Copper-based catalysts for CO2 hydrogenation to methanol are supported on ZrO2 and CeO2,respectively.Reaction results at 3.0 MPa and temperatures between 200 and 300°C reveal that Cu catalysts supported on ZrO2 a...Copper-based catalysts for CO2 hydrogenation to methanol are supported on ZrO2 and CeO2,respectively.Reaction results at 3.0 MPa and temperatures between 200 and 300°C reveal that Cu catalysts supported on ZrO2 and CeO2 exhibit better activity and selectivity than pure Cu catalyst due to Cu-support(ZrO2 and CeO2)interaction.Combining the structural characterizations with in-situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS),Cu/CeO2 shows the higher methanol selectivity due to the formation of main carbonates intermediates,which are closely related with the oxygen vacancies over Cu/CeO2.In contrast,bicarbonate and carboxyl species are observed on Cu/ZrO2,which originates from the hydroxyl groups presented on catalyst surfaces.Difference in CO2 adsorption intermediates results in the distinct methanol selectivity over the two catalysts.展开更多
The robustness of single-atom catalysts(SACs)is a critical concern for practical applications,especially for thermal catalysis at elevated temperatures under reductive conditions.In this study,a laser solid-phase synt...The robustness of single-atom catalysts(SACs)is a critical concern for practical applications,especially for thermal catalysis at elevated temperatures under reductive conditions.In this study,a laser solid-phase synthesis technique is reported to fabricate atom-nanoisland-sea structured SACs for the first time.The resultant catalysts are constructed by Pt single atoms on In_(2)O_(3)supported by Co3O4nanoislands uniformly dispersed in the sea of reduced graphene oxide.The laser process,with a maximum temperature of 2349 K within~100μs,produced abundant oxygen vacancies(up to 70.8%)and strong interactions between the Pt single atoms and In_(2)O_(3).The laser-synthesized catalysts exhibited a remarkable catalytic performance towards CO_(2)hydrogenation to methanol at 300°C with a CO_(2)conversion of 30.3%,methanol selectivity of 90.6%and exceptional stability over 48 h without any deactivation,outperforming most of the relevant catalysts reported in the literature.Characterization of the spent catalysts after testing for 48 h reveals that the Pt single atoms were retained and the oxygen vacancies remained almost unchanged.In situ diffuse reflectance infrared Fourier transform spectrum was conducted to establish the reaction mechanism supported by the density functional theory simulations.It is believed that this laser synthesis strategy opens a new avenue towards rapidly manufacturing highly active and robust thermal SACs.展开更多
Electrocatalytic water splitting is a viable technique for generating hydrogen but is precluded from the sluggish kinetics of oxygen evolution reactions(OER).Small molecule oxidation reactions with lower working poten...Electrocatalytic water splitting is a viable technique for generating hydrogen but is precluded from the sluggish kinetics of oxygen evolution reactions(OER).Small molecule oxidation reactions with lower working potentials,such as methanol oxidation reactions,are good alternatives to OER with faster kinetics.However,the typically employed Ni-based electrocatalysts have poor activity and stability.Herein,a novel three-dimensional(3D)-networking Modoped Ni(OH)_(2) with ultralow Ni-Ni coordination is synthesized,which exhibits a high MOR activity of 100 mA cm^(−2) at 1.39 V,delivering 28 mV dec^(−1) for the Tafel slope.Meanwhile,hydrogen evolution with value-added formate co-generation is boosted with a current density of more than 500 mA cm^(−2) at a cell voltage of 2.00 V for 50 h,showing excellent stability in an industrial alkaline concentration(6 M KOH).Mechanistic studies based on density functional the-ory and X-ray absorption spectroscopy showed that the improved performance is mainly attributed to the ultralow Ni-Ni coordination,3D-networking structures and Mo dopants,which improve the catalytic activity,increase the active site density and strengthen the Ni(OH)_(2)3D-networking structures,respectively.This study paves a new way for designing electrocatalysts with enhanced activity and durability for industrial energy-saving hydrogen production.展开更多
The inefficiency of water splitting is mainly due to the sluggish anodic water oxidation reaction. Replacing water oxidation with thermodynamically more favorable selective methanol oxidation reaction and developing r...The inefficiency of water splitting is mainly due to the sluggish anodic water oxidation reaction. Replacing water oxidation with thermodynamically more favorable selective methanol oxidation reaction and developing robust bifunctional electrocatalysts are of great significance. Herein, a hierarchical heteronanostructure with Ni–Co layered double hydroxide(LDH) ultrathin nanosheets coated on cobalt phosphide nanosheets arrays(CoxP@NiCo-LDH) are fabricated and used for co-electrolysis of methanol/water to co-produce value-added formate and hydrogen with saving energy. Benefiting from the fast charge transfer introduced by phosphide nanoarrays, the synergy in nanosheets catalysts with hetero-interface,CoxP@NiCo-LDH/Ni foam(NF) exhibits superior electrocatalytic performance(10 mA cm-2@ 1.24 V and-0.10 V for methanol selective oxidation and hydrogen evolution reaction, respectively). Furthermore,CoxP@NiCo-LDH/NF-based symmetric two-electrode electrolyzer drives a current density of 10 m A cm-2 with a low cell voltage of only 1.43 V and the Faradaic efficiency towards the generation of formate and H2 are close to 100% in the tested range of current density(from 40 to 200 m A cm-2). This work highlights the positive effect of hetero-interaction in the design of more efficient eletrocatalysts and might guide the way towards facile upgrading of alcohols and energy-saving electrolytic H2 co-generation.展开更多
This paper describes the effect of the prepara- tion method of binary oxide supports (TiO2-Al2O3) on catalytic performance of V2O5/TiO2-Al2O3 catalysts for methanol selective oxidation to dimethoxymethane (DMM). T...This paper describes the effect of the prepara- tion method of binary oxide supports (TiO2-Al2O3) on catalytic performance of V2O5/TiO2-Al2O3 catalysts for methanol selective oxidation to dimethoxymethane (DMM). The TiO2-A1203 supports are synthesized by a number of methods including mechanical mixing, ball milling, precipitation, co-precipitation, and sol-gel method, which is followed by incipient wetness impregnation to produce V2O5/TiO2-Al2O3 catalysts. Among these samples, the V2O5/TiO2-Al2O3 catalyst prepared by the sol-gel method has the best catalytic performance with a maximum methanol conversion of 48.9 % and a high DMM selectivity of 89.9 % at 393 K, showing superior performance than V2O5/TiO2 and V2O5/Al2O3. The excellent catalytic performance of V2O5/TiO2-Al2O3 is attributed to the effective interaction between the active component and the mixed support. Such interaction changes the chemical states of supported active V components, produces an increased amount of V^4+ species, and facilitates the electron transfer between support and active component. Additionally, the incorporation of titanium cation into the alumina structure could also help produce an appropriate amount of acidic sites, which increases the DMM selectivity. The coordinated environment of the dispersed vanadia on TiO2-Al2O3 mixed support improves the catalytic efficiency on methanol oxidation to DMM.展开更多
基金financially supported by the National Natural Science Foundation of China (21577014, 21876019, 21825203, 21688102)Programme of Introducing Talents of Discipline to Universities (B13012)the fund of the State Key Laboratory of Catalysis in DICP (Y401010502)
文摘Copper-based catalysts for CO2 hydrogenation to methanol are supported on ZrO2 and CeO2,respectively.Reaction results at 3.0 MPa and temperatures between 200 and 300°C reveal that Cu catalysts supported on ZrO2 and CeO2 exhibit better activity and selectivity than pure Cu catalyst due to Cu-support(ZrO2 and CeO2)interaction.Combining the structural characterizations with in-situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS),Cu/CeO2 shows the higher methanol selectivity due to the formation of main carbonates intermediates,which are closely related with the oxygen vacancies over Cu/CeO2.In contrast,bicarbonate and carboxyl species are observed on Cu/ZrO2,which originates from the hydroxyl groups presented on catalyst surfaces.Difference in CO2 adsorption intermediates results in the distinct methanol selectivity over the two catalysts.
基金supported by the Ningbo Yongjiang Science and Technology Programme(2023A-161-C)。
文摘The robustness of single-atom catalysts(SACs)is a critical concern for practical applications,especially for thermal catalysis at elevated temperatures under reductive conditions.In this study,a laser solid-phase synthesis technique is reported to fabricate atom-nanoisland-sea structured SACs for the first time.The resultant catalysts are constructed by Pt single atoms on In_(2)O_(3)supported by Co3O4nanoislands uniformly dispersed in the sea of reduced graphene oxide.The laser process,with a maximum temperature of 2349 K within~100μs,produced abundant oxygen vacancies(up to 70.8%)and strong interactions between the Pt single atoms and In_(2)O_(3).The laser-synthesized catalysts exhibited a remarkable catalytic performance towards CO_(2)hydrogenation to methanol at 300°C with a CO_(2)conversion of 30.3%,methanol selectivity of 90.6%and exceptional stability over 48 h without any deactivation,outperforming most of the relevant catalysts reported in the literature.Characterization of the spent catalysts after testing for 48 h reveals that the Pt single atoms were retained and the oxygen vacancies remained almost unchanged.In situ diffuse reflectance infrared Fourier transform spectrum was conducted to establish the reaction mechanism supported by the density functional theory simulations.It is believed that this laser synthesis strategy opens a new avenue towards rapidly manufacturing highly active and robust thermal SACs.
基金We gratefully thank the financial support from the National Natural Science Foundation of China(22272108,21975163 and 22003041)Shenzhen Science and Technology Program(No.KQTD20190929173914967,JCYJ20200109110416441)the Senior Talent Research Start-up Fund of Shenzhen University(000263 and 000265).
文摘Electrocatalytic water splitting is a viable technique for generating hydrogen but is precluded from the sluggish kinetics of oxygen evolution reactions(OER).Small molecule oxidation reactions with lower working potentials,such as methanol oxidation reactions,are good alternatives to OER with faster kinetics.However,the typically employed Ni-based electrocatalysts have poor activity and stability.Herein,a novel three-dimensional(3D)-networking Modoped Ni(OH)_(2) with ultralow Ni-Ni coordination is synthesized,which exhibits a high MOR activity of 100 mA cm^(−2) at 1.39 V,delivering 28 mV dec^(−1) for the Tafel slope.Meanwhile,hydrogen evolution with value-added formate co-generation is boosted with a current density of more than 500 mA cm^(−2) at a cell voltage of 2.00 V for 50 h,showing excellent stability in an industrial alkaline concentration(6 M KOH).Mechanistic studies based on density functional the-ory and X-ray absorption spectroscopy showed that the improved performance is mainly attributed to the ultralow Ni-Ni coordination,3D-networking structures and Mo dopants,which improve the catalytic activity,increase the active site density and strengthen the Ni(OH)_(2)3D-networking structures,respectively.This study paves a new way for designing electrocatalysts with enhanced activity and durability for industrial energy-saving hydrogen production.
基金financially supported by the National Natural Science Foundation of China(Nos.21975163 and 21905181)。
文摘The inefficiency of water splitting is mainly due to the sluggish anodic water oxidation reaction. Replacing water oxidation with thermodynamically more favorable selective methanol oxidation reaction and developing robust bifunctional electrocatalysts are of great significance. Herein, a hierarchical heteronanostructure with Ni–Co layered double hydroxide(LDH) ultrathin nanosheets coated on cobalt phosphide nanosheets arrays(CoxP@NiCo-LDH) are fabricated and used for co-electrolysis of methanol/water to co-produce value-added formate and hydrogen with saving energy. Benefiting from the fast charge transfer introduced by phosphide nanoarrays, the synergy in nanosheets catalysts with hetero-interface,CoxP@NiCo-LDH/Ni foam(NF) exhibits superior electrocatalytic performance(10 mA cm-2@ 1.24 V and-0.10 V for methanol selective oxidation and hydrogen evolution reaction, respectively). Furthermore,CoxP@NiCo-LDH/NF-based symmetric two-electrode electrolyzer drives a current density of 10 m A cm-2 with a low cell voltage of only 1.43 V and the Faradaic efficiency towards the generation of formate and H2 are close to 100% in the tested range of current density(from 40 to 200 m A cm-2). This work highlights the positive effect of hetero-interaction in the design of more efficient eletrocatalysts and might guide the way towards facile upgrading of alcohols and energy-saving electrolytic H2 co-generation.
基金supported by the National Natural Science Foundation of China(21006068,21222604)the Program for New Century Excellent Talents in University(NCET-10-0611)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20120032110024)the Scientific Research Foundation for the Returned Overseas Chinese Scholars(MOE)the Program of Introducing Talents of Discipline to Universities(B06006)
文摘This paper describes the effect of the prepara- tion method of binary oxide supports (TiO2-Al2O3) on catalytic performance of V2O5/TiO2-Al2O3 catalysts for methanol selective oxidation to dimethoxymethane (DMM). The TiO2-A1203 supports are synthesized by a number of methods including mechanical mixing, ball milling, precipitation, co-precipitation, and sol-gel method, which is followed by incipient wetness impregnation to produce V2O5/TiO2-Al2O3 catalysts. Among these samples, the V2O5/TiO2-Al2O3 catalyst prepared by the sol-gel method has the best catalytic performance with a maximum methanol conversion of 48.9 % and a high DMM selectivity of 89.9 % at 393 K, showing superior performance than V2O5/TiO2 and V2O5/Al2O3. The excellent catalytic performance of V2O5/TiO2-Al2O3 is attributed to the effective interaction between the active component and the mixed support. Such interaction changes the chemical states of supported active V components, produces an increased amount of V^4+ species, and facilitates the electron transfer between support and active component. Additionally, the incorporation of titanium cation into the alumina structure could also help produce an appropriate amount of acidic sites, which increases the DMM selectivity. The coordinated environment of the dispersed vanadia on TiO2-Al2O3 mixed support improves the catalytic efficiency on methanol oxidation to DMM.