A combustion tube experiment platform was designed and used to study the inerting conditions and capacity of entrained atomized water on premixed methane–air flame. The structure of a laminar flame of premixed methan...A combustion tube experiment platform was designed and used to study the inerting conditions and capacity of entrained atomized water on premixed methane–air flame. The structure of a laminar flame of premixed methane–air gas and the process of interaction between atomized water and flame was recorded, and the rules of combustion velocity, stability and strength rate of laminar flame were experimentally studied. The inerting process and mechanism was analyzed, and the characteristics of inerting premixed methane–air gas within explosion limits by atomized water were acquired. The research results show that: for the premixed methane–air gas with a concentration of 7%, the minimum inerting atomized water flux is 20.8 m L/(m2min); for the premixed methane–air gas with a concentration of 9%, the minimum inerting atomized water flux is 32.9 m L/(m2min); for the premixed methane–air gas with a concentration of 11%, the minimum inerting atomized water flux is 44.6 m L/(m2min). The research results are significant for extinguishing methane flame and inhibiting of methane explosion using atomized water.展开更多
Recently, low-temperature atmospheric pressure plasmas have been proposed as a potential type of 'reaction cartier' for the conversion of methane into value-added chemicals. In this paper, the multi-physics field co...Recently, low-temperature atmospheric pressure plasmas have been proposed as a potential type of 'reaction cartier' for the conversion of methane into value-added chemicals. In this paper, the multi-physics field coupling software of COMSOL is used to simulate the detailed discharge characteristics of atmospheric pressure methane-air plasma. A two-dimensional axisymmetric fluid model is constructed, in which 77 plasma chemical reactions and 32 different species are taken into account. The spatial density distributions of dominant charged ions and reactive radical species, such as + + + + CH4, CH3,N2,02, H, O, CH3, and CH2, are presented, which is due to plasma chemical reactions of methane/air dissociation (or ionization) and reforming of small fragment radical species. The physicochemical mechanisms of methane dissociation and radical species recombination are also discussed and analyzed.展开更多
To explore the premixed methane-air flame microstructure behavior and the flame-flow interaction, the premixed methane/air flame was studied in a semi-vented chamber. A high speed camera and schlieren images methods w...To explore the premixed methane-air flame microstructure behavior and the flame-flow interaction, the premixed methane/air flame was studied in a semi-vented chamber. A high speed camera and schlieren images methods were used to record the processes of interaction between rare- faction wave and flame. Meanwhile, a pressure sensor was utilized to catch the pressure variation in the process of flame propagation. The experiment results showed that the interference of rarefaction wave on flame caused the flame front structure change, which led to the flame transition from lami- nar to turbulent quickly. The rarefaction wave intervened in the flame by turning the flame front sur- face into dentiform structure. The violent turbulent combustion began to appear in part of the flame front and spreaded to the whole flame front surface. The rarefaction also decreased the flame propa- gation speed.展开更多
The numerical simulation of modern aero-engine combustion chamber needs accurate description of the interaction between turbulence and chemical reaction mechanism. The Large Eddy Simulation(LES) method with the Transp...The numerical simulation of modern aero-engine combustion chamber needs accurate description of the interaction between turbulence and chemical reaction mechanism. The Large Eddy Simulation(LES) method with the Transported Probability Density Function(TPDF) turbulence combustion model is promising in engineering applications. In flame region, the impact of chemical reaction should be considered in TPDF molecular mixing model. Based on pioneer research, three new TPDF turbulence-chemistry dual time scale molecular mixing models were proposed tentatively by adding the chemistry time scale in molecular mixing model for nonpremixed flame. The Aero-Engine Combustor Simulation Code(AECSC) which is based on LES-TPDF method was combined with the three new models. Then the Sandia laboratory's methane-air jet flames: Flame D and Flame E were simulated. Transient simulation results show that all the three new models can predict the instantaneous combustion flow pattern of the jet flames. Furthermore,the average scalar statistical results were compared with the experimental data. The simulation result of the new TPDF arithmetic mean modification model is the closest to the experimental data:the average error in Flame D is 7.6% and 6.6% in Flame E. The extinction and re-ignition phenomena of the jet flames especially Flame E were captured. The turbulence time scale and the chemistry time scale are in different order in the whole flow field. The dual time scale TPDF combustion model has ability to deal with both the turbulence effect and the chemistry reaction effect, as well as their interaction more accurately for nonpremixed flames.展开更多
To research the characteristics of vented explosion of methane-air mixture in the pipeline,coal mine tunnel or other closed space,the experiments and numerical simulations were carried out.In this work,explosion chara...To research the characteristics of vented explosion of methane-air mixture in the pipeline,coal mine tunnel or other closed space,the experiments and numerical simulations were carried out.In this work,explosion characteristics and flame propagation characteristics of methane in pipeline and coal mine tunnel are studied by using an explosion test system,combined with FLACS software,under different vented conditions.The numerical simulation results of methane explosion are basically consistent with the physical experiment results,which indicates that the numerical simulation for methane explosion is reliable to be applied to the practice.The results show that explosion parameters(pressure,temperature and product concentration)of methane at five volume fractions have the same change trend.Nevertheless,the explosion intension of 10.0%methane is the largest and that of 9.5%methane is relatively weak,followed by 11.0%methane,8.0%methane and 7.0%methane respectively.Under different vented conditions,the pressure and temperature of methane explosion are the highest in the pipeline without a vent,followed by the pipeline where ignition or vent position is in each end,and those are the lowest in the pipeline with ignition and vent at the same end.There is no significant effect on final product concentration of methane explosion under three vented conditions.For coal mine tunnel,it is indicated that the maximum explosion pressure at the airproof wall in return airway with the branch roadway at 50 m from goaf is significantly decreased while that in intake airway does not change overwhelmingly.In addition,when the branch roadway is longer or its section is larger,the peak pressure of airproof wall reduces slightly.展开更多
To investigate the flame and overpressure characteristics of methane–air explosion with different obstacle configurations,an experimental study has been conducted,taking account of the number of obstacles,obstacle di...To investigate the flame and overpressure characteristics of methane–air explosion with different obstacle configurations,an experimental study has been conducted,taking account of the number of obstacles,obstacle distance from ignition source,and stream-wise and cross-wise obstacle positions.The results show that the flame speed and peak overpressure increase with the increasing number of obstacles,while the time to reach the peak is not fully determined by it.And the configuration having the farthest obstacle produces a higher overpressure and takes a longer time to reach the peak,but a slower flame propagation speed is obtained.Similar explosion characteristics are also observed in the configurations with two obstacles fixed at different stream-wise positions.Furthermore,the experimental results demonstrate that the peak overpressures and flame speeds in configurations with central or staggered obstacles are relatively higher,which should to be avoided in practical processes to minimize the risk associated with methane–air explosion.展开更多
Organic aerosol is formed in coal mines due to heat release and evaporation of organics from coal during the longwall operation.This frictional heating occurs when a metallic cutting bit strikes a rock.Thus formed org...Organic aerosol is formed in coal mines due to heat release and evaporation of organics from coal during the longwall operation.This frictional heating occurs when a metallic cutting bit strikes a rock.Thus formed organic aerosol can contribute significantly to the explosivity of methane/air atmosphere in coal mines.In this paper,the flammable limits for the methane-air mixtures with organic aerosol are determined.For this purpose,organic aerosol is synthesizes from the coal-tar pitch in a laboratory evaporation-nucleation flow chamber.Aerosol particles synthesized under laboratory conditions are aggregates consisting of small primary particles with the fractal-like dimension Df=2.0±0.1,which is close to Df=2.1±0.1 of coal mine aerosol.It is shown that the flammability of organic aerosol/methane mixture in air is in good agreement with the Le Chatelier additive principle.The lower ignition limit for the pure organic aerosol in air is 44 g/m^3.展开更多
The turbulent combustion flow modeling is performed to study the effects of CO_2 addition to the fuel and oxidizer streams on the thermochemical characteristics of a swirl stabilized diffusion flame. A flamelet approa...The turbulent combustion flow modeling is performed to study the effects of CO_2 addition to the fuel and oxidizer streams on the thermochemical characteristics of a swirl stabilized diffusion flame. A flamelet approach along with three well-known turbulence models is utilized to model the turbulent combustion flow field. The k-ω shear stress transport(SST) model shows the best agreement with the experimental measurements compared with other models. Therefore, the k-ω SST model is used to study the effects of CO_2 dilution on the flame structure and strength, temperature distribution, and CO concentration. To determine the chemical effects of CO_2 dilution, a fictitious species is replaced with the regular CO_2 in both the fuel stream and the oxidizer stream. The results indicate that the flame temperature decreases when CO_2 is added to either the fuel or the oxidizer stream. The flame length reduction is observed at all levels of CO_2 dilution. The H radical concentration indicating the flame strength decreases, following by the thermochemical effects of CO_2 dilution processes. In comparison with the fictitious species dilution, the chemical effects of CO_2 addition enhance the CO mass fraction. The numerical simulations show that when the dilution level is higher, the rate of the flame length reduction is more significant at low swirl numbers.展开更多
Methane-air diffusion filtration combustion in a radiative round-jet burner was numerically investigated in this work.The purpose of this study was focused on the effects of porous media porosity and gas velocity on t...Methane-air diffusion filtration combustion in a radiative round-jet burner was numerically investigated in this work.The purpose of this study was focused on the effects of porous media porosity and gas velocity on temperature distribution and CO and NO_(x)emissions.Reduced chemical kinetics was used where air and methane were assumed to be at their stoichiometric ratio,while thermo-physical properties were varied per the solid matrix porosity variation.Combustion characteristics were evaluated based on conduction and radiation as the two primary heat transfer modes within the solid matrix.Numerical simulations were carried out based on a packed bed with 3 mm alumina pellets.Results show that combustion temperature increases while the temperature gradient decreases with the increase in porosity,yielding higher NO_(x),and lower CO emissions.Furthermore,the combustion temperature is the lowest and most uniformly distributed with 1 m/s and 3 m/s gas velocities,wherewith 3 m/s gas velocity,combustion occurs outside of the porous zone.The corresponding NO_(x)and CO emissions are the lowest with 1 m/s gas velocity and increase with the increase in gas velocity from 1 m/s to 10m/s.展开更多
基金supported by the National Natural Science Foundation of China(No.51304006)the Natural Science Foundation of Anhui Province(No.1408085QE87)the Training Fund for Youth Backbones of Anhui University of Science&Technology(No.20120012)
文摘A combustion tube experiment platform was designed and used to study the inerting conditions and capacity of entrained atomized water on premixed methane–air flame. The structure of a laminar flame of premixed methane–air gas and the process of interaction between atomized water and flame was recorded, and the rules of combustion velocity, stability and strength rate of laminar flame were experimentally studied. The inerting process and mechanism was analyzed, and the characteristics of inerting premixed methane–air gas within explosion limits by atomized water were acquired. The research results show that: for the premixed methane–air gas with a concentration of 7%, the minimum inerting atomized water flux is 20.8 m L/(m2min); for the premixed methane–air gas with a concentration of 9%, the minimum inerting atomized water flux is 32.9 m L/(m2min); for the premixed methane–air gas with a concentration of 11%, the minimum inerting atomized water flux is 44.6 m L/(m2min). The research results are significant for extinguishing methane flame and inhibiting of methane explosion using atomized water.
基金in part financially supported by National Natural Science Foundation of China (Grant Nos. 11465013 and 11705080)the Natural Science Foundation of Jiangxi Province (Grant Nos. 20171ACB21019, 20161BAB201013, 20171BCD40005, and 20142BAB212008)
文摘Recently, low-temperature atmospheric pressure plasmas have been proposed as a potential type of 'reaction cartier' for the conversion of methane into value-added chemicals. In this paper, the multi-physics field coupling software of COMSOL is used to simulate the detailed discharge characteristics of atmospheric pressure methane-air plasma. A two-dimensional axisymmetric fluid model is constructed, in which 77 plasma chemical reactions and 32 different species are taken into account. The spatial density distributions of dominant charged ions and reactive radical species, such as + + + + CH4, CH3,N2,02, H, O, CH3, and CH2, are presented, which is due to plasma chemical reactions of methane/air dissociation (or ionization) and reforming of small fragment radical species. The physicochemical mechanisms of methane dissociation and radical species recombination are also discussed and analyzed.
基金Supported by the National Natural Science Foundation of China(50804038)
文摘To explore the premixed methane-air flame microstructure behavior and the flame-flow interaction, the premixed methane/air flame was studied in a semi-vented chamber. A high speed camera and schlieren images methods were used to record the processes of interaction between rare- faction wave and flame. Meanwhile, a pressure sensor was utilized to catch the pressure variation in the process of flame propagation. The experiment results showed that the interference of rarefaction wave on flame caused the flame front structure change, which led to the flame transition from lami- nar to turbulent quickly. The rarefaction wave intervened in the flame by turning the flame front sur- face into dentiform structure. The violent turbulent combustion began to appear in part of the flame front and spreaded to the whole flame front surface. The rarefaction also decreased the flame propa- gation speed.
基金co-supported by the National Key R&D Program of China(Nos.2017YFB0202400 and 2017YFB0202402)the National Natural Science Foundation of China(No.91741125)the Project of Newton International Fellowship Alumnus from Royal Society(No.AL120003)
文摘The numerical simulation of modern aero-engine combustion chamber needs accurate description of the interaction between turbulence and chemical reaction mechanism. The Large Eddy Simulation(LES) method with the Transported Probability Density Function(TPDF) turbulence combustion model is promising in engineering applications. In flame region, the impact of chemical reaction should be considered in TPDF molecular mixing model. Based on pioneer research, three new TPDF turbulence-chemistry dual time scale molecular mixing models were proposed tentatively by adding the chemistry time scale in molecular mixing model for nonpremixed flame. The Aero-Engine Combustor Simulation Code(AECSC) which is based on LES-TPDF method was combined with the three new models. Then the Sandia laboratory's methane-air jet flames: Flame D and Flame E were simulated. Transient simulation results show that all the three new models can predict the instantaneous combustion flow pattern of the jet flames. Furthermore,the average scalar statistical results were compared with the experimental data. The simulation result of the new TPDF arithmetic mean modification model is the closest to the experimental data:the average error in Flame D is 7.6% and 6.6% in Flame E. The extinction and re-ignition phenomena of the jet flames especially Flame E were captured. The turbulence time scale and the chemistry time scale are in different order in the whole flow field. The dual time scale TPDF combustion model has ability to deal with both the turbulence effect and the chemistry reaction effect, as well as their interaction more accurately for nonpremixed flames.
基金Project(51674193)supported by the National Natural Science Foundation of ChinaProject(2019-JLM-9)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(2019-M-663780)supported by the Postdoctoral Science Foundation,China。
文摘To research the characteristics of vented explosion of methane-air mixture in the pipeline,coal mine tunnel or other closed space,the experiments and numerical simulations were carried out.In this work,explosion characteristics and flame propagation characteristics of methane in pipeline and coal mine tunnel are studied by using an explosion test system,combined with FLACS software,under different vented conditions.The numerical simulation results of methane explosion are basically consistent with the physical experiment results,which indicates that the numerical simulation for methane explosion is reliable to be applied to the practice.The results show that explosion parameters(pressure,temperature and product concentration)of methane at five volume fractions have the same change trend.Nevertheless,the explosion intension of 10.0%methane is the largest and that of 9.5%methane is relatively weak,followed by 11.0%methane,8.0%methane and 7.0%methane respectively.Under different vented conditions,the pressure and temperature of methane explosion are the highest in the pipeline without a vent,followed by the pipeline where ignition or vent position is in each end,and those are the lowest in the pipeline with ignition and vent at the same end.There is no significant effect on final product concentration of methane explosion under three vented conditions.For coal mine tunnel,it is indicated that the maximum explosion pressure at the airproof wall in return airway with the branch roadway at 50 m from goaf is significantly decreased while that in intake airway does not change overwhelmingly.In addition,when the branch roadway is longer or its section is larger,the peak pressure of airproof wall reduces slightly.
基金supported by the National Natural Science Foundation of China (Nos.51106044 and 51176021)the Research Foundation of Education Bureau of Henan Province of China (No.14A410007)
文摘To investigate the flame and overpressure characteristics of methane–air explosion with different obstacle configurations,an experimental study has been conducted,taking account of the number of obstacles,obstacle distance from ignition source,and stream-wise and cross-wise obstacle positions.The results show that the flame speed and peak overpressure increase with the increasing number of obstacles,while the time to reach the peak is not fully determined by it.And the configuration having the farthest obstacle produces a higher overpressure and takes a longer time to reach the peak,but a slower flame propagation speed is obtained.Similar explosion characteristics are also observed in the configurations with two obstacles fixed at different stream-wise positions.Furthermore,the experimental results demonstrate that the peak overpressures and flame speeds in configurations with central or staggered obstacles are relatively higher,which should to be avoided in practical processes to minimize the risk associated with methane–air explosion.
基金RFBR and Novosibirsk region(Grant No.19-43-540009).
文摘Organic aerosol is formed in coal mines due to heat release and evaporation of organics from coal during the longwall operation.This frictional heating occurs when a metallic cutting bit strikes a rock.Thus formed organic aerosol can contribute significantly to the explosivity of methane/air atmosphere in coal mines.In this paper,the flammable limits for the methane-air mixtures with organic aerosol are determined.For this purpose,organic aerosol is synthesizes from the coal-tar pitch in a laboratory evaporation-nucleation flow chamber.Aerosol particles synthesized under laboratory conditions are aggregates consisting of small primary particles with the fractal-like dimension Df=2.0±0.1,which is close to Df=2.1±0.1 of coal mine aerosol.It is shown that the flammability of organic aerosol/methane mixture in air is in good agreement with the Le Chatelier additive principle.The lower ignition limit for the pure organic aerosol in air is 44 g/m^3.
文摘The turbulent combustion flow modeling is performed to study the effects of CO_2 addition to the fuel and oxidizer streams on the thermochemical characteristics of a swirl stabilized diffusion flame. A flamelet approach along with three well-known turbulence models is utilized to model the turbulent combustion flow field. The k-ω shear stress transport(SST) model shows the best agreement with the experimental measurements compared with other models. Therefore, the k-ω SST model is used to study the effects of CO_2 dilution on the flame structure and strength, temperature distribution, and CO concentration. To determine the chemical effects of CO_2 dilution, a fictitious species is replaced with the regular CO_2 in both the fuel stream and the oxidizer stream. The results indicate that the flame temperature decreases when CO_2 is added to either the fuel or the oxidizer stream. The flame length reduction is observed at all levels of CO_2 dilution. The H radical concentration indicating the flame strength decreases, following by the thermochemical effects of CO_2 dilution processes. In comparison with the fictitious species dilution, the chemical effects of CO_2 addition enhance the CO mass fraction. The numerical simulations show that when the dilution level is higher, the rate of the flame length reduction is more significant at low swirl numbers.
文摘Methane-air diffusion filtration combustion in a radiative round-jet burner was numerically investigated in this work.The purpose of this study was focused on the effects of porous media porosity and gas velocity on temperature distribution and CO and NO_(x)emissions.Reduced chemical kinetics was used where air and methane were assumed to be at their stoichiometric ratio,while thermo-physical properties were varied per the solid matrix porosity variation.Combustion characteristics were evaluated based on conduction and radiation as the two primary heat transfer modes within the solid matrix.Numerical simulations were carried out based on a packed bed with 3 mm alumina pellets.Results show that combustion temperature increases while the temperature gradient decreases with the increase in porosity,yielding higher NO_(x),and lower CO emissions.Furthermore,the combustion temperature is the lowest and most uniformly distributed with 1 m/s and 3 m/s gas velocities,wherewith 3 m/s gas velocity,combustion occurs outside of the porous zone.The corresponding NO_(x)and CO emissions are the lowest with 1 m/s gas velocity and increase with the increase in gas velocity from 1 m/s to 10m/s.