期刊文献+
共找到13,998篇文章
< 1 2 250 >
每页显示 20 50 100
Self-Decoration of PtNi Alloy Nanoparticles on Multiwalled Carbon Nanotubes for Highly Efficient Methanol Electro-Oxidation 被引量:3
1
作者 Yu-Yan Zhou Chang-Hai Liu +5 位作者 Jie Liu Xin-Lei Cai Ying Lu Hui Zhang Xu-Hui Sun Sui-Dong Wang 《Nano-Micro Letters》 SCIE EI CAS 2016年第4期371-380,共10页
A simple one-pot method was developed to prepare Pt Ni alloy nanoparticles,which can be self-decorated on multiwalled carbon nanotubes in [BMIm][BF4] ionic liquid.The nanohybrids are targeting stable nanocatalysts for... A simple one-pot method was developed to prepare Pt Ni alloy nanoparticles,which can be self-decorated on multiwalled carbon nanotubes in [BMIm][BF4] ionic liquid.The nanohybrids are targeting stable nanocatalysts for fuel cell applications.The sizes of the supported Pt Ni nanoparticles are uniform and as small as 1–2 nm.Pt-to-Ni ratio was controllable by simply selecting a Pt Ni alloy target.The alloy nanoparticles with Pt-to-Ni ratio of 1:1 show high catalytic activity and stability for methanol electro-oxidation.The performance is much higher compared with those of both Pt-only nanoparticles and commercial Pt/C catalyst.The electronic structure characterization on the Pt Ni nanoparticles demonstrates that the electrons are transferred from Ni to Pt,which can suppress the CO poisoning effect. 展开更多
关键词 PtNi nanoparticles Multiwalled carbon nanotubes methanol electro-oxidation
在线阅读 下载PDF
Solvent effects on Pt-Ru/C catalyst for methanol electro-oxidation 被引量:2
2
作者 Jinwei Chen Chunping Jiang Hui Lu Lan Feng Xin Yang Liangqiong Li Ruilin Wang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第3期341-345,共5页
Alloying degree, particle size and the level of dispersion are the key structural parameters of Pt-Ru/C catalyst in fuel cells. Solvent(s) used in the preparation process can affect the particle size and alloying de... Alloying degree, particle size and the level of dispersion are the key structural parameters of Pt-Ru/C catalyst in fuel cells. Solvent(s) used in the preparation process can affect the particle size and alloying degree of the object substance, which lead to a great positive impact on its properties. In this work, three types of solvents and their mixtures were used in preparation of the Pt-Ru/C catalysts by chemical reduction of metal precursors with sodium borohydride at room temperature. The structure of the catalysts was characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). The catalytic activity and stability for methanol electro-oxidation were studied by Cyclic Voltammetry (CV) and Chronoamperometry (CA). Pt-Ru/C catalyst prepared in H2O or binary solvents of H2O and isopropanol had large particle size and low alloying degree leading to low catalytic activity and less stability in methanol electro-oxidation. When tetrahydrofuran was added to the above solvent systems, Pt-Ru/C catalyst prepared had smaller particle size and higher alloying degree which resulted in better catalytic activity, lower onset and peak potentials, compared with the above catalysts. Moreover, the catalyst prepared in ternary solvents of isopropanol, water and tetrahydrofuran had the smallest particle size, and the high alloying degree and the dispersion kept unchanged. Therefore, this kind of catalyst showed the highest catalytic activity and good stability for methanol electro-oxidation. 展开更多
关键词 solvent effect fuel cell methanol electro-oxidation Pt-Ru/C catalyst TETRAHYDROFURAN
在线阅读 下载PDF
Ru effect on the catalytic performance of Pd@Ru/C catalysts for methanol electro-oxidation 被引量:2
3
作者 Yanbiao Ren Shichao Zhang Xin Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第2期232-238,共7页
Pd@Ru bimetallic nanoparticles deposited on carbon black electro-catalysts have been fabricated by microwave-assisted polyol reduction method and investigated for methanol electro-oxidation (MEO). The structure and ... Pd@Ru bimetallic nanoparticles deposited on carbon black electro-catalysts have been fabricated by microwave-assisted polyol reduction method and investigated for methanol electro-oxidation (MEO). The structure and electro-catalytic properties of the as-prepared catalysts were characterized by XRD, SEM, TEM and cyclic voltammetry (CV) techniques. The results showed that the introduction of Ru element (2-10 wt%) into Pd 20 wt%/C (hereafter, denoted as Pd/C) produced a series of core-shell structured binary catalysts. Pd@Ru 5 wt%/C (hereafter, denoted as Pd@Rus/C) catalyst displayed the highest catalytic activity towards MEO. And the mass activity of Pd@Ru5/C electrode catalyst at E = -0.038 V (vs. Hg/HgO) was 1.42 times higher than that of Pd/C electrode catalyst. In addition, the relationship between the catalytic stability for MEO on Pd@Ru/C catalysts and the value of dbp/dfp (the ratio of MEO peak current density in the negative scan and positive scan) were also investigated. The result demonstrated that Pd@Rus/C offering the smallest value of Jbp/Jfp displayed the best stable catalytic performance. 展开更多
关键词 methanol electro-oxidation catalytic performance poisoning tolerance core-shell structured catalyst
在线阅读 下载PDF
Carbon nanotubes-Nafion composites as Pt-Ru catalyst support for methanol electro-oxidation in acid media 被引量:2
4
作者 Shengzhou Chen Fei Ye Weiming Lin 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第2期199-204,共6页
Carbon nanotubes-Nafion (CNTs-Nation) composites were prepared by impregnated CNTs with Nation in ethanol solution and characterized by FT-IR. Pt-Ru catalysts supported on CNTs-Nafion composites were synthesized by ... Carbon nanotubes-Nafion (CNTs-Nation) composites were prepared by impregnated CNTs with Nation in ethanol solution and characterized by FT-IR. Pt-Ru catalysts supported on CNTs-Nafion composites were synthesized by microwave-assisted polyol process. The physical and electrochemical properties of the catalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), CO stripping voltammetry, cyclic voltammetry (CV) and chronoamperometry (CA). The results showed that the Nation incorporation in CNTs-Nation composites did not significantly alter the oxygen-containing groups on the CNTs surface. The Pt-Ru catalyst supported on CNTs-Nafion composites with 2 wt% Naton showed good dispersion and the best CO oxidation and methanol electro-oxidation activities. 展开更多
关键词 carbon nanotubes-Nafion composites Pt-Ru catalysts methanol electro-oxidation
在线阅读 下载PDF
Catalytic performance of hybrid Pt@ZnO NRs on carbon fibers for methanol electro-oxidation 被引量:4
5
作者 Dongyan Li Chen Gu +2 位作者 Feng Han Zhaoxiang Zhong Weihong Xing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第12期1871-1876,共6页
A novel Pt@ZnO nanorod/carbon fiber (NR/CF) with hierarchical structure was prepared by atomic layer deposition combined with hydrothermal synthesis and magnetron sputtering (MS). The morphology of Pt changes from... A novel Pt@ZnO nanorod/carbon fiber (NR/CF) with hierarchical structure was prepared by atomic layer deposition combined with hydrothermal synthesis and magnetron sputtering (MS). The morphology of Pt changes from nanoparticle to nanorod bundle with controlled thickness of Pt between 10 and 50 nm. Significantly, with the increase of voltage from 0 to 0.6 V (vs. standard calomel electrode), the prompt photocurrent generated on ZnO NR/CF increases from 0235 to 0.725 mA. Besides, the Pt@ZnO NR/CF exhibited higher electrochemical active surface area (ECSA) value, better methanol oxidation ability and CO tolerance than Pt@CF, which demonstrated the importance of the multifunctional ZnO support. As the thickness of Pt increasing from 10 to 50 rim, the ECSA values were improved proportionally, leading to the improvement of methanol oxidation ability. More importantly, UV radiation increased the density of peak current of Pt@ZnO NR/CF towards methanol oxidation by additional 42.4%, which may be due to the synergy catalysis of UV light and electricity. 展开更多
关键词 Carbon fibers ZnO nanorods Pt Magnetron sputtering methanol electro-oxidation
在线阅读 下载PDF
Synergistic effect of cobalt and copper on a nickel-based modified graphite electrode during methanol electro-oxidation in NaOH solution 被引量:1
6
作者 Tayebe Rostami Majid Jafarian +2 位作者 Somaieh Miandari Mohammad G.Mahjani Fereydoon Gobal 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1867-1874,共8页
The electrocatalytic oxidation of methanol was studied over Ni, Co and Cu binary or ternary alloys on graphite electrodes in a NaOH solution (0.1 mol/L). The catalysts were prepared by cycling the graphite electrode... The electrocatalytic oxidation of methanol was studied over Ni, Co and Cu binary or ternary alloys on graphite electrodes in a NaOH solution (0.1 mol/L). The catalysts were prepared by cycling the graphite electrode in solutions containing Ni, Cu and Co ions at cathodic potentials. The synergistic effects and catalytic activity of the modified electrodes were investigated by cyclic voltammetry (CV), chronoamperometry CCA) and electrochemical impedance spectroscopy (EIS). It was found that, in the presence of methanol, the modified Ni-based ternary alloy electrode (G/NiCuCo) exhibited a significantly higher response for methanol oxidation compared to the other samples. The anodic peak currents showed a linear dependency on the square root of the scan rate, which is a characteristic of a diffusion controlled process. During CA studies, the reaction exhibited Cottrellin behavior and the diffusion coefficient of methanol was determined to be 6.25× 10-6 cm2/s and the catalytic rate constant, K, for methanol oxidation was found to be 40×107 cm3/Cmol.s). EIS was used to investigate the catalytic oxidation of methanol on the surface of the modified electrode. 展开更多
关键词 methanol electro-oxidation Electrocatalysis Synergistic effect Nickel Modified electrode
在线阅读 下载PDF
Preparation of PtSn_2–SnO_2/C nanocatalyst and its high performance for methanol electro-oxidation
7
作者 Huan Su Tie-Hong Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2016年第7期1083-1086,共4页
PtSn2-SnO2/C nanocatalyst was prepared by co-reduction of Pt and Sn precursor at ca,15℃.The formation of PtSn2-SnO2 nanoparticle was determined by XRD,TEM and XPS characterization.This PtSn2-SnO2/C nanocatalyst exhib... PtSn2-SnO2/C nanocatalyst was prepared by co-reduction of Pt and Sn precursor at ca,15℃.The formation of PtSn2-SnO2 nanoparticle was determined by XRD,TEM and XPS characterization.This PtSn2-SnO2/C nanocatalyst exhibits stronger resistance to CO poisoning and effectively improves methanol electro-catalytic effect,up to 3 times than the commercial Pt/C catalyst. 展开更多
关键词 Direct methanol fuel cell PtSn2–SnO2/C nanocatalyst methanol electro-oxidation Low temperature preparation CATALYSIS Electrochemical impedance
原文传递
Carbon Nanotubes Supported Pt-Ru-Ni as Methanol Electro-Oxidation Catalyst for Direct Methanol Fuel Cells
8
作者 Fei Ye Shengzhou Chen +1 位作者 Xinfa Dong Weiming Lin 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第2期162-166,共5页
Carbon nanotubes (CNTs) supported Pt-Ru and Pt-Ru-Ni catalysts were prepared by chemical reduction of metal precursors with sodium borohydride at room temperature. The crystallographic properties and composition of ... Carbon nanotubes (CNTs) supported Pt-Ru and Pt-Ru-Ni catalysts were prepared by chemical reduction of metal precursors with sodium borohydride at room temperature. The crystallographic properties and composition of the catalysts were characterized by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis, and the catalytic activity and stability for methanol electro-oxidation were measured by electrochemical impedance spectroscopy (EIS), linear sweep voltammetries (LSV), and chronoamperometry (CA). The results show that the catalysts exhibit face-centered cubic (fcc) structure. The particle size of Pt-Ru-Ni/CNTs catalyst is about 4.8 nm. The catalytic activity and stability of the Pt-Ru-Ni/CNTs catalyst are higher than those of Pt-Ru/CNTs catalyst. 展开更多
关键词 carbon nanotubes Pt-Ru-Ni/CNTs methanol electro-oxidation direct methanol fuel cells
在线阅读 下载PDF
Preparation and application of ZnO doped Pt-CeO2 nanofibers as electrocatalyst for methanol electro-oxidation 被引量:6
9
作者 Yingping Zheng Xin Zhang +5 位作者 Zhengying Zhang Ying Li Yueming Sun Yongbing Lou Xiaojun Li Yang Lu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第9期974-980,共7页
ZnO doped Pt/CeO2 nanocomposites were prepared by electrospinning and reduction impregnation.Xray diffraction(XRD),transmission electron microscopy(TEM),energy disperse spectroscopy(EDS) and X-ray photoelectron ... ZnO doped Pt/CeO2 nanocomposites were prepared by electrospinning and reduction impregnation.Xray diffraction(XRD),transmission electron microscopy(TEM),energy disperse spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the nanocomposites.It is observed that ZnO and CeO2 form the hexagonal wurtzite phase and cubic fluorite phase in the nanocomposite,respectively,whilst Pt nanoparticles(NPs) with the number-averaged size of ca.3.1 nm are uniformly distributed on the surface of nanofibers.The mass fraction of Pt NPs in the nanocomposites is about 10 wt%.The doping of ZnO is effective to promote reactive oxygen species,surface reaction sites and the interaction between Pt and oxides.The catalytic performance of nanocomposites was evaluated by the methanol electro-oxidation.indexed with the catalytic activity,stability of catalyst.As a result,it is found that the nanocomposite exhibits much higher activity and stability for methanol oxidation than the undoped Pt/CeO2 catalyst. 展开更多
关键词 ELECTROSPINNING NANOFIBERS methanol electro-oxidation Rare earths
原文传递
High loading Pt nanoparticles on ordered mesoporous carbon sphere arrays for highly active methanol electro-oxidation 被引量:3
10
作者 Cheng-Wei Zhang Lian-Bin Xu Jian-Feng Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2016年第6期832-836,共5页
Three-dimensionally(3D) ordered mesoporous carbon sphere arrays(OMCS) are explored to support high loading(60 wt%) Pt nanoparticles as electrocatalysts for the methanol oxidation reaction(MOR).The OMCS has a u... Three-dimensionally(3D) ordered mesoporous carbon sphere arrays(OMCS) are explored to support high loading(60 wt%) Pt nanoparticles as electrocatalysts for the methanol oxidation reaction(MOR).The OMCS has a unique hierarchical nanostructure with ordered large mesopores and macropores that can facilitate high dispersion of the Pt nanoparticles and fast mass transport during the reactions. The prepared Pt/OMCS exhibits uniformly dispersed Pt nanoparticles with an average size of- 2.0 nm on the mesoporous walls of the carbon spheres. The Pt/OMCS catalyst shows significantly enhanced specific electrochemically active surface area(ECSA)(73.5 m^2g^-1) and electrocatalytic activity(0.69 mA cm^-2)for the MOR compared with the commercial 60 wt% Pt/C catalyst. 展开更多
关键词 CARBON Pt nanoparticles High loading ELECTROCATALYST methanol oxidation reaction Fuel cell
原文传递
Synthesis and study of λ-MnO_2 supported Pt nanocatalyst for methanol electro-oxidation 被引量:3
11
作者 XIE Jia, LI Xiang, YU Zhihui, ZHANG Lijuan, LI Fan, and XIA Dingguo College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China 《Rare Metals》 SCIE EI CAS CSCD 2010年第2期187-192,共6页
A λ-MnO2 supported Pt nanocatalyst(5 wt.% Pt/λ-MnO2) was synthesized using a facile approach.X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), scanning electronic microscope(SEM), transmission e... A λ-MnO2 supported Pt nanocatalyst(5 wt.% Pt/λ-MnO2) was synthesized using a facile approach.X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), scanning electronic microscope(SEM), transmission electron microscopy(TEM), and energy disperse spectroscopy(EDS) were used for catalyst structure and morphology characterization, which showed that the metallic Pt particles were attached on a λ-MnO2 surface through the interaction between Pt and λ-MnO2.Cyclic voltammetry(CV) was used to test the catalytic activity of Pt/λ-MnO2 toward methanol oxidation, which showed that Pt/λ-MnO2 catalyst has much higher catalytic activity than baseline Pt/C catalyst. 展开更多
关键词 electrochemistry composite catalyst MnO2 Pt methanol oxidation
在线阅读 下载PDF
Boosting methanol electro-oxidation to formate by trace iron induced suppression of cobalt(Ⅳ)formation
12
作者 Jialong Lin Xinlin Wang +6 位作者 Bingxue Cheng Ruiheng Zhou Yuhang Li Tamao Ishida Guangli Xiu Toru Murayama Mingyue Lin 《Nano Research》 2025年第5期230-239,共10页
Converting methanol to high-value formate through electrochemical methods can significantly reduce the energy consumption associated with conventional production processes.In this study,we directly synthesized iron-do... Converting methanol to high-value formate through electrochemical methods can significantly reduce the energy consumption associated with conventional production processes.In this study,we directly synthesized iron-doped cobalt phosphate(Fe-CoPO)on nickel foam(NF)to achieve excellent activity for the methanol electro-oxidation reaction(MOR).Our results demonstrated that Fe-CoPO produced a current density of 100 mA·cm^(−2)at a significantly low operating potential of 1.436 V(vs.reversible hydrogen electrode(RHE))and operated steadily for 16 h at this current density with a Faradaic efficiency(FE)of 97%.Furthermore,Fe-CoPO maintained a high FE of 100%even at an extremely high current density of 300 mA·cm^(−2)for 8 h.We found that the high MOR activity of Fe-CoPO results from electrochemical reconstruction to generate the Co^(2+/3+)-O bond.The heterogeneous interface between Fe and Co inhibits the formation of Co^(4+),which significantly enhances the MOR activity.Thus,this work not only provides insights into the mechanism of MOR over Co-based catalysts but also offers a novel direction for developing highly active MOR catalysts. 展开更多
关键词 cobalt phosphate methanol electro-oxidation reaction FORMATE Fe doping ELECTROCATALYSIS
原文传递
A high dispersed Pt_(0.35)Pd_(0.35)Co_(0.30)/C as superior catalyst for methanol and formic acid electro-oxidation 被引量:3
13
作者 Ying-Xia Wang Tie-Hong Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第6期907-911,共5页
Pt:Pd:Co ternary alloy nanoparticles were synthesized by sodium borohydride reduction under nitrogen, and were supported on carbon black as catalysts for methanol and formic acid electro-oxidation. Compared with Pt0... Pt:Pd:Co ternary alloy nanoparticles were synthesized by sodium borohydride reduction under nitrogen, and were supported on carbon black as catalysts for methanol and formic acid electro-oxidation. Compared with Pt0.65C00.35/C, Pt/C, Pd0.65C00.35/C, and Pd/C catalyst, Pt0.35Pd0.35Co0.30/C exhibited relatively high durability and strong poisoning resistance, and the Pt-mass activity was 3.6 times higher than that of Pt/C in methanol oxidation reaction. Meanwhile, the Pt0.35Pd0.35Co0.30/C exhibited excellent activity with higher current density and higher CO tolerance than that of Pt0.6sCo0.35/C, Pt/C, Pd0.65C00.35/ C, and Pd/C in formic acid electro-oxidation. 展开更多
关键词 Fuel cell Ternary alloy Formic acid oxidation methanol electro-oxidation
原文传递
Heterogeneous nanocomposites consisting of Pt_(3)Co alloy particles and CoP_(2) nanorods towards high-efficiency methanol electro-oxidation 被引量:7
14
作者 Niuwa Yang Dong Chen +5 位作者 Penglei Cui Tingyu Lu Hui Liu Chaoquan Hu Lin Xu Jun Yang 《SmartMat》 2021年第2期234-245,共12页
Heterogeneous nanocomposites comprising chemically distinct constituents are particularly promising in electrocatalysis.We herein report a synthetic strategy that combines the reduction of Pt and Co ionic precursors a... Heterogeneous nanocomposites comprising chemically distinct constituents are particularly promising in electrocatalysis.We herein report a synthetic strategy that combines the reduction of Pt and Co ionic precursors at an appropriate ratio with the subsequent phosphating at an elevated temperature for forming heterogeneous nanocomposites consisting of quasi-spherical Pt_(3)Co alloy domains and rod-like CoP_(2) domains for high-efficiency methanol electrooxidation.The strong electronic coupling between Pt_(3)Co and CoP_(2) domains in the nanocomposites render the electron density around Pt atoms to decrease,which is favorable for reducing the adsorption of poisoning CO-like intermediates on the catalyst surfaces.Accordingly,the as-prepared heterogeneous Pt_(3)Co–CoP_(2) nanocomposites show good performance for methanol electrooxidation both in acidic and alkaline media.In specific,at a Pt loading of only 6.4%on a common carbon substrate,the mass-based activity of Pt_(3)Co–CoP_(2) nanocomposites in an acidic medium is about 2 and 1.5 times as high as that of commercial Pt/C catalyst(20%mass loading)and home-made Pt_(3)Co alloy nanoparticles(8.0%mass loading),while in the alkaline medium,these values are 3 and 2,respectively. 展开更多
关键词 ELECTROCATALYSIS electronic coupling methanol electro-oxidation NANOCOMPOSITE Pt_(3)Co-CoP_(2)
原文传递
Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides 被引量:4
15
作者 Fanxu Meng Chencheng Dai +9 位作者 Zheng Liu Songzhu Luo Jingjie Ge Yan Duan Gao Chen Chao Wei Riccardo Ruixi Chen Jiarui Wang Daniel Mandler Zhichuan J.Xu 《eScience》 2022年第1期87-94,共8页
Electrochemically producing formate by oxidizing methanol is a promising way to add value to methanol.Noble metal-based electrocatalysts,which have been extensively studied for the methanol oxidation reaction,can cata... Electrochemically producing formate by oxidizing methanol is a promising way to add value to methanol.Noble metal-based electrocatalysts,which have been extensively studied for the methanol oxidation reaction,can catalyze the complete oxidation of methanol to carbon dioxide,but not the mild oxidation to formate.As a result,exploring efficient and earth-abundant electrocatalysts for formate production from methanol is of interest.Herein,we present the electro-oxidation of methanol to formate,catalyzed by iron-substituted lanthanum cobaltite(LaCo_(1-x)Fe_(x)O_(3)).The Fe/Co ratio in the oxides greatly influences the activity and selectivity.This effect is attributed to the higher affinity of Fe and Co to the two reactants:CH3OH and OH,respectively.Because a balance between these affinities is favored,LaCo_(0.5)Fe_(0.5)O_(3) shows the highest formate production rate,at 24.5 mmol h^(-1) g_(oxide)^(-1),and a relatively high Faradaic efficiency of 44.4%in a series of(LaCo_(1-x)Fe_(x)O_(3))samples(x=0.00,0.25,0.50,0.75,1.00)at 1.6 V versus a reversible hydrogen electrode. 展开更多
关键词 methanol electro-oxidation FORMATE OXIDES PEROVSKITE
原文传递
Exploring catalyst developments in heterogeneous CO_(2) hydrogenation to methanol and ethanol:A journey through reaction pathways 被引量:1
16
作者 Rasoul Salami Yimin Zeng +2 位作者 Xue Han Sohrab Rohani Ying Zheng 《Journal of Energy Chemistry》 2025年第2期345-384,I0008,共41页
The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation... The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts. 展开更多
关键词 CO_(2)hydrogenation methanol ETHANOL Catalytic mechanism Operando techniques Single atom catalyst Tandem catalyst
在线阅读 下载PDF
Active sites and impact of preparation pH on the Cu/ZnO/ZrO_(2) catalysts for methanol production via CO_(2) hydrogenation
17
作者 MENG Xinyue SUN Shangcong +1 位作者 CAO Shuo PENG Bo 《燃料化学学报(中英文)》 北大核心 2025年第11期1569-1582,共14页
Cu/ZnO-based catalysts are widely employed for methanol synthesis via CO_(2) hydrogenation.The preparation procedure is sensitive to the particle size and interfacial structure,which are considered as potential active... Cu/ZnO-based catalysts are widely employed for methanol synthesis via CO_(2) hydrogenation.The preparation procedure is sensitive to the particle size and interfacial structure,which are considered as potential active centers influencing the rate of both methanol and CO formation.The particle size and the interaction between Cu and the support materials are influenced by the coprecipitation conditions,let alone that the mechanistic divergence remains unclear.In this work,a series of Cu/ZnO/ZrO_(2) catalysts were prepared via co-precipitation at different pH value and systematically characterized.The structure has been correlated with kinetic results to establish the structure-performance relationship.Kinetic analysis demonstrates that methanol synthesis follows a single-site Langmuir-Hinshelwood(L-H)mechanism,i.e.,Cu serves as the active site where CO_(2) and H_(2) competitively adsorb and react to form methanol.In contrast,CO formation proceeds via a dual-site L-H mechanism,where CO_(2) adsorbs onto ZnO and H_(2) onto Cu,with the reaction occurring at the Cu/ZnO interface.Therefore,for the direct formation of methanol,solely reducing the particle size of Cu would not be beneficial. 展开更多
关键词 CO_(2)hydrogenation methanol synthesis active sites KINETICS
在线阅读 下载PDF
Catalytic oxidation of methane for methanol production over copper sepiolite:Effect of noble metals
18
作者 Mingqiang Chen Tingting Zhu +4 位作者 Yishuang Wang Defang Liang Chang Li Haosheng Xin Jun Wang 《Chinese Journal of Chemical Engineering》 2025年第6期1-14,共14页
The direct oxidation of methane to methanol(DOMM) has been recognized as a significant technology for efficiently utilizing low-concentration coalbed methane(LCMM) and supplying liquid fuel.Herein,the noble metals(Pt,... The direct oxidation of methane to methanol(DOMM) has been recognized as a significant technology for efficiently utilizing low-concentration coalbed methane(LCMM) and supplying liquid fuel.Herein,the noble metals(Pt,Pd and Ru) modified Cu/alkalized sepiolite(CuX/SEPA) catalysts were prepared and used for the DOMM in a gas-phase system at low temperatures.The CuRu/SEPA exhibited the highest methanol production of 53 μmol·g^(-1)·h^(-1) and methanol selectivity of 90% under the optimal reaction conditions.Various characterizations demonstrated that the addition of Ru promoted the formation of Cu^(2+)and the contraction of Cu—Si/Al bonds to reduce the distance between framework Al atoms of SEPA to further generate more Al pairs,which facilitated the formation of reactive dicopper species([Cu_(2)O]^(2+)or [Cu_(2)O_(2)]^(2+)).Investigation of the reaction mechanism revealed that [Cu_(2)O]^(2+) or [Cu_(2)O_(2)]^(2+) species could adsorb and activate methane to form CH_(3)O^(*) species and ultimately generated methanol with the assistance of water. 展开更多
关键词 METHANE Partial oxidation methanol Cu-based catalysts SEPIOLITE
在线阅读 下载PDF
Unveiling the catalytic active sites of iron-vanadium catalysts for the selective oxidation of methanol to formaldehyde
19
作者 Yujie Zhan Chengqin Zhong +8 位作者 Mingli Bi Yafei Liang Yuji Qi Jiaqi Chen Jiaxu Liu Xindang Zhang Shuai Zhang Yehong Wang Feng Wang 《Chinese Journal of Catalysis》 2025年第5期334-343,共10页
Iron-Vanadium(FeV)catalyst showed a unique catalytic activity for the selective oxidation of methanol to formaldehyde;however,due to its complex compositions,the identification of catalytic active sites still remains ... Iron-Vanadium(FeV)catalyst showed a unique catalytic activity for the selective oxidation of methanol to formaldehyde;however,due to its complex compositions,the identification of catalytic active sites still remains challenging,inhibiting the rational design of excellent FeV-based catalysts.Here,in this work,a series of FeV catalysts with various compositions,including FeVO_(4),isolated VO_(x),low-polymerized V_(n)O_(x),and crystalline V_(2)O_(5) were prepared by controlling the preparation conditions,and were applied to methanol oxidation to formaldehyde reaction.A FeV_(1.1) catalyst,which consisted of FeVO_(4) and low-polymerized V_(n)O_(x) species showed an excellent catalytic performance with a methanol conversion of 92.3%and a formaldehyde selectivity of 90.6%,which was comparable to that of conventional iron-molybdate catalyst.The results of CH_(3)OH-IR,O_(2) pulse and control experiments revealed a crucial synergistic effect between FeVO_(4) and low-polymerized V_(n)O_(x).It enhanced the oxygen supply capacity and suitable binding and adsorption strengths for formaldehyde intermediates,contributing to the high catalytic activity and formaldehyde selectivity.This study not only advances the understanding of FeV structure but also offers valuable guidelines for selective methanol oxidation to formaldehyde. 展开更多
关键词 Iron-vanadium Selective oxidation methanol FORMALDEHYDE Synergistic effect
在线阅读 下载PDF
Evaluating Ammonia and Methanol as Lower-Emission Alternatives to liquefied natural gas for Medium-speed Marine Engines:A Thermodynamic Analysis
20
作者 Mohamed Djermouni Ahmed Ouadha 《哈尔滨工程大学学报(英文版)》 2025年第4期729-743,共15页
This work investigates the potential of low-pressure,medium-speed dual-fuel engines for cleaner maritime transportation.The thermodynamic performance of these engines is explored using three alternative fuels:liquefie... This work investigates the potential of low-pressure,medium-speed dual-fuel engines for cleaner maritime transportation.The thermodynamic performance of these engines is explored using three alternative fuels:liquefied natural gas(LNG),methanol,and ammonia.A parametric analysis examines the effect of adjustments to key engine parameters(compression ratio,boost pressure,and air-fuel ratio)on performance.Results show an initial improvement in performance with an increase in compression ratio,which reaches a peak and then declines.Similarly,increases in boost pressure and air-fuel ratio lead to linear performance gains.However,insufficient cooling reduces the amount of fuel burned,which hinders performance.Exergy analysis reveals significant exergy destruction within the engine,which ranges from 69.96%(methanol)to 78.48%(LNG).Notably,the combustion process is the leading cause of exergy loss.Among the fuels tested,methanol exhibits the lowest combustion-related exergy destruction(56.41%),followed by ammonia(62.12%)and LNG(73.77%).These findings suggest that methanol is a promising near-term alternative to LNG for marine fuel applications. 展开更多
关键词 AMMONIA methanol Liquefied natural gas THERMODYNAMIC Medium-speed Dual-fuel Engine
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部