期刊文献+
共找到2,051篇文章
< 1 2 103 >
每页显示 20 50 100
Conductive materials change the composition and activity of butyrate-degrading enrichment cultures with hydrogen as the main electron shuttle
1
作者 Cátia S.N Braga João C.Sequeira +5 位作者 M.SaloméDuarte Gilberto Martins Inês A.C.Pereira c Luciana Pereira M.Madalena Alves Andreia F.Salvador 《Journal of Environmental Sciences》 2026年第1期624-634,共11页
Conductive materials(CM)can improve methane production(MP)efficiency in many methanogenic systems.However,several types of CM exist,and there are uncertainties regarding whether they all improve MP efficiency to the s... Conductive materials(CM)can improve methane production(MP)efficiency in many methanogenic systems.However,several types of CM exist,and there are uncertainties regarding whether they all improve MP efficiency to the same extent and modulate microbial communities in a similar way.To investigate that,different microbial enrichments with and without activated carbon(AC),magnetite(Mag),and zeolites(Zeo)(at 0.5 g/L)were developed.MP profiles and microbial composition changes were compared among enrichments.The behavior of all enrichments was different,although the initial inoculum sludge was the same.Lag phase duration was lower in AC enrichment,while the complete conversion of butyrate to methane was faster in Mag enrichment.Syntrophomonas was the most abundant bacterial genus in all enrichments,but changes in the methanogenic community were evident.Acetoclastic methanogens were more diverse in Mag enrichment,with microorganisms assigned to Methanosarcina and Methanothrix gener1,but Methanothrix was the only acetoclastic methanogen in the other enrichments.On the other hand,different species of hydrogenotrophic methanogens prevailed in distinct enrichments.The metatranscriptomics results revealed that the dominant mechanism of interspecies electron transfer in the AC enrichment utilized hydrogen as the electron carrier,and no evidences of direct interspecies electron transfer(DIET)could be found.These results showed how different CM modulate microbial communities and affect MP efficiency through mechanisms that do not necessarily involve DIET or mediation via CM. 展开更多
关键词 BUTYRATE METHANE Anaerobic enrichments Activated carbon MAGNETITE Zeolites
原文传递
Effects of functional microorganisms and environmental factors on CO_(2) and CH_(4) emissions in a typical floodplain lake system
2
作者 Jiajia Li Fan Wu +1 位作者 Xianrui Ha Yang Gao 《Journal of Environmental Sciences》 2026年第1期312-321,共10页
Lakes are carbon dioxide(CO_(2))and methane(CH_(4))emission hotspots,whose associated flux is spatially vari-able.Many studies have investigated the impact of microorganisms and environmental factors on CO_(2) and CH_... Lakes are carbon dioxide(CO_(2))and methane(CH_(4))emission hotspots,whose associated flux is spatially vari-able.Many studies have investigated the impact of microorganisms and environmental factors on CO_(2) and CH_(4) emissions between different lakes.However,the carbon emissions and their influencing factors of different areas within a single lake remain poorly understood.Accordingly,this study investigates CO_(2) and CH_(4) emission hetero-geneity in a large floodplain lake system and distribution characteristics of associated functional microorganisms.Findings show that mean CO_(2) and CH_(4) flux values in the sub lake area were 62.03±24.21 mg/(m2·day)and 5.97±3.2μg/(m2·day),which were greater by factors of 1.78 and 2.96 compared to the water channel and the main lake area,respectively.The alpha diversity of methanogens in the sub lake area was lower than that in the main lake and water channel areas.The abundance of methanogens in bottom water layer was higher compared with the middle and surface layers.Conversely,the abundance of methane(CH_(4))-oxidizing bacteria in the surface layer was higher than that in the bottom layer.Additionally,the composition of methanogen and CH_(4)-oxidizing bacterial community,chlorophyll a(Chl-a),pH,total phosphorus(TP)and dissolved organic carbon(DOC)con-tent constituted the dominate driving factors affecting lake C emissions.Results from this study can be used to improve our understanding of lake spatial heterogeneous of CO_(2) and CH_(4) emission and the driving mechanisms within floodplain lakes under the coupling effects of functional C microorganisms and environmental factors. 展开更多
关键词 Carbon emission Flux METHANOGENS Methane oxidizers Carbon cycle Poyang Lake
原文传递
A New Approach for Evaluating and Optimizing Hydraulic Fracturing in Coalbed Methane Reservoirs
3
作者 Xia Yan Wei Wang +6 位作者 Kai Shen Yanqing Feng Junyi Sun Xiaogang Li Wentao Zhu Binbin Shi Guanglong Sheng 《Energy Engineering》 2026年第1期417-430,共14页
In the development of coalbed methane(CBM)reservoirs using multistage fractured horizontal wells,there often exist areas that are either repeatedly stimulated or completely unstimulated between fracturing stages,leadi... In the development of coalbed methane(CBM)reservoirs using multistage fractured horizontal wells,there often exist areas that are either repeatedly stimulated or completely unstimulated between fracturing stages,leading to suboptimal reservoir performance.Currently,there is no well-established method for accurately evaluating the effectiveness of such stimulation.This study introduces,for the first time,the concept of the Fracture Network Bridging Coefficient(FNBC)as a novel metric to assess stimulation performance.By quantitatively coupling the proportions of unstimulated and overstimulated volumes,the FNBC effectively characterizes the connectivity and efficiency of the fracture network.A background grid calibration method is developed to quantify the stage-controlled volume,effectively stimulated volume,unstimulated volume,and repeatedly stimulated volume among different stages of horizontal wells.Furthermore,an optimization model is constructed by taking the FNBC as the objective function and the fracturing injection rate and fluid volume as optimization variables.The Simultaneous Perturbation Stochastic Approximation(SPSA)algorithm is employed to iteratively perturb and optimize these variables,progressively improving the FNBC until the optimal displacement rate and fluid volume corresponding to the maximum FNBC are obtained.Field application in a typical CBM multistage fractured horizontal well in China demonstrates that the FNBC increased from 0.358 to 0.539(a 50.6% improvement),with the injection rate rising from 16 m^(3)/min to 24 m^(3)/min and the average fluid volume per stage increasing from 2490 m^(3) to 3192 m^(3),significantly enhancing the stimulation effectiveness.This research provides theoretical support for designing high-efficiency stimulation strategies in unconventional reservoirs under dynamic limits. 展开更多
关键词 Coalbed methane FNBC fracturing stimulation parameters background grid method
在线阅读 下载PDF
Challenges and development direction of deep fragmented soft coalbed methane in China 被引量:2
4
作者 Yiyu Lu Guilin Zhao +7 位作者 Zhaolong Ge Yunzhong Jia Jiren Tang Tianyi Gong Shan Huang Zhongtan Li Wenyu Fu Jianyu Mi 《Earth Energy Science》 2025年第1期38-64,共27页
Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehens... Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehensive review of commonly employed coalbed methane extraction technologies.It then delves into several critical issues in the current stage of CBM exploration and development in China,including the compatibility of existing technologies with CBM reservoirs,the characteristics and occurrence states of CBM reservoirs,critical desorption pressure,and gas generation mechanisms.Our research indicates that current CBM exploration and development technologies in China have reached an internationally advanced level,yet the industry is facing unprecedented challenges.Despite progress in low-permeability,high-value coal seams,significant breakthroughs have not been achieved in exploring other types of coal seams.For different coal reservoirs,integrated extraction technologies have been developed,such as surface pre-depressurisation and segmented hydraulic fracturing of coal seam roof strata.Additionally,techniques like large-scale volume fracturing in horizontal wells have been established,significantly enhancing reservoir stimulation effects and coalbed methane recovery rates.However,all of these technologies are fundamentally based on permeation.These technologies lack direct methods aimed at enhancing the diffusion rate of CBM,thereby failing to fully reflect the unique characteristics of CBM.Current CBM exploration and development theories and technologies are not universally applicable to all coal seams.They do not adequately account for the predominantly adsorbed state of CBM,and the complex and variable gas generation mechanisms further constrain CBM development in China.Finally,continuous exploration of new deep CBM exploration technologies is necessary.Integrating more effective reservoir stimulation technologies is essential to enhance technical adaptability concerning CBM reservoir characteristics,gas occurrence states,and gas generation mechanisms,ultimately achieving efficient CBM development.We conclude that while China possesses a substantial foundation of deep fractured CBM resources,industry development is constrained and requires continuous exploration of new CBM exploration and development technologies to utilize these resources effectively. 展开更多
关键词 Deep coalbed methane Exploration and development technology Reservoir characteristics Critical desorption pressure Gas production mechanism Development direction
在线阅读 下载PDF
Seaweed as a feed additive to mitigate enteric methane emissions in ruminants:Opportunities and challenges 被引量:1
5
作者 Yunlong Liu Mi Zhou +2 位作者 Qiyu Diao Tao Ma Yan Tu 《Journal of Integrative Agriculture》 2025年第4期1327-1341,共15页
Cutting farming-related methane emissions from ruminants is critical in the battle against climate change.Since scientists initially investigated the potential of marine macroalgae to reduce methane emissions,using se... Cutting farming-related methane emissions from ruminants is critical in the battle against climate change.Since scientists initially investigated the potential of marine macroalgae to reduce methane emissions,using seaweeds as an anti-methanogenic feed additive has become prevailing in recent years.Asparagopsis taxiformis is the preferred species because it contains a relatively higher concentration of bromoform.As a type of halogenated methane analogue,bromoform contained in A.taxiformis can specifically inhibit the activity of coenzyme M methyltransferase,thereby blocking the ruminal methanogenesis.However,bromoform is a potential toxin and ozone-depleting substance.In response,current research focuses on the effects of bromoform-enriched seaweed supplementation on ruminant productivity and safety,as well as the impact of large-scale cultivation of seaweeds on the atmospheric environment.The current research on seaweed still needs to be improved,especially in developing more species with low bromoform content,such as Bonnemaisonia hamifera,Dictyota bartayresii,and Cystoseira trinodis.Otherwise,seaweed is rich in bioactive substances and exhibits antibacterial,anti-inflammatory,and other physiological properties,but research on the role of these bioactive compounds in methane emissions is lacking.It is worthy of deeper investigation to identify more potential bioactive compounds.As a new focus of attention,seaweed has attracted the interest of many scientists.Nevertheless,seaweed still faces some challenges as a feed additive to ruminants,such as the residues of heavy metals(iodine and bromine)and bromoform in milk or meat,as well as the establishment of a supply chain for seaweed cultivation,preservation,and processing.We have concluded that the methane-reducing efficacy of seaweed is indisputable.However,its application as a commercial feed additive is still influenced by factors such as safety,costs,policy incentives,and regulations. 展开更多
关键词 SEAWEED Asparagopsis taxiformis BROMOFORM methane emission RUMINANT
在线阅读 下载PDF
Study on the effect of clay minerals on phase transition of methane hydrate in sand sediments:Kinetic behavior and microstructural observation 被引量:1
6
作者 Xinxu Wang Yuan Yuan +3 位作者 Zhongming Du Bo Liu Chenlu Xu Jijin Yang 《Petroleum Science》 2025年第7期3029-3041,共13页
Natural gas hydrates widely accumulate in submarine sediments composed of clay minerals.However,due to the complex physiochemistry and micron-sized particles of clay minerals,their effects on methane hydrate(MH)format... Natural gas hydrates widely accumulate in submarine sediments composed of clay minerals.However,due to the complex physiochemistry and micron-sized particles of clay minerals,their effects on methane hydrate(MH)formation and dissociation are still in controversy.In this study,montmorillonite and illite were separately mixed with quartz sand to investigate their effects on MH formation and dissociation.The microstructure of synthesized samples was observed by cryo-SEM innovatively to understand the effects of montmorillonite and illite on MH phase transition in micron scale.Results show that montmorillonite and illite both show the inhibition on MH formation kinetics and water-to-hydrate conversion,and illite shows a stronger inhibition.The 10 wt%montmorillonite addition significantly retards MH formation rate,and the 20 wt%montmorillonite has a less inhibition on the rate.The increase of illite mass ratio(0-20 wt%)retards the rate of MH formation.As the content of clay minerals increase,the water-to-hydrate conversion decreases.Cryo-SEM images presented that montmorillonite aggregates separate as individual clusters while illite particles pack as face-to-face configuration under the interaction with water.The surface-overlapped illite aggregates would make sediments pack tightly,hinder the contact between gas and water,and result in the more significant inhibition on MH formation kinetics.Under the depressurization method,the addition of clay minerals facilitates MH dissociation rate.Physicochemical properties of clay minerals and MH distribution in the pore space lead to the faster dissociation rate in clay-containing sediments.The results of this study would provide beneficial guides on geological investigations and optimizing strategies of natural gas production in marine hydrate-bearing sediments. 展开更多
关键词 Methane hydrate Clay minerals Formation kinetics Microstructure DEPRESSURIZATION
原文传递
Efficient Electroreduction of CO_(2)to CH_(4)Over Amino Acid-Modified Copper Under Acidic Conditions 被引量:1
7
作者 Yichi Zhang Yajuan Wan +8 位作者 Min Wang Xia Bai Zijun Zhang Yingxuan Liu Shuaiqiang Jia Mingyuan He Chunjun Chen Haihong Wu Buxing Han 《Carbon and Hydrogen》 2025年第1期5-9,共5页
Electroreduction of CO_(2) into CH_(4) under acidic conditions is a promising strategy for CO_(2) utilization,which allows for high CO_(2) conversion efficiency.However,the selectivity of CH_(4) is low because the hyd... Electroreduction of CO_(2) into CH_(4) under acidic conditions is a promising strategy for CO_(2) utilization,which allows for high CO_(2) conversion efficiency.However,the selectivity of CH_(4) is low because the hydrogen evolution reaction is enhanced under acidic conditions.Here,we report that the CO_(2) can be efficiently reduced into CH_(4) over a Cu catalyst by modifying with a glutamic acid molecule under acidic conditions.The CH_(4) Faradaic efficiency can reach 62.9% with a current density of 450 mA cm^(-2).Meanwhile,a single-pass carbon efficiency of 48.1% toward CH_(4) is achieved.Experiments revealed that the glutamic acid molecule can enhance the concentration of Kt on the surface of Cu,which can suppress the HER and promote CO_(2) reduction,resulting in high selectivity of CH_(4) under acidic conditions. 展开更多
关键词 carbon dioxide ELECTROCHEMICAL green chemistry METHANE molecular modification
在线阅读 下载PDF
Tracing the contribution of cattle farms to methane emissions through bibliometric analyses 被引量:1
8
作者 Shakoor Abdul Zaib Gul Ming Xu 《Journal of Integrative Agriculture》 2025年第4期1220-1233,共14页
Methane contributes to global warming,and livestock is one of the sources of methane production.However,methane emission studies using bibliometric tools in livestock are lacking.Given the negative impact of climate c... Methane contributes to global warming,and livestock is one of the sources of methane production.However,methane emission studies using bibliometric tools in livestock are lacking.Given the negative impact of climate change on the ecosystem and the rise in methane emissions,it is essential to conduct a bibliometrics study to provide an overview and research trends.We used the Bibliometrix package and VOSviewer to decipher bibliometric indices for methane emissions in cattle farms(MECF).Current dataset were collected from the Web of Science(Core Collection)database,and 8,998 publications were analyzed.The most co-occurring keywords scientists preferred were methane(1,528),greenhouse gas(443),methane emissions(440),and cattle(369).Methane was the most frequently used keyword in the published scientific literature.Thematic evolution of research themes and trend results highlighted carbon dioxide,methane,dairy cattle,cattle,and risk factors during 1999–2017.Chinese Academy of Sciences ranked on top with 485 publications,followed by Agriculture&Agri-Food Canada,University of Colorado,National Oceanic and Atmospheric Administration,and Aarhus University.Chinese Academy of Sciences was also the most cited organization,followed by the University of Colorado,Agriculture&Agri-Food Canada,National Oceanic and Atmospheric Administration,and United States Geological Survey.Source analysis showed that the Science of the Total Environment was cited with the highest total link strength.Science of the Total Environment ranked first in source core 1 with 290 citation frequencies,followed by Journal of Dairy Science with 223 citation frequencies.Currently,no bibliometric study has been conducted on MECF,and to fill this knowledge gap,we carried out this study to highlight methane emissions in cattle farms,aiming at a climate change perspective.In this regard,we focused on the research productivity of countries authors,journals and institutions,co-occurrence of keywords,evolution of research trends,and collaborative networking.Based on relevance degree of centrality,methane emissions and greenhouse gases appeared as basic themes,cattle,and dairy cattle appeared as emerging/declining themes,whereas,methane,greenhouse gas and nitrous oxide appeared to fall amongst basic and motor themes.On the other hand,beef cattle,rumen and dairy cow seem to be between motor and niche themes,and risk factors lie in niche themes.The present bibliometric analysis provides research progress on methane emissions in cattle farms.Current findings may provide a framework for understanding research trends and themes in MECF research. 展开更多
关键词 methane emission cattle farms climate change greenhouse gases NETWORKING BIBLIOMETRICS
在线阅读 下载PDF
Effects of ratios of yak to cattle inocula on methane production and fiber digestion in rumen in vitro cultures 被引量:1
9
作者 Weiwei Wang Wei Guo +7 位作者 Jianxin Jiao Emilio M Ungerfeld Xiaoping Jing Xiaodan Huang Allan A Degen Yu Li Sisi Bi Ruijun Long 《Journal of Integrative Agriculture》 2025年第4期1270-1284,共15页
Yaks are well-adapted to the harsh environment of the Tibetan Plateau,and they emit less enteric methane(CH_(4))and digest poor-quality forage better than cattle.To examine the potential of yak rumen inoculum to mitig... Yaks are well-adapted to the harsh environment of the Tibetan Plateau,and they emit less enteric methane(CH_(4))and digest poor-quality forage better than cattle.To examine the potential of yak rumen inoculum to mitigate CH_(4)production and improve digestibility in cattle,we incubated substrate with rumen inoculum from yak(YRI)and cattle(CRI)in vitro in five ratios(YRI:CRI):(1)0:100(control),(2)25:75,(3)50:50,(4)75:25 and(5)100:0 for 72 h.The YRI:CRI ratios of 50:50,75:25 and 100:0 produced less total gas and CH_(4)and accumulated less hydrogen(H_(2))than0:100(control)at most time points.From 12 h onwards,there was a linear decrease(P<0.05)in carbon dioxide(CO_(2))production with increasing YRI:CRI ratio.At 72 h,the ratios of 50:50 and 75:25 had higher dry matter(+7.71%and+4.11%,respectively),as well as higher acid detergent fiber digestibility(+15.5%and+7.61%,respectively),when compared to the 0:100 ratio(P<0.05).Increasing the proportion of YRI generally increased total VFA concentrations,and,concomitantly,decreased the proportion of metabolic hydrogen([2H])incorporated into CH_(4),and decreased the recovery of[2H].The lower[2H]recovery indicates unknown[2H]sinks in the culture.Estimated Gibbs free energy changes(ΔG)for reductive acetogenesis were negative,indicating the thermodynamic feasibility of this process.It would be beneficial to identify:1)the alternative[2H]sinks,which could help mitigate CH_(4)emission,and 2)core microbes involved in fiber digestion.This experiment supported lower CH_(4)emission and greater nutrient digestibility of yaks compared to cattle.Multi-omics combined with microbial culture technologies developed in recent years could help to better understand fermentation differences among species. 展开更多
关键词 yak rumen fluid methane DIGESTIBILITY metabolic hydrogen
在线阅读 下载PDF
16S amplicon sequencing and untargeted metabolomics reveal changes in rumen microorganisms and metabolic pathways involved in the reduction of methane by cordycepin 被引量:1
10
作者 Haokai Ma Dengke Liu +6 位作者 Rui Liu Yang Li Modinat Tolani Lambo Baisheng Dai Weizheng Shen Yongli Qu Yonggen Zhang 《Journal of Integrative Agriculture》 2025年第4期1310-1326,共17页
As a major contributor to methane production in agriculture,there is a need for a suitable methane inhibitor to reduce ruminant methane emissions and minimize the impact on the climate.This work aimed to explore the i... As a major contributor to methane production in agriculture,there is a need for a suitable methane inhibitor to reduce ruminant methane emissions and minimize the impact on the climate.This work aimed to explore the influence of cordycepin on rumen fermentation,gas production,microbiome and their metabolites.A total of 0.00,0.08,0.16,0.32,and 0.64 g L^(–1)cordycepin were added into fermentation bottles containing 2 g total mixed ration for in vitro ruminal fermentation,and then the gas produced and fermentation parameters were measured for each bottle.Samples from the 0 and 0.64 g L^(–1)cordycepin addition were selected for 16S rRNA gene sequencing and metabolome analysis.The result of this experiment indicated that the addition of cordycepin could linearly increase the concentration of total volatile fatty acid,ammonia nitrogen,the proportion of propionate,valerate,and isovalerate,and linearly reduce ruminal pH and methane,carbon dioxide,hydrogen and total gas production,as well as the methane proportion,carbon dioxide proportion and proportion of butyrate.In addition,there was a quadratic relationship between hydrogen and cordycepin addition.At the same time,the relative abundance of Succiniclasticum,Prevotella,Rikenellaceae_RC9_gut_group,NK4A214_group,Christensenellaceae_R_(7)_group,unclassified_F082,Veillonellaceae_UCG_001,Dasytricha,Ophryoscolex,Isotricha,unclassified_Eukaryota,Methanobrevibacter,and Piromyces decreased significantly after adding the maximum dose of cordycepin.In contrast,the relative abundance of Succinivibrio,unclassified_Succinivibrionaceae,Prevotellaceae_UCG_001,unclassified_Lachnospiraceae,Lachnospira,Succinivibrionaceae_UCG_002,Pseudobutyrivibrio,Entodinium,Polyplastron,unclassified_Methanomethylophilaceae,Methanosphaera,and Candidatus_Methanomethylophilus increased significantly.Metabolic pathways such as biosynthesis of unsaturated fatty acids and purine metabolism and metabolites such as arachidonic acid,adenine,and 2′-deoxyguanosine were also affected by the addition of cordycepin.Based on this,we conclude that cordycepin is an effective methane emission inhibitor that can change the rumen metabolites and fermentation parameters by influencing the rumen microbiome,thus regulating rumen methane production.This experiment may provide a potential theoretical reference for developing Cordyceps byproduct or additives containing cordycepin as methane inhibitors. 展开更多
关键词 CORDYCEPIN in vitro rumen fermentation rumen microbiome METABOLOME methane production
在线阅读 下载PDF
Solar-driven methane-to-ethanol conversion by “intramolecular junction” with both high activity and selectivity 被引量:1
11
作者 Qijun Tang Wenguang Tu Zhigang Zou 《Chinese Journal of Structural Chemistry》 2025年第6期6-7,共2页
Methane(CH4),the predominant component of natural gas and shale gas,is regarded as a promising carbon feedstock for chemical synthesis[1].However,considering the extreme stability of CH4 molecules,it's quite chall... Methane(CH4),the predominant component of natural gas and shale gas,is regarded as a promising carbon feedstock for chemical synthesis[1].However,considering the extreme stability of CH4 molecules,it's quite challenging in simultaneously achieving high activity and selectivity for target products under mild conditions,especially when synthesizing high-value C2t chemicals such as ethanol[2].The conversion of methane to ethanol by photocatalysis is promising for achieving transformation under ambient temperature and pressure conditions.Currently,the apparent quantum efficiency(AQE)of solar-driven methane-to-ethanol conversion is generally below 0.5%[3,4].Furthermore,the stability of photocatalysts remains inadequate,offering substantial potential for further improvement. 展开更多
关键词 natural gas shale gasis target products carbon feedstock chemical synthesis howeverconsidering intramolecular junction solar driven methane ethanol conversion
原文传递
Coal-rock gas accumulation mechanism and the whole petroleum system of coal measures 被引量:1
12
作者 LI Guoxin JIA Chengzao +2 位作者 ZHAO Qun ZHOU Tianqi GAO Jinliang 《Petroleum Exploration and Development》 2025年第1期33-49,共17页
Coal measures are significant hydrocarbon source rocks and reservoirs in petroliferous basins.Many large gas fields and coalbed methane fields globally are originated from coal-measure source rocks or accumulated in c... Coal measures are significant hydrocarbon source rocks and reservoirs in petroliferous basins.Many large gas fields and coalbed methane fields globally are originated from coal-measure source rocks or accumulated in coal rocks.Inspired by the discovery of shale oil and gas,and guided by“the overall exploration concept of considering coal rock as reservoir”,breakthroughs in the exploration and development of coal-rock gas have been achieved in deep coal seams with favorable preservation conditions,thereby opening up a new development frontier for the unconventional gas in coal-rock reservoirs.Based on the data from exploration and development practices,a systematic study on the accumulation mechanism of coal-rock gas has been conducted.The mechanisms of“three fields”controlling coal-rock gas accumulation are revealed.It is confirmed that the coal-rock gas is different from CBM in accumulation process.The whole petroleum systems in the Carboniferous–Permian transitional facies coal measures of the eastern margin of the Ordos Basin and in the Jurassic continental facies coal measures of the Junggar Basin are characterized,and the key research directions for further developing the whole petroleum system theory of coal measures are proposed.Coal rocks,compared to shale,possess intense hydrocarbon generation potential,strong adsorption capacity,dual-medium reservoir properties,and partial or weak oil and gas self-sealing capacity.Additionally,unlike other unconventional gas such as shale gas and tight gas,coal-rock gas exhibits more complex accumulation characteristics,and its accumulation requires a certain coal-rock play form lithological and structural traps.Coal-rock gas also has the characteristics of conventional fractured gas reservoirs.Compared with the basic theory and model of the whole petroleum system established based on detrital rock formations,coal measures have distinct characteristics and differences in coal-rock reservoirs and source-reservoir coupling.The whole petroleum system of coal measures is composed of various types of coal-measure hydrocarbon plays with coal(and dark shale)in coal measures as source rock and reservoir,and with adjacent tight layers as reservoirs or cap or transport layers.Under the action of source-reservoir coupling,coal-rock gas is accumulated in coal-rock reservoirs with good preservation conditions,tight oil/gas is accumulated in tight layers,conventional oil/gas is accumulated in traps far away from sources,and coalbed methane is accumulated in coal-rock reservoirs damaged by later geological processes.The proposed whole petroleum system of coal measures represents a novel type of whole petroleum system. 展开更多
关键词 coal measure coal-rock gas coalbed methane tight gas coal-rock play accumulation mechanism whole petroleum system whole petroleum system of coal measures
在线阅读 下载PDF
Application of Sr_(2)FeMoO_(6−δ)-based medium entropy oxide as an anode internal reforming catalyst in solid oxide fuel cells fueled by low -concentration coal mine methane 被引量:1
13
作者 Chuanqi Sun Jinke Zhang +7 位作者 Xiuyang Qian Mingfei Li Hongming Liu Jiangbo Dong Jinda Li Wenlin Yang Mumin Rao Yihan Ling 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2650-2658,共9页
Low-concentration coal mine methane(LC-CMM),which is predominantly composed of methane,serves as a clean and low-carbon energy resource with significant potential for utilization.Utilizing LC-CMM as fuel for solid oxi... Low-concentration coal mine methane(LC-CMM),which is predominantly composed of methane,serves as a clean and low-carbon energy resource with significant potential for utilization.Utilizing LC-CMM as fuel for solid oxide fuel cells(SOFCs)represents an efficient and promising strategy for its effective utilization.However,direct application in Ni-based anodes induces carbon deposition,which severely degrades cell performance.Herein,a medium-entropy oxide Sr_(2)FeNi_(0.1)Cr_(0.3)Mn_(0.3)Mo_(0.3)O_(6−δ)(SFNCMM)was developed as an anode internal reforming catalyst.Following reduction treatment,FeNi_(3) nano-alloy particles precipitate on the surface of the material,thereby significantly enhancing its catalytic activity for LC-CMM reforming process.The catalyst achieved a methane conversion rate of 53.3%,demonstrating excellent catalytic performance.Electrochemical evaluations revealed that SFNCMM-Gd_(0.1)Ce_(0.9)O_(2−δ)(GDC)with a weight ratio of 7:3 exhibited superior electrochemical performance when employed as the anodic catalytic layer.With H_(2) and LC-CMM as fuels,the single cell achieved maximum power densities of 1467.32 and 1116.97 mW·cm^(−2) at 800℃,respectively,with corresponding polarization impedances of 0.17 and 1.35Ω·cm^(2).Furthermore,the single cell maintained stable operation for over 100 h under LC-CMM fueling without significant carbon deposition,confirming its robust resistance to carbon formation.These results underscore the potential of medium-entropy oxides as highly effective catalytic layers for mitigating carbon deposition in SOFCs. 展开更多
关键词 solid oxide fuel cell medium entropy oxide low-concentration coal mine methane anode internal reforming catalyst electro-chemical performance
在线阅读 下载PDF
Differential accumulation characteristics and production of coalbed methane/coal-rock gas:A case study of the No.8 coal seam of the Carboniferous Benxi Formation in the Daji block,Ordos Basin,NW China 被引量:1
14
作者 ZHOU Lihong LI Yong +9 位作者 DING Rong XIONG Xianyue HOU Wei LI Yongzhou MA Hui FU Haijiao DU Yi ZHANG Weiqi ZHU Zhitong WANG Zhuangsen 《Petroleum Exploration and Development》 2025年第4期872-882,共11页
Based on the coalbed methane(CBM)/coal-rock gas(CRG)geological,geophysical,and experimental testing data from the Daji block in the Ordos Basin,the coal-forming and hydrocarbon generation&accumulation characterist... Based on the coalbed methane(CBM)/coal-rock gas(CRG)geological,geophysical,and experimental testing data from the Daji block in the Ordos Basin,the coal-forming and hydrocarbon generation&accumulation characteristics across different zones were dissected,and the key factors controlling the differential CBM/CRG enrichment were identified.The No.8 coal seam of the Carboniferous Benxi Formation in the Daji block is 8-10 m thick,typically overlain by limestone.The primary hydrocarbon generation phase occurred during the Early Cretaceous.Based on the differences in tectonic evolution and CRG occurrence,and with the maximum vitrinite reflectance of 2.0%and burial depth of 1800 m as boundaries,the study area is divided into deeply buried and deeply preserved,deeply buried and shallowly preserved,and shallowly buried and shallowly preserved zones.The deeply buried and deeply preserved zone contains gas content of 22-35 m^(3)/t,adsorbed gas saturation of 95%-100%,and formation water with total dissolved solid(TDS)higher than 50000 mg/L.This zone features structural stability and strong sealing capacity,with high gas production rates.The deeply buried and shallowly preserved zone contains gas content of 16-20 m^(3)/t,adsorbed gas saturation of 80%-95%,and formation water with TDS of 5000-50000 mg/L.This zone exhibits localized structural modification and hydrodynamic sealing,with moderate gas production rate.The shallowly buried and shallowly preserved zone contains gas content of 8-16 m^(3)/t,adsorbed gas saturation of 50%-70%,and formation water with TDS lower than 5000 mg/L.This zone experienced intense uplift,resulting in poor sealing and secondary alteration of the primary gas reservoir,with partial adsorbed gas loss,and low gas production rate.A depositional unification and structural divergence model is proposed,that is,although coal seams across the basin experienced broadly similar depositional and tectonic histories,differences in tectonic intensity have led to spatial heterogeneity in the maximum burial depth(i.e.,thermal maturity of coal)and current burial depth and occurrence of CRG(i.e.,gas content and occurrence state).The research results provide valuable guidance for advancing the theoretical understanding of CBM/CRG enrichment and for improving exploration and development practices. 展开更多
关键词 deep coalbed methane deep coal-rock gas depositional unification and structural divergence differential enrichment Carboniferou Benxi Formation No.8 coal seam Daji block Ordos Basin
在线阅读 下载PDF
Steam Methane Reforming(SMR)Combined with Ship Based Carbon Capture(SBCC)for an Efficient Blue Hydrogen Production on Board Liquefied Natural Gas(LNG)Carriers 被引量:1
15
作者 Ikram Belmehdi Boumedienne Beladjine +2 位作者 Mohamed Djermouni Amina Sabeur Mohammed El Ganaoui 《Fluid Dynamics & Materials Processing》 2025年第1期71-85,共15页
The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methaner... The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methanereforming(SMR)and ship-based carbon capture(SBCC).The first refers to the common practice used to obtainhydrogen from methane(often derived from natural gas),where steam reacts with methane to produce hydrogenand carbon dioxide(CO_(2)).The second refers to capturing the CO_(2) generated during the SMR process on boardships.By capturing and storing the carbon emissions,the process significantly reduces its environmental impact,making the hydrogen production“blue,”as opposed to“grey”(which involves CO_(2) emissions without capture).For the SMR process,the analysis reveals that increasing the reformer temperature enhances both the processperformance and CO_(2) emissions.Conversely,a higher steam-to-carbon(s/c)ratio reduces hydrogen yield,therebydecreasing thermal efficiency.The study also shows that preheating the air and boil-off gas(BOG)before theyenter the combustion chamber boosts overall efficiency and curtails CO_(2) emissions.In the SBCC process,puremonoethanolamine(MEA)is employed to capture the CO_(2) generated by the exhaust gases from the SMR process.The results indicate that with a 90%CO_(2) capture rate,the associated heat consumption amounts to 4.6 MJ perkilogram of CO_(2) captured.This combined approach offers a viable pathway to produce blue hydrogen on LNGcarriers while significantly reducing the carbon footprint. 展开更多
关键词 Carbon dioxide(CO_(2))emissions blue hydrogen boil-off gas(BOG) steam methane reforming(SMR) ship-based carbon capture(SBCC)
在线阅读 下载PDF
A review of recent progress on CO_(2)hydrogenation to methane by Ni-based catalysts supported on carbon materials
16
作者 SUN Yu HUO Kai-xuan +2 位作者 FANG Hai-qiu WANG Yang WU Ming-bo 《新型炭材料(中英文)》 北大核心 2025年第6期1201-1218,共18页
Recent research progress on the use of Ni-based catalysts supported by various carbon materials,such as carbon nanotubes,graphene,and activated carbon,for the hydrogenation of CO_(2)to CH4 is summarized.The influence ... Recent research progress on the use of Ni-based catalysts supported by various carbon materials,such as carbon nanotubes,graphene,and activated carbon,for the hydrogenation of CO_(2)to CH4 is summarized.The influence of additives and surface modification methods on improving their catalytic performance is discussed as is the reaction mechanism,especially the structurefunction relationship produced by the carbon.The review provides a comprehensive directory for the rational design of carbon-supported Ni-based catalysts for the methanation of CO_(2). 展开更多
关键词 Carbon dioxide hydrogenation Carbon materials Ni-based catalysts METHANATION Reaction mechanism
在线阅读 下载PDF
Constructing graphite-CeO_(2)interfaces to enhance the photothermal activity for solar-driven dry reforming of methane
17
作者 LI Ruitao GONG Kun +3 位作者 DAI Yuanyuan NIU Qiang LIN Tiejun ZHONG Liangshu 《燃料化学学报(中英文)》 北大核心 2025年第8期1137-1147,共11页
CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed gra... CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency. 展开更多
关键词 dry reforming of methane photothermal catalysis CeO_(2) GRAPHITE INTERFACES
在线阅读 下载PDF
Preparation of MoO_(3)/γ-Al_(2)O_(3)sulfur-resistant methanation catalyst with segmented plasma fluidized bed
18
作者 Baowei Wang Jiangzhou Kong Xiaoyan Li 《Chinese Journal of Chemical Engineering》 2025年第5期142-150,共9页
In order to solve the shortcomings of MoO_(3)/γ-Al_(2)O_(3)catalyst for sulfur-resistant methanation,a segmented plasma fluidized bed reactor was designed,where plasma discharge zone and the fluidization zone were se... In order to solve the shortcomings of MoO_(3)/γ-Al_(2)O_(3)catalyst for sulfur-resistant methanation,a segmented plasma fluidized bed reactor was designed,where plasma discharge zone and the fluidization zone were separated under higher discharge power.At the bed height of 30 mm,the gas velocity of 0.10 m·s^(-1)can provide a better fluidization state.The suitable discharge results can be achieved when the input power is 27 W and the discharge interval is 2.0 mm.With the extension of catalyst plasma treatment time,the conversion of CO decreases,but the selectivity of CH_(4)increases.Combined with N_(2)physical adsorption-desorption,XRD,TEM,Raman,TGA and TPR characterization,it was found that the active components of the catalyst are uniformly dispersed on the γ-Al_(2)O_(3)support.After plasma treatment,tetrahedral Mo species was used as the active center,and the interaction between Mo and the carrier was strengthened.It provides a novel approach for preparing catalyst with dielectric barrier discharge(DBD)fluidized bed reactor. 展开更多
关键词 PLASMA Sulfur-resistant methanation Methane CATALYST FLUIDIZED-BED
在线阅读 下载PDF
Orchestration of diverse components in soluble methane monooxygenase for methane hydroxylation
19
作者 Yunha Hwang Dong-Heon Lee Seung Jae Lee 《Chinese Journal of Catalysis》 2025年第1期204-212,共9页
Methane(CH_(4))has a higher heat capacity(104.9 kcal/mol)than carbon dioxide(CO_(2)),and this has inspired research aimed at reducing methane levels to retard global warming.Hydroxylation under ambient conditions thro... Methane(CH_(4))has a higher heat capacity(104.9 kcal/mol)than carbon dioxide(CO_(2)),and this has inspired research aimed at reducing methane levels to retard global warming.Hydroxylation under ambient conditions through methanotrophs can provide crucial information for understanding the harsh C-H activation of methane.Soluble methane monooxygenase(sMMO)belongs to the bacterial multi-component monooxygenase superfamily and requires hydroxylase(MMOH),regulatory(MMOB),and reductase(MMOR)components.Recent structural and biophysical studies have demonstrated that these components accelerate and retard methane hydroxylation in MMOH through protein-protein interactions.Complex structures of sMMO,including MMOH-MMOB and MMOH-MMOD,illustrate how these regulatory and inhibitory components orchestrate the di-iron active sites located within the four-helix bundles of MMOH,specifically at the docking surface known as the canyon region.In addition,recent biophysical studies have demonstrated the role of MmoR,aσ54-dependent transcriptional regulator,in regulating sMMO expression.This perspective article introduces remarkable discoveries in recent reports on sMMO components that are crucial for understanding sMMO expression and activities.Our findings provide insight into how sMMO components interact with MMOH to control methane hydroxylation,shedding light on the mechanisms governing sMMO expression and the interactions between activating enzymes and promoters. 展开更多
关键词 Soluble methane monooxygenase Non-hemedi-ironactivesite Methane oxidation C-Hactivation O_(2)activation
在线阅读 下载PDF
CO_(2)-free hydrogen production from solar-driven photothermal catalytic decomposition of methane
20
作者 Yihan Zheng Yuxin Wang +6 位作者 Ruitao Li Haoran Yang Yuanyuan Dai Qiang Niu Tiejun Lin Kun Gong Liangshu Zhong 《Chinese Journal of Catalysis》 2025年第6期289-299,共11页
CO_(2)-free H_(2)refers to H_(2)production process without CO_(2)emission,which is a promising clean energy in the future.Catalytic decomposition of methane(CDM)is a competitive technology to produce CO_(2)-free H2 wi... CO_(2)-free H_(2)refers to H_(2)production process without CO_(2)emission,which is a promising clean energy in the future.Catalytic decomposition of methane(CDM)is a competitive technology to produce CO_(2)-free H2 with large-scale.However,CDM reaction is highly endothermic and is kinetically and thermodynamically unfavorable,which typically requires a harsh reaction temperature above 800℃.In this work,solar-driven photothermal catalytic decomposition of methane was firstly introduced to produce CO_(2)-free H_(2)relying solely on solar energy as the driving force.A high H_(2)yield of 204.6 mmol g^(–1)h^(–1)was observed over Ni-CeO2 interface under photothermal conditions,along with above 87%reduction in the apparent activation energy(11.2 vs.87.3 kJ mol^(–1))when comparing with the traditional thermal catalysis.Further studies suggested that Ni/CeO_(2)catalyst enhanced optical absorption in visible-infrared region to ensure the heat energy for methane decomposition.The generated electrons and holes participated in the redox process of photo-driven CDM reaction with enhanced separation ability of hot carriers excited by ultraviolet-visible light,which lowered activation energy and improved the photothermal catalytic activity.This work provides a promising photothermal catalytic strategy to produce CO_(2)-free H^(2)under mild conditions. 展开更多
关键词 CO_(2)-free hydrogen Hydrogen production Photothermal catalysis Methane decomposition Methane conversion
在线阅读 下载PDF
上一页 1 2 103 下一页 到第
使用帮助 返回顶部