The development of photocatalytic technology has grown significantly since its initial report and as such,a number of screening methods have been developed to assess activity. In the field of environmental remediation...The development of photocatalytic technology has grown significantly since its initial report and as such,a number of screening methods have been developed to assess activity. In the field of environmental remediation, a crucial factor is the formation of highly oxidising species such as OH radicals. These radicals are often the primary driving force for the removal and breakdown of organic and inorganic contaminants. The quantification of such compounds is challenging due to the nature of the radical,however indirect methods which deploy a chemical probe to essentially capture the radical have been shown to be effective. As discussed in the work presented here, optimisation of such a method is fundamental to the efficiency of the method. A starting concentration range of coumarin from 50 mmol/L to 1000 mmol/L was used along with a catalyst loading of 0.01 g/L to 1 g/L Ti TiO2 to identify that 250 mmol/L and 0.5 g/L Ti TiO2 were the optimum conditions for production. Under these parameters a maximum production rate of 35.91 mmol/L(Rmax= 0.4 mmol/L OH* min-1) was achieved which yielded at photonic efficiency of 4.88 OH*moles photon-1 under UV irradiation. The data set presented also highlighted the limitations which are associated with the method which included; rapid exhaustion of the probe molecule and process inhibition through UV light saturation. Identifying both the optimum conditions and the potential limitations of the process were concluded to be key for the efficient deployment of the photocatalytic screening method.展开更多
A method for packing irregular particles with a prescribed volume fraction is proposed.Furthermore,the generated granular material adheres to the prescribed statistical distribution and satisfies the desired complex s...A method for packing irregular particles with a prescribed volume fraction is proposed.Furthermore,the generated granular material adheres to the prescribed statistical distribution and satisfies the desired complex spatial arrangement.First,the irregular geometries of the realistic particles were obtained from the original particle images.Second,the Minkowski sum was used to check the overlap between irregular particles and place an irregular particle in contact with other particles.Third,the optimised advance front method(OAFM)generated irregular particle packing with the prescribed statistical dis-tribution and volume fraction based on the Minkowski sum.Moreover,the signed distance function was introduced to pack the particles in accordance with the desired spatial arrangement.Finally,seven biaxial tests were performed using the UDEC software,which demonstrated the accuracy and potential usefulness of the proposed method.It can model granular material efficiently and reflect the meso-structural characteristics of complex granular materials.This method has a wide range of applications where discrete modelling of granular media is necessary.展开更多
基金the financial support of Northern Irelands Department of Education and Learning for funding Caitlin Buck’s Ph DQueen’s University Belfast Pioneering Research Programme (PRP) for funding the research of Dr Nathan Skillen
文摘The development of photocatalytic technology has grown significantly since its initial report and as such,a number of screening methods have been developed to assess activity. In the field of environmental remediation, a crucial factor is the formation of highly oxidising species such as OH radicals. These radicals are often the primary driving force for the removal and breakdown of organic and inorganic contaminants. The quantification of such compounds is challenging due to the nature of the radical,however indirect methods which deploy a chemical probe to essentially capture the radical have been shown to be effective. As discussed in the work presented here, optimisation of such a method is fundamental to the efficiency of the method. A starting concentration range of coumarin from 50 mmol/L to 1000 mmol/L was used along with a catalyst loading of 0.01 g/L to 1 g/L Ti TiO2 to identify that 250 mmol/L and 0.5 g/L Ti TiO2 were the optimum conditions for production. Under these parameters a maximum production rate of 35.91 mmol/L(Rmax= 0.4 mmol/L OH* min-1) was achieved which yielded at photonic efficiency of 4.88 OH*moles photon-1 under UV irradiation. The data set presented also highlighted the limitations which are associated with the method which included; rapid exhaustion of the probe molecule and process inhibition through UV light saturation. Identifying both the optimum conditions and the potential limitations of the process were concluded to be key for the efficient deployment of the photocatalytic screening method.
基金The authors would like to acknowledge the financial support provided by the National Key R&D Program of China(Grant No.2018YFC1504802)the National Natural Science Foundation of China(Grant Nos.41972266,12102230).
文摘A method for packing irregular particles with a prescribed volume fraction is proposed.Furthermore,the generated granular material adheres to the prescribed statistical distribution and satisfies the desired complex spatial arrangement.First,the irregular geometries of the realistic particles were obtained from the original particle images.Second,the Minkowski sum was used to check the overlap between irregular particles and place an irregular particle in contact with other particles.Third,the optimised advance front method(OAFM)generated irregular particle packing with the prescribed statistical dis-tribution and volume fraction based on the Minkowski sum.Moreover,the signed distance function was introduced to pack the particles in accordance with the desired spatial arrangement.Finally,seven biaxial tests were performed using the UDEC software,which demonstrated the accuracy and potential usefulness of the proposed method.It can model granular material efficiently and reflect the meso-structural characteristics of complex granular materials.This method has a wide range of applications where discrete modelling of granular media is necessary.