared technology is used to obtain 148 wastewater spectra to predict the COD value in wastewater. First, the partial least squares regression (PLS) model was used as the basic model. Monte Carlo cross-validation (MCCV) was used to select 25 samples out of 148 samples that did not conform to conventional statistics. Then, the interval partial least squares (iPLS) regression modeling was carried out on 123 samples, and the spectral bands were divided into 40 subintervals. The optimal subintervals are 20 and 26, and the optimal correlation coefficient of the test set (RT) is 0.58. Further, the waveband is divided into five intervals: 17, 19, 20, 22 and 26. When the number of joint intervals under each interval is three, the optimal RT is 0.71. When the number of joint subintervals is four, the optimal RT is 0.79. Finally, convolutional neural network (CNN) was used for quantitative prediction, and RT was 0.9. The results show that CNN can automatically screen the features inside the data, and the quantitative prediction effect is better than that of iPLS and synergy interval partial least squares model (SiPLS) with joint subinterval three and four, indicating that CNN can be used for quantitative analysis of water pollution degree.展开更多
We perform a time-resolved statistical study of GRB 221009A’s X-ray emission using Swift XRT Photon Counting and Windowed Timing data.After standard reduction(barycentric correction,pile-up,background subtraction via...We perform a time-resolved statistical study of GRB 221009A’s X-ray emission using Swift XRT Photon Counting and Windowed Timing data.After standard reduction(barycentric correction,pile-up,background subtraction via HEASOFT),we extracted light curves for each observational ID and for their aggregation.Countrate histograms were fitted using various statistical distributions;fit quality was assessed by chi-squared and the Bayesian Information Criterion.The first observational segment is best described by a Gaussian distribution(χ^(2)=68.4;BIC=7651.2),and the second by a Poisson distribution(χ^(2)=33.5;BIC=4413.3).When all segments are combined,the lognormal model provides the superior fit(χ^(2)=541.9;BIC=34365.5),indicating that the full data set’s count rates exhibit the skewness expected from a multiplicative process.These findings demonstrate that while individual time intervals conform to discrete or symmetric statistics,the collective emission profile across multiple observations is better captured by a lognormal distribution,consistent with complex,compounded variability in GRB afterglows.展开更多
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi...Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.展开更多
Web data extraction has become a key technology for extracting valuable data from websites.At present,most extraction methods based on rule learning,visual pattern or tree matching have limited performance on complex ...Web data extraction has become a key technology for extracting valuable data from websites.At present,most extraction methods based on rule learning,visual pattern or tree matching have limited performance on complex web pages.Through ana-lyzing various statistical characteristics of HTML el-ements in web documents,this paper proposes,based on statistical features,an unsupervised web data ex-traction method—traversing the HTML DOM parse tree at first,calculating and generating the statistical matrix of the elements,and then locating data records by clustering method and heuristic rules that reveal in-herent links between the visual characteristics of the data recording areas and the statistical characteristics of the HTML nodes—which is both suitable for data records extraction of single-page and multi-pages,and it has strong generality and needs no training.The ex-periments show that the accuracy and efficiency of this method are equally better than the current data extrac-tion method.展开更多
Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.Howev...Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.展开更多
RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performa...RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.展开更多
Understanding the wind power potential of a site is essential for designing an optimal wind power conditioning system. The Weibull distribution and wind speed extrapolation methods are powerful mathematical tools for ...Understanding the wind power potential of a site is essential for designing an optimal wind power conditioning system. The Weibull distribution and wind speed extrapolation methods are powerful mathematical tools for efficiently predicting the frequency distribution of wind speeds at a site. Hourly wind speed and direction data were collected from the National Aeronautics and Space Administration (NASA) website for the period 2013 to 2023. MATLAB software was used to calculate the distribution parameters using the graphical method and to plot the corresponding curves, while WRPLOTView software was used to construct the wind rose. The average wind speed obtained is 3.33 m/s and can reach up to 5.71 m/s at a height of 100 meters. The wind energy is estimated to be 1315.30 kWh/m2 at a height of 100 meters. The wind rose indicates the prevailing winds (ranging from 3.60 m/s to 5.70 m/s) in the northeast-east direction.展开更多
Purpose–For the commonly used concrete mix for railway tunnel linings,concrete model specimens were made,and springback and core drilling tests were conducted at different ages.The springback strength was measured to...Purpose–For the commonly used concrete mix for railway tunnel linings,concrete model specimens were made,and springback and core drilling tests were conducted at different ages.The springback strength was measured to the compressive strength of the core sample with a diameter of 100mm and a height-to-diameter ratio of 1:1.By comparing the measured strength values,the relationship between the measured values under different strength measurement methods was analyzed.Design/methodology/approach–A comparative test of the core drilling method and the rebound method was conducted on the side walls of tunnel linings in some under-construction railways to study the feasibility of the rebound method in engineering quality supervision and inspection.Findings–Tests showed that the rebound strength was positively correlated with the core drill strength.The core drill test strength was significantly higher than the rebound test strength,and the strength still increased after 56 days of age.The rebound method is suitable for the general survey of concrete strength during the construction process and is not suitable for direct supervision and inspection.Originality/value–By studying the correlation of test strength of tunnel lining concrete using two methods,the differences in test results of different methods are proposed to provide a reference for the test and evaluation of tunnel lining strength in railway engineering.展开更多
Artificial intelligence(AI)is rapidly transforming healthcare and medical education.Strong statistical thinking skills are vital for evaluating and applying AI tools.However,traditional medical statistics education ha...Artificial intelligence(AI)is rapidly transforming healthcare and medical education.Strong statistical thinking skills are vital for evaluating and applying AI tools.However,traditional medical statistics education has not adapted to this demand.This paper first analyzes the connotation and importance of statistical thinking,points out the significant challenges currently faced by medical statistics education,and then proposes strategies such as innovative teaching methods combined with evidence-based medicine,utilizing AI platforms for supplemental teaching,multidisciplinary integration,and strengthening the understanding of the statistical foundations of AI to enhance the statistical thinking abilities of medical professionals.This study emphasizes the importance of cultivating medical statistical thinking in the era of AI to improve the quality of medical education and ensure the safety and effectiveness of future medical services.展开更多
This paper is a statistical survey of Southern Hemisphere cold and hot polar cap patches,in relation to the interplanetary magnetic field(IMF)and ionospheric convection geometry.A total of 11,946 patch events were ide...This paper is a statistical survey of Southern Hemisphere cold and hot polar cap patches,in relation to the interplanetary magnetic field(IMF)and ionospheric convection geometry.A total of 11,946 patch events were identified by Defense Meteorological Satellite Program(DMSP)F16 during the years 2011 to 2022.A temperature ratio of ion/electron temperature(T_(i)/T_(e))<0.68 is recommended to define a hot patch in the Southern Hemisphere,otherwise it is defined as a cold patch.The cold and hot patches have different dependencies on IMF clock angle,while their dependencies on IMF cone angle are similar.Both cold and hot patches appear most often on the duskside,and the distribution of cold patches gradually decreases from the dayside to the nightside,while hot patches have a higher occurrence rate near 14 and 21 magnetic local time(MLT).Moreover,we compared the key plasma characteristics of polar cap cold and hot patches in the Southern and Northern Hemispheres.The intensity of the duskside upward field-aligned current of patches in the Southern Hemisphere(SH)is stronger than that in the Northern Hemisphere(SH),which may be due to the discrepancy in conductivities between the two hemispheres,caused by the tilted dipole.In both hemispheres,the downward soft-electron energy flux of the dawnside patches is significantly greater than that of the duskside patches.展开更多
BACKGROUND Meta-analysis is a critical tool in evidence-based medicine,particularly in cardiology,where it synthesizes data from multiple studies to inform clinical decisions.This study explored the potential of using...BACKGROUND Meta-analysis is a critical tool in evidence-based medicine,particularly in cardiology,where it synthesizes data from multiple studies to inform clinical decisions.This study explored the potential of using ChatGPT to streamline and enhance the meta-analysis process.AIM To investigate the potential of ChatGPT to conduct meta-analyses in interventional cardiology by comparing the results of ChatGPT-generated analyses with those of randomly selected,human-conducted meta-analyses on the same topic.METHODS We systematically searched PubMed for meta-analyses on interventional cardiology published in 2024.Five metaanalyses were randomly chosen.ChatGPT 4.0 was used to perform meta-analyses on the extracted data.We compared the results from ChatGPT with the original meta-analyses,focusing on key effect sizes,such as risk ratios(RR),hazard ratios,and odds ratios,along with their confidence intervals(CI)and P values.RESULTS The ChatGPT results showed high concordance with those of the original meta-analyses.For most outcomes,the effect measures and P values generated by ChatGPT closely matched those of the original studies,except for the RR of stent thrombosis in the Sreenivasan et al study,where ChatGPT reported a non-significant effect size,while the original study found it to be statistically significant.While minor discrepancies were observed in specific CI and P values,these differences did not alter the overall conclusions drawn from the analyses.CONCLUSION Our findings suggest the potential of ChatGPT in conducting meta-analyses in interventional cardiology.However,further research is needed to address the limitations of transparency and potential data quality issues,ensuring that AI-generated analyses are robust and trustworthy for clinical decision-making.展开更多
Multi-angle statistical analysis of tropical cyclones(TCs)and their distant thermodynamic disturbances over Northwest Pacific from July to September during 2001-2020 was conducted.The results show that TCs could trigg...Multi-angle statistical analysis of tropical cyclones(TCs)and their distant thermodynamic disturbances over Northwest Pacific from July to September during 2001-2020 was conducted.The results show that TCs could trigger distant thermodynamic disturbances,which mainly caused an increase in air pressure and a rise in temperature in northern China.The distant thermodynamic disturbances triggered by TCs differed in spatial distribution and intensity in different months.In the same month,the spatial distribution of such disturbances triggered by high-intensity TCs was consistent with the overall pattern,and there was a significant increase in intensity and area.From the probability of TC activities and the significance test of variance of analysis under different levels of P-J index,it is found that TC activities could stimulate the increase of P-J teleconnection index.There was a significant positive correlation between them,which was accompanied by a step effect.展开更多
In this study,the gradients of Total Electron Content(TEC)for a midlatitude region are estimated and grouped with respect to the distance between neighboring stations,time periods within a day,and satellite directions...In this study,the gradients of Total Electron Content(TEC)for a midlatitude region are estimated and grouped with respect to the distance between neighboring stations,time periods within a day,and satellite directions.Annual medians of these gradients for quiet days are computed as templates.The metric distances(L2N)and Symmetric Kullback-Leibler Distances(SKLD)are obtained between the templates and the daily gradient series.The grouped histograms are fitted to the prospective Probability Density Functions(PDF).The method is applied to the Slant Total Electron Content(STEC)estimates from the Turkish National Permanent GPS Network(TNPGN-Active)for 2015.The highest gradients are observed in the east-west axis with a maximum of 25 mm/km during a geomagnetic storm.The maximum differences from the gradient templates occur for neighboring stations within100-130 km distance away from each other,during night hours,and for regions bordering the Black Sea and the Mediterranean in the northeast and southeast of Turkey.The empirical PDFs of the stationpair gradients are predominantly Weibull-distributed.The mean values of Weibull PDFs in all station groups are between 1.2 and 1.8 mm/km,with an increase during noon and afternoon hours.The standard deviations of the gradient PDFs generally increase during night hours.The algorithm will form a basis for quantifying the stochastic variations of the spatial rate of change of TEC trends in midlatitude regions,thus supplementing reliable and accurate regional monitoring of ionospheric variability.展开更多
Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of un...Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over.展开更多
In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introduc...In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.展开更多
Extratropical transition(ET)is one of the last phases of tropical cyclones(TCs)and corresponds to the structural change from a tropical system to an extratropical system characterized by pronounced asymmetric distribu...Extratropical transition(ET)is one of the last phases of tropical cyclones(TCs)and corresponds to the structural change from a tropical system to an extratropical system characterized by pronounced asymmetric distributions of heavy rainfall and strong wind.This study analyzes the statistical characteristics of ET events involving TCs over the western North Pacific(WNP)during 1981–2022.The analysis employs the Cyclone Phase Space(CPS)method to evaluate the accuracy of the fifth-generation reanalysis from the European Centre for Medium-Range Weather Forecasts(ERA5)in identifying ET based on different TC center definitions.Results show that defining the TC center by the minimum sea level pressure yields the most accurate ET identification.Subsequently,the study investigates several characteristics of ET events in the WNP.It is found that TCs undergoing ET(ETTCs)primarily form in the region of 125°–155°E,10°–25°N,with ET typically initiating between 30°–40°N and completing between 35°–50°N.These ETTCs predominantly occur from April to December,with peak activity observed from August to October.Additionally,the average duration of the ET process is 18.5 h,with longer durations observed from August to October,displaying a roughly 6-year cycle.Spatially,ET events with longer durations tend to occur at lower latitudes.Correspondingly,TCs initiating their ET phase at lower latitudes are typically stronger and larger,and they also experience longer ET durations.展开更多
This study presents the results of a Monte Carlo simulation to compare the statistical power of Siegel-Tukey and Savage tests.The main purpose of the study is to evaluate the statistical power of both tests in scenari...This study presents the results of a Monte Carlo simulation to compare the statistical power of Siegel-Tukey and Savage tests.The main purpose of the study is to evaluate the statistical power of both tests in scenarios involving Normal,Platykurtic and Skewed distributions over different sample sizes and standard deviation values.In the study,standard deviation ratios were set as 2,3,4,1/2,1/3 and 1/4 and power comparisons were made between small and large sample sizes.For equal sample sizes,small sample sizes of 5,8,10,12,16 and 20 and large sample sizes of 25,50,75 and 100 were used.For different sample sizes,the combinations of(4,16),(8,16),(10,20),(16,4),(16,8)and(20,10)small sample sizes and(10,30),(30,10),(50,75),(50,100),(75,50),(75,100),(100,50)and(100,75)large sample sizes were examined in detail.According to the findings,the power analysis under variance heterogeneity conditions shows that the Siegel-Tukey test has a higher statistical power than the other nonparametric Savage test at small and large sample sizes.In particular,the Siegel-Tukey test was reported to offer higher precision and power under variance heterogeneity,regardless of having equal or different sample sizes.展开更多
Reconfigurable intelligent surface(RIS)is a promising candidate technology of the upcoming Sixth Generation(6G)communication system for its ability to provide unprecedented spectral and energy efficiency increment thr...Reconfigurable intelligent surface(RIS)is a promising candidate technology of the upcoming Sixth Generation(6G)communication system for its ability to provide unprecedented spectral and energy efficiency increment through passive beamforming.However,it is challenging to obtain instantaneous channel state information(I-CSI)for RIS,which obliges us to use statistical channel state information(S-CSI)to achieve passive beamforming.In this paper,RIS-aided multiple-input single-output(MISO)multi-user downlink communication system with correlated channels is investigated.Then,we formulate the problem of joint beamforming design at the AP and RIS to maximize the sum ergodic spectral efficiency(ESE)of all users to improve the network capacity.Since it is too hard to compute sum ESE,an ESE approximation is adopted to reformulate the problem into a more tractable form.Then,we present two joint beamforming algorithms,namely the singular value decomposition-gradient descent(SVD-GD)algorithm and the fractional programming-gradient descent(FP-GD)algorithm.Simulation results show the effectiveness of our proposed algorithms and validate that 2-bits quantizer is enough for RIS phase shifts implementation.展开更多
Traditional meteorological downscaling methods face limitations due to the complex distribution of meteorological variables,which can lead to unstable forecasting results,especially in extreme scenarios.To overcome th...Traditional meteorological downscaling methods face limitations due to the complex distribution of meteorological variables,which can lead to unstable forecasting results,especially in extreme scenarios.To overcome this issue,we propose a convolutional graph neural network(CGNN)model,which we enhance with multilayer feature fusion and a squeeze-and-excitation block.Additionally,we introduce a spatially balanced mean squared error(SBMSE)loss function to address the imbalanced distribution and spatial variability of meteorological variables.The CGNN is capable of extracting essential spatial features and aggregating them from a global perspective,thereby improving the accuracy of prediction and enhancing the model's generalization ability.Based on the experimental results,CGNN has certain advantages in terms of bias distribution,exhibiting a smaller variance.When it comes to precipitation,both UNet and AE also demonstrate relatively small biases.As for temperature,AE and CNNdense perform outstandingly during the winter.The time correlation coefficients show an improvement of at least 10%at daily and monthly scales for both temperature and precipitation.Furthermore,the SBMSE loss function displays an advantage over existing loss functions in predicting the98th percentile and identifying areas where extreme events occur.However,the SBMSE tends to overestimate the distribution of extreme precipitation,which may be due to the theoretical assumptions about the posterior distribution of data that partially limit the effectiveness of the loss function.In future work,we will further optimize the SBMSE to improve prediction accuracy.展开更多
文摘Chemical oxygen demand (COD) is an important index to measure the degree of water pollution. In this paper, near-infrared technology is used to obtain 148 wastewater spectra to predict the COD value in wastewater. First, the partial least squares regression (PLS) model was used as the basic model. Monte Carlo cross-validation (MCCV) was used to select 25 samples out of 148 samples that did not conform to conventional statistics. Then, the interval partial least squares (iPLS) regression modeling was carried out on 123 samples, and the spectral bands were divided into 40 subintervals. The optimal subintervals are 20 and 26, and the optimal correlation coefficient of the test set (RT) is 0.58. Further, the waveband is divided into five intervals: 17, 19, 20, 22 and 26. When the number of joint intervals under each interval is three, the optimal RT is 0.71. When the number of joint subintervals is four, the optimal RT is 0.79. Finally, convolutional neural network (CNN) was used for quantitative prediction, and RT was 0.9. The results show that CNN can automatically screen the features inside the data, and the quantitative prediction effect is better than that of iPLS and synergy interval partial least squares model (SiPLS) with joint subinterval three and four, indicating that CNN can be used for quantitative analysis of water pollution degree.
文摘We perform a time-resolved statistical study of GRB 221009A’s X-ray emission using Swift XRT Photon Counting and Windowed Timing data.After standard reduction(barycentric correction,pile-up,background subtraction via HEASOFT),we extracted light curves for each observational ID and for their aggregation.Countrate histograms were fitted using various statistical distributions;fit quality was assessed by chi-squared and the Bayesian Information Criterion.The first observational segment is best described by a Gaussian distribution(χ^(2)=68.4;BIC=7651.2),and the second by a Poisson distribution(χ^(2)=33.5;BIC=4413.3).When all segments are combined,the lognormal model provides the superior fit(χ^(2)=541.9;BIC=34365.5),indicating that the full data set’s count rates exhibit the skewness expected from a multiplicative process.These findings demonstrate that while individual time intervals conform to discrete or symmetric statistics,the collective emission profile across multiple observations is better captured by a lognormal distribution,consistent with complex,compounded variability in GRB afterglows.
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.
基金funded by the National Natural Science Foundation of China(No.41962016)the Natural Science Foundation of NingXia(Nos.2023AAC02023,2023A1218,and 2021AAC02006).
文摘Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.
文摘Web data extraction has become a key technology for extracting valuable data from websites.At present,most extraction methods based on rule learning,visual pattern or tree matching have limited performance on complex web pages.Through ana-lyzing various statistical characteristics of HTML el-ements in web documents,this paper proposes,based on statistical features,an unsupervised web data ex-traction method—traversing the HTML DOM parse tree at first,calculating and generating the statistical matrix of the elements,and then locating data records by clustering method and heuristic rules that reveal in-herent links between the visual characteristics of the data recording areas and the statistical characteristics of the HTML nodes—which is both suitable for data records extraction of single-page and multi-pages,and it has strong generality and needs no training.The ex-periments show that the accuracy and efficiency of this method are equally better than the current data extrac-tion method.
基金Supported by the National Natural Science Foundation of China(Nos.52222904 and 52309117)China Postdoctoral Science Foundation(Nos.2022TQ0168 and 2023M731895).
文摘Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.
基金supported by grants from the National Science Foundation of China(Grant Nos.12375038 and 12075171 to ZJT,and 12205223 to YLT).
文摘RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.
文摘Understanding the wind power potential of a site is essential for designing an optimal wind power conditioning system. The Weibull distribution and wind speed extrapolation methods are powerful mathematical tools for efficiently predicting the frequency distribution of wind speeds at a site. Hourly wind speed and direction data were collected from the National Aeronautics and Space Administration (NASA) website for the period 2013 to 2023. MATLAB software was used to calculate the distribution parameters using the graphical method and to plot the corresponding curves, while WRPLOTView software was used to construct the wind rose. The average wind speed obtained is 3.33 m/s and can reach up to 5.71 m/s at a height of 100 meters. The wind energy is estimated to be 1315.30 kWh/m2 at a height of 100 meters. The wind rose indicates the prevailing winds (ranging from 3.60 m/s to 5.70 m/s) in the northeast-east direction.
文摘Purpose–For the commonly used concrete mix for railway tunnel linings,concrete model specimens were made,and springback and core drilling tests were conducted at different ages.The springback strength was measured to the compressive strength of the core sample with a diameter of 100mm and a height-to-diameter ratio of 1:1.By comparing the measured strength values,the relationship between the measured values under different strength measurement methods was analyzed.Design/methodology/approach–A comparative test of the core drilling method and the rebound method was conducted on the side walls of tunnel linings in some under-construction railways to study the feasibility of the rebound method in engineering quality supervision and inspection.Findings–Tests showed that the rebound strength was positively correlated with the core drill strength.The core drill test strength was significantly higher than the rebound test strength,and the strength still increased after 56 days of age.The rebound method is suitable for the general survey of concrete strength during the construction process and is not suitable for direct supervision and inspection.Originality/value–By studying the correlation of test strength of tunnel lining concrete using two methods,the differences in test results of different methods are proposed to provide a reference for the test and evaluation of tunnel lining strength in railway engineering.
基金supported by the Doctoral Research Start-up Project of Wannan Medical College(WYRCQD2024019)the Quality Engineering Project of Anhui Provincial Department of Education-the“101 Project”(2023ylyjh046)the“Online and Offline Hybrid Course”Project(2020xsxxkc462).
文摘Artificial intelligence(AI)is rapidly transforming healthcare and medical education.Strong statistical thinking skills are vital for evaluating and applying AI tools.However,traditional medical statistics education has not adapted to this demand.This paper first analyzes the connotation and importance of statistical thinking,points out the significant challenges currently faced by medical statistics education,and then proposes strategies such as innovative teaching methods combined with evidence-based medicine,utilizing AI platforms for supplemental teaching,multidisciplinary integration,and strengthening the understanding of the statistical foundations of AI to enhance the statistical thinking abilities of medical professionals.This study emphasizes the importance of cultivating medical statistical thinking in the era of AI to improve the quality of medical education and ensure the safety and effectiveness of future medical services.
基金supported by the National Natural Science Foundation of China(Grants 42325404,42120104003,42204164,42474219 and U22A2006)the Chinese Meridian Project,the International Partnership Program of Chinese Academy of Sciences(Grant 183311KYSB20200003)+7 种基金Shandong Provincial Natural Science Foundation(Grants ZR2022QD077,ZR2022MD034)the Stable-Support Scientific Project of China Research Institute of Radiowave Propagation(Grant A132312191)the foundation of the National Key Laboratory of Electromagnetic Environment(Grant 6142403180204)the Chongqing Natural Science Foundation(Grants cstc2021ycjh-bgzxm0072,CSTB2023NSCQ-LZX0082)National Program on Key Basic Research Project(Grant 2022173-SD-1)The work in Norway is supported by the Research Council of Norway Grant 326039Work at UCLA has been supported by NSF grant AGS-2055192This research was supported by the International Space Science Institute(ISSI)in Bern and Beijing,through ISSI International Team project#511(Multi-Scale Magnetosphere-Ionosphere-Thermosphere Interaction).
文摘This paper is a statistical survey of Southern Hemisphere cold and hot polar cap patches,in relation to the interplanetary magnetic field(IMF)and ionospheric convection geometry.A total of 11,946 patch events were identified by Defense Meteorological Satellite Program(DMSP)F16 during the years 2011 to 2022.A temperature ratio of ion/electron temperature(T_(i)/T_(e))<0.68 is recommended to define a hot patch in the Southern Hemisphere,otherwise it is defined as a cold patch.The cold and hot patches have different dependencies on IMF clock angle,while their dependencies on IMF cone angle are similar.Both cold and hot patches appear most often on the duskside,and the distribution of cold patches gradually decreases from the dayside to the nightside,while hot patches have a higher occurrence rate near 14 and 21 magnetic local time(MLT).Moreover,we compared the key plasma characteristics of polar cap cold and hot patches in the Southern and Northern Hemispheres.The intensity of the duskside upward field-aligned current of patches in the Southern Hemisphere(SH)is stronger than that in the Northern Hemisphere(SH),which may be due to the discrepancy in conductivities between the two hemispheres,caused by the tilted dipole.In both hemispheres,the downward soft-electron energy flux of the dawnside patches is significantly greater than that of the duskside patches.
文摘BACKGROUND Meta-analysis is a critical tool in evidence-based medicine,particularly in cardiology,where it synthesizes data from multiple studies to inform clinical decisions.This study explored the potential of using ChatGPT to streamline and enhance the meta-analysis process.AIM To investigate the potential of ChatGPT to conduct meta-analyses in interventional cardiology by comparing the results of ChatGPT-generated analyses with those of randomly selected,human-conducted meta-analyses on the same topic.METHODS We systematically searched PubMed for meta-analyses on interventional cardiology published in 2024.Five metaanalyses were randomly chosen.ChatGPT 4.0 was used to perform meta-analyses on the extracted data.We compared the results from ChatGPT with the original meta-analyses,focusing on key effect sizes,such as risk ratios(RR),hazard ratios,and odds ratios,along with their confidence intervals(CI)and P values.RESULTS The ChatGPT results showed high concordance with those of the original meta-analyses.For most outcomes,the effect measures and P values generated by ChatGPT closely matched those of the original studies,except for the RR of stent thrombosis in the Sreenivasan et al study,where ChatGPT reported a non-significant effect size,while the original study found it to be statistically significant.While minor discrepancies were observed in specific CI and P values,these differences did not alter the overall conclusions drawn from the analyses.CONCLUSION Our findings suggest the potential of ChatGPT in conducting meta-analyses in interventional cardiology.However,further research is needed to address the limitations of transparency and potential data quality issues,ensuring that AI-generated analyses are robust and trustworthy for clinical decision-making.
基金the National Natural Science Foundation of China(42305011).
文摘Multi-angle statistical analysis of tropical cyclones(TCs)and their distant thermodynamic disturbances over Northwest Pacific from July to September during 2001-2020 was conducted.The results show that TCs could trigger distant thermodynamic disturbances,which mainly caused an increase in air pressure and a rise in temperature in northern China.The distant thermodynamic disturbances triggered by TCs differed in spatial distribution and intensity in different months.In the same month,the spatial distribution of such disturbances triggered by high-intensity TCs was consistent with the overall pattern,and there was a significant increase in intensity and area.From the probability of TC activities and the significance test of variance of analysis under different levels of P-J index,it is found that TC activities could stimulate the increase of P-J teleconnection index.There was a significant positive correlation between them,which was accompanied by a step effect.
基金supported by TUBITAK 112E568,114E092,and 115E915 projectsTNPGN-Active RINEX data set is available to the IONOLAB group for the TUBITAK 109E055 project。
文摘In this study,the gradients of Total Electron Content(TEC)for a midlatitude region are estimated and grouped with respect to the distance between neighboring stations,time periods within a day,and satellite directions.Annual medians of these gradients for quiet days are computed as templates.The metric distances(L2N)and Symmetric Kullback-Leibler Distances(SKLD)are obtained between the templates and the daily gradient series.The grouped histograms are fitted to the prospective Probability Density Functions(PDF).The method is applied to the Slant Total Electron Content(STEC)estimates from the Turkish National Permanent GPS Network(TNPGN-Active)for 2015.The highest gradients are observed in the east-west axis with a maximum of 25 mm/km during a geomagnetic storm.The maximum differences from the gradient templates occur for neighboring stations within100-130 km distance away from each other,during night hours,and for regions bordering the Black Sea and the Mediterranean in the northeast and southeast of Turkey.The empirical PDFs of the stationpair gradients are predominantly Weibull-distributed.The mean values of Weibull PDFs in all station groups are between 1.2 and 1.8 mm/km,with an increase during noon and afternoon hours.The standard deviations of the gradient PDFs generally increase during night hours.The algorithm will form a basis for quantifying the stochastic variations of the spatial rate of change of TEC trends in midlatitude regions,thus supplementing reliable and accurate regional monitoring of ionospheric variability.
基金supported by the National Natural Science Foundation of China(No.92252201)the Fundamental Research Funds for the Central Universitiesthe Academic Excellence Foundation of Beihang University(BUAA)for PhD Students。
文摘Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over.
基金Supported by the National Natural Science Foundation of China(12061048)NSF of Jiangxi Province(20232BAB201026,20232BAB201018)。
文摘In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.
基金Science and Technology Commission of Shanghai Municipality,China(23DZ1204703)。
文摘Extratropical transition(ET)is one of the last phases of tropical cyclones(TCs)and corresponds to the structural change from a tropical system to an extratropical system characterized by pronounced asymmetric distributions of heavy rainfall and strong wind.This study analyzes the statistical characteristics of ET events involving TCs over the western North Pacific(WNP)during 1981–2022.The analysis employs the Cyclone Phase Space(CPS)method to evaluate the accuracy of the fifth-generation reanalysis from the European Centre for Medium-Range Weather Forecasts(ERA5)in identifying ET based on different TC center definitions.Results show that defining the TC center by the minimum sea level pressure yields the most accurate ET identification.Subsequently,the study investigates several characteristics of ET events in the WNP.It is found that TCs undergoing ET(ETTCs)primarily form in the region of 125°–155°E,10°–25°N,with ET typically initiating between 30°–40°N and completing between 35°–50°N.These ETTCs predominantly occur from April to December,with peak activity observed from August to October.Additionally,the average duration of the ET process is 18.5 h,with longer durations observed from August to October,displaying a roughly 6-year cycle.Spatially,ET events with longer durations tend to occur at lower latitudes.Correspondingly,TCs initiating their ET phase at lower latitudes are typically stronger and larger,and they also experience longer ET durations.
文摘This study presents the results of a Monte Carlo simulation to compare the statistical power of Siegel-Tukey and Savage tests.The main purpose of the study is to evaluate the statistical power of both tests in scenarios involving Normal,Platykurtic and Skewed distributions over different sample sizes and standard deviation values.In the study,standard deviation ratios were set as 2,3,4,1/2,1/3 and 1/4 and power comparisons were made between small and large sample sizes.For equal sample sizes,small sample sizes of 5,8,10,12,16 and 20 and large sample sizes of 25,50,75 and 100 were used.For different sample sizes,the combinations of(4,16),(8,16),(10,20),(16,4),(16,8)and(20,10)small sample sizes and(10,30),(30,10),(50,75),(50,100),(75,50),(75,100),(100,50)and(100,75)large sample sizes were examined in detail.According to the findings,the power analysis under variance heterogeneity conditions shows that the Siegel-Tukey test has a higher statistical power than the other nonparametric Savage test at small and large sample sizes.In particular,the Siegel-Tukey test was reported to offer higher precision and power under variance heterogeneity,regardless of having equal or different sample sizes.
基金partially supported by the National Key Research and Development Project under Grant 2020YFB1806805Science and Technology on Communication Networks Laboratorysupported by China Scholarship Council.
文摘Reconfigurable intelligent surface(RIS)is a promising candidate technology of the upcoming Sixth Generation(6G)communication system for its ability to provide unprecedented spectral and energy efficiency increment through passive beamforming.However,it is challenging to obtain instantaneous channel state information(I-CSI)for RIS,which obliges us to use statistical channel state information(S-CSI)to achieve passive beamforming.In this paper,RIS-aided multiple-input single-output(MISO)multi-user downlink communication system with correlated channels is investigated.Then,we formulate the problem of joint beamforming design at the AP and RIS to maximize the sum ergodic spectral efficiency(ESE)of all users to improve the network capacity.Since it is too hard to compute sum ESE,an ESE approximation is adopted to reformulate the problem into a more tractable form.Then,we present two joint beamforming algorithms,namely the singular value decomposition-gradient descent(SVD-GD)algorithm and the fractional programming-gradient descent(FP-GD)algorithm.Simulation results show the effectiveness of our proposed algorithms and validate that 2-bits quantizer is enough for RIS phase shifts implementation.
基金partially funded by the National Natural Science Foundation of China(U2142205)the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)+1 种基金the Special Fund for Forecasters of China Meteorological Administration(CMAYBY2020-094)the Graduate Student Research and Innovation Program of Central South University(2023ZZTS0347)。
文摘Traditional meteorological downscaling methods face limitations due to the complex distribution of meteorological variables,which can lead to unstable forecasting results,especially in extreme scenarios.To overcome this issue,we propose a convolutional graph neural network(CGNN)model,which we enhance with multilayer feature fusion and a squeeze-and-excitation block.Additionally,we introduce a spatially balanced mean squared error(SBMSE)loss function to address the imbalanced distribution and spatial variability of meteorological variables.The CGNN is capable of extracting essential spatial features and aggregating them from a global perspective,thereby improving the accuracy of prediction and enhancing the model's generalization ability.Based on the experimental results,CGNN has certain advantages in terms of bias distribution,exhibiting a smaller variance.When it comes to precipitation,both UNet and AE also demonstrate relatively small biases.As for temperature,AE and CNNdense perform outstandingly during the winter.The time correlation coefficients show an improvement of at least 10%at daily and monthly scales for both temperature and precipitation.Furthermore,the SBMSE loss function displays an advantage over existing loss functions in predicting the98th percentile and identifying areas where extreme events occur.However,the SBMSE tends to overestimate the distribution of extreme precipitation,which may be due to the theoretical assumptions about the posterior distribution of data that partially limit the effectiveness of the loss function.In future work,we will further optimize the SBMSE to improve prediction accuracy.