期刊文献+
共找到160,798篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical analysis of a vented methane/air explosion in a large-scale chamber
1
作者 Huadao Xing Guangan Xu +4 位作者 Yanyu Qiu Song Sun Bin Li Mingyang Wang Lifeng Xie 《Defence Technology(防务技术)》 2025年第10期207-219,共13页
The internal and external flow fields during vented explosions of methane were characterized through numerical simulation,and the capability of numerical simulation thereof was validated by previous experimental data ... The internal and external flow fields during vented explosions of methane were characterized through numerical simulation,and the capability of numerical simulation thereof was validated by previous experimental data at three ignition positions.The venting mechanism was revealed by the simulated concentration distribution,temperature profile,and airflow velocity.The results show rear ignition results in the external methane mass distribution taking the form of"mushroom"and columnar flames in the external space,which can be expressed as a third-order polynomial relationship with distance;central ignition forms a relationship of the form y=AxB.Front ignition causes the temperature to show a tendency to repeated oscillations(rising,falling,and rising).Central ignition generates the maximum vented airflow velocity(V_(max)=320 m/s)upon vent opening.The results indicate that it is acceptable to apply numerical simulation of methane explosions in practice. 展开更多
关键词 methane Vented explosion Numerical simulation Ignition position Field behavior
在线阅读 下载PDF
Suppression of methane/air explosion by water mist with potassium halide additives driven by CO2 被引量:5
2
作者 Wei Tan Dong Lü +2 位作者 Liyan Liu Guorui Zhu Nan Jiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第11期2742-2748,共7页
To enhance the explosion suppression effects of water mist, various potassium halide additives were tested in a confined vessel filled with a 10% mixture of methane/air. Air and CO2(0.7 MPa) were used as driver gases.... To enhance the explosion suppression effects of water mist, various potassium halide additives were tested in a confined vessel filled with a 10% mixture of methane/air. Air and CO2(0.7 MPa) were used as driver gases. The results revealed that halide additives exhibit considerable suppression effects on explosion overpressure. A30% KI mist decreased the explosion overpressure by 27.46% compared with the suppression by pure water mist under the same conditions. When CO2 is used as the driver gas, it will dissolve in water under high pressure.The synergistic effect of a CO2 solution with an effective additive afforded significant suppression. Under the same conditions, the overpressures suppressed by a mist of 30% KI + 0.7 MPa CO2 solution decreased by 33.53% compared with those suppressed by pure water mist driven by air. The synergistic suppression effect is much better than that of a 0.7 MPa CO2 solution mist or 30% KI mist alone. The multicomponent additives can be considered when suppressing methane/air explosions with pressure-formed water mist. 展开更多
关键词 methane Explosion SUPPRESSION Water MIST HALIDE CO2
在线阅读 下载PDF
Structure and Combustion Characteristics of Methane/Air Premixed Flame under the Action of Wall
3
作者 Feiyang Li Jianfeng Pan +2 位作者 Chenxin Zhang Evans K.Quaye Xia Shao 《Energy Engineering》 EI 2021年第4期1135-1154,共20页
In order to obtain the combustion characteristics of the CH4/Air premixed flame under the action of the wall interaction,a study on the impact of the jet flame on the wall at different separation distances was carried... In order to obtain the combustion characteristics of the CH4/Air premixed flame under the action of the wall interaction,a study on the impact of the jet flame on the wall at different separation distances was carried out.The separation distance from the burner outlet to the lower surface of the wall is changed and the flame structure is obtained through experiments.The temperature,velocity and reaction rate are obtained through numerical simulation,and the law of flame characteristics change is obtained through analysis.The results show that as the separation distance increases,the premixing cone inside the flame gradually changes from a horn shape to a complete cone shape and the length of the premixing cone profile increases.Also,the peak temperature and velocity of the mixture in the axial direction gradually increase,and the temperature and velocity in the radial direction first increase and then decrease.The temperature gradient and velocity reach the maximum when the separation distance is 11 mm.The peaks of reactants(CH_(4))net reaction rate intermediate products(CO)and products(CO_(2),H_(2)O)on the axis and the axial distance corresponding to the peaks increase accordingly.The chemical reaction rate near the wall also gradually decreases with the increase of the separation distance. 展开更多
关键词 Flame-wall interaction separation distance flame structure air flow temperature flow velocity reaction rate
在线阅读 下载PDF
Insight into ventilation air methane combustion of ultralow sub-nanometer palladium catalyst within the MFI zeolite
4
作者 Xueli Zhang Tao Zhu +3 位作者 Shuai Liu Baisheng Nie Bo Yuan Yiwei Han 《Journal of Environmental Sciences》 2025年第9期1-12,共12页
Methane’s complete catalytic oxidation process has been widely studied,but efficient catalytic oxidation of low-concentration methane(≤0.75%)remains a crucial problem in the coal chemical industry.How to prevent the... Methane’s complete catalytic oxidation process has been widely studied,but efficient catalytic oxidation of low-concentration methane(≤0.75%)remains a crucial problem in the coal chemical industry.How to prevent the sintering deactivation of the active component in Pd-based catalysts and achieve efficient and stable operation of sub-nanometer catalysts remains challenging.Here,we utilize the interaction between amine ligands and Pd nanoparticles to stabilize and encapsulate the Pd particles within the pores of a molecular sieve carrier,effectively promoting the high dispersion of Pd particles.By leveraging the low acidity,high hydrophobicity,and high hydrothermal stability of the zeolite carrier,the Pd@S-1 catalyst exhibits excellent activity and stability in the catalytic oxidation of methane at lowconcentrations.Finally,density functional theory is employed to investigate the reaction mechanism of low-concentration methane during the catalytic process.Encapsulating the active metal component in zeolite to improve catalytic activity and stability provides a theoretical basis and direction for preparing complete oxidation catalysts for low-concentration methane. 展开更多
关键词 Low-concentration methane Sub-nanometer catalysts Pd cluster Silicalite-1 zeolite Catalytic mechanisms
原文传递
Seaweed as a feed additive to mitigate enteric methane emissions in ruminants:Opportunities and challenges 被引量:1
5
作者 Yunlong Liu Mi Zhou +2 位作者 Qiyu Diao Tao Ma Yan Tu 《Journal of Integrative Agriculture》 2025年第4期1327-1341,共15页
Cutting farming-related methane emissions from ruminants is critical in the battle against climate change.Since scientists initially investigated the potential of marine macroalgae to reduce methane emissions,using se... Cutting farming-related methane emissions from ruminants is critical in the battle against climate change.Since scientists initially investigated the potential of marine macroalgae to reduce methane emissions,using seaweeds as an anti-methanogenic feed additive has become prevailing in recent years.Asparagopsis taxiformis is the preferred species because it contains a relatively higher concentration of bromoform.As a type of halogenated methane analogue,bromoform contained in A.taxiformis can specifically inhibit the activity of coenzyme M methyltransferase,thereby blocking the ruminal methanogenesis.However,bromoform is a potential toxin and ozone-depleting substance.In response,current research focuses on the effects of bromoform-enriched seaweed supplementation on ruminant productivity and safety,as well as the impact of large-scale cultivation of seaweeds on the atmospheric environment.The current research on seaweed still needs to be improved,especially in developing more species with low bromoform content,such as Bonnemaisonia hamifera,Dictyota bartayresii,and Cystoseira trinodis.Otherwise,seaweed is rich in bioactive substances and exhibits antibacterial,anti-inflammatory,and other physiological properties,but research on the role of these bioactive compounds in methane emissions is lacking.It is worthy of deeper investigation to identify more potential bioactive compounds.As a new focus of attention,seaweed has attracted the interest of many scientists.Nevertheless,seaweed still faces some challenges as a feed additive to ruminants,such as the residues of heavy metals(iodine and bromine)and bromoform in milk or meat,as well as the establishment of a supply chain for seaweed cultivation,preservation,and processing.We have concluded that the methane-reducing efficacy of seaweed is indisputable.However,its application as a commercial feed additive is still influenced by factors such as safety,costs,policy incentives,and regulations. 展开更多
关键词 SEAWEED Asparagopsis taxiformis BROMOFORM methane emission RUMINANT
在线阅读 下载PDF
Study on the effect of clay minerals on phase transition of methane hydrate in sand sediments:Kinetic behavior and microstructural observation 被引量:1
6
作者 Xinxu Wang Yuan Yuan +3 位作者 Zhongming Du Bo Liu Chenlu Xu Jijin Yang 《Petroleum Science》 2025年第7期3029-3041,共13页
Natural gas hydrates widely accumulate in submarine sediments composed of clay minerals.However,due to the complex physiochemistry and micron-sized particles of clay minerals,their effects on methane hydrate(MH)format... Natural gas hydrates widely accumulate in submarine sediments composed of clay minerals.However,due to the complex physiochemistry and micron-sized particles of clay minerals,their effects on methane hydrate(MH)formation and dissociation are still in controversy.In this study,montmorillonite and illite were separately mixed with quartz sand to investigate their effects on MH formation and dissociation.The microstructure of synthesized samples was observed by cryo-SEM innovatively to understand the effects of montmorillonite and illite on MH phase transition in micron scale.Results show that montmorillonite and illite both show the inhibition on MH formation kinetics and water-to-hydrate conversion,and illite shows a stronger inhibition.The 10 wt%montmorillonite addition significantly retards MH formation rate,and the 20 wt%montmorillonite has a less inhibition on the rate.The increase of illite mass ratio(0-20 wt%)retards the rate of MH formation.As the content of clay minerals increase,the water-to-hydrate conversion decreases.Cryo-SEM images presented that montmorillonite aggregates separate as individual clusters while illite particles pack as face-to-face configuration under the interaction with water.The surface-overlapped illite aggregates would make sediments pack tightly,hinder the contact between gas and water,and result in the more significant inhibition on MH formation kinetics.Under the depressurization method,the addition of clay minerals facilitates MH dissociation rate.Physicochemical properties of clay minerals and MH distribution in the pore space lead to the faster dissociation rate in clay-containing sediments.The results of this study would provide beneficial guides on geological investigations and optimizing strategies of natural gas production in marine hydrate-bearing sediments. 展开更多
关键词 methane hydrate Clay minerals Formation kinetics Microstructure DEPRESSURIZATION
原文传递
Effects of ratios of yak to cattle inocula on methane production and fiber digestion in rumen in vitro cultures 被引量:1
7
作者 Weiwei Wang Wei Guo +7 位作者 Jianxin Jiao Emilio M Ungerfeld Xiaoping Jing Xiaodan Huang Allan A Degen Yu Li Sisi Bi Ruijun Long 《Journal of Integrative Agriculture》 2025年第4期1270-1284,共15页
Yaks are well-adapted to the harsh environment of the Tibetan Plateau,and they emit less enteric methane(CH_(4))and digest poor-quality forage better than cattle.To examine the potential of yak rumen inoculum to mitig... Yaks are well-adapted to the harsh environment of the Tibetan Plateau,and they emit less enteric methane(CH_(4))and digest poor-quality forage better than cattle.To examine the potential of yak rumen inoculum to mitigate CH_(4)production and improve digestibility in cattle,we incubated substrate with rumen inoculum from yak(YRI)and cattle(CRI)in vitro in five ratios(YRI:CRI):(1)0:100(control),(2)25:75,(3)50:50,(4)75:25 and(5)100:0 for 72 h.The YRI:CRI ratios of 50:50,75:25 and 100:0 produced less total gas and CH_(4)and accumulated less hydrogen(H_(2))than0:100(control)at most time points.From 12 h onwards,there was a linear decrease(P<0.05)in carbon dioxide(CO_(2))production with increasing YRI:CRI ratio.At 72 h,the ratios of 50:50 and 75:25 had higher dry matter(+7.71%and+4.11%,respectively),as well as higher acid detergent fiber digestibility(+15.5%and+7.61%,respectively),when compared to the 0:100 ratio(P<0.05).Increasing the proportion of YRI generally increased total VFA concentrations,and,concomitantly,decreased the proportion of metabolic hydrogen([2H])incorporated into CH_(4),and decreased the recovery of[2H].The lower[2H]recovery indicates unknown[2H]sinks in the culture.Estimated Gibbs free energy changes(ΔG)for reductive acetogenesis were negative,indicating the thermodynamic feasibility of this process.It would be beneficial to identify:1)the alternative[2H]sinks,which could help mitigate CH_(4)emission,and 2)core microbes involved in fiber digestion.This experiment supported lower CH_(4)emission and greater nutrient digestibility of yaks compared to cattle.Multi-omics combined with microbial culture technologies developed in recent years could help to better understand fermentation differences among species. 展开更多
关键词 yak rumen fluid methane DIGESTIBILITY metabolic hydrogen
在线阅读 下载PDF
Tracing the contribution of cattle farms to methane emissions through bibliometric analyses 被引量:1
8
作者 Shakoor Abdul Zaib Gul Ming Xu 《Journal of Integrative Agriculture》 2025年第4期1220-1233,共14页
Methane contributes to global warming,and livestock is one of the sources of methane production.However,methane emission studies using bibliometric tools in livestock are lacking.Given the negative impact of climate c... Methane contributes to global warming,and livestock is one of the sources of methane production.However,methane emission studies using bibliometric tools in livestock are lacking.Given the negative impact of climate change on the ecosystem and the rise in methane emissions,it is essential to conduct a bibliometrics study to provide an overview and research trends.We used the Bibliometrix package and VOSviewer to decipher bibliometric indices for methane emissions in cattle farms(MECF).Current dataset were collected from the Web of Science(Core Collection)database,and 8,998 publications were analyzed.The most co-occurring keywords scientists preferred were methane(1,528),greenhouse gas(443),methane emissions(440),and cattle(369).Methane was the most frequently used keyword in the published scientific literature.Thematic evolution of research themes and trend results highlighted carbon dioxide,methane,dairy cattle,cattle,and risk factors during 1999–2017.Chinese Academy of Sciences ranked on top with 485 publications,followed by Agriculture&Agri-Food Canada,University of Colorado,National Oceanic and Atmospheric Administration,and Aarhus University.Chinese Academy of Sciences was also the most cited organization,followed by the University of Colorado,Agriculture&Agri-Food Canada,National Oceanic and Atmospheric Administration,and United States Geological Survey.Source analysis showed that the Science of the Total Environment was cited with the highest total link strength.Science of the Total Environment ranked first in source core 1 with 290 citation frequencies,followed by Journal of Dairy Science with 223 citation frequencies.Currently,no bibliometric study has been conducted on MECF,and to fill this knowledge gap,we carried out this study to highlight methane emissions in cattle farms,aiming at a climate change perspective.In this regard,we focused on the research productivity of countries authors,journals and institutions,co-occurrence of keywords,evolution of research trends,and collaborative networking.Based on relevance degree of centrality,methane emissions and greenhouse gases appeared as basic themes,cattle,and dairy cattle appeared as emerging/declining themes,whereas,methane,greenhouse gas and nitrous oxide appeared to fall amongst basic and motor themes.On the other hand,beef cattle,rumen and dairy cow seem to be between motor and niche themes,and risk factors lie in niche themes.The present bibliometric analysis provides research progress on methane emissions in cattle farms.Current findings may provide a framework for understanding research trends and themes in MECF research. 展开更多
关键词 methane emission cattle farms climate change greenhouse gases NETWORKING BIBLIOMETRICS
在线阅读 下载PDF
16S amplicon sequencing and untargeted metabolomics reveal changes in rumen microorganisms and metabolic pathways involved in the reduction of methane by cordycepin 被引量:1
9
作者 Haokai Ma Dengke Liu +6 位作者 Rui Liu Yang Li Modinat Tolani Lambo Baisheng Dai Weizheng Shen Yongli Qu Yonggen Zhang 《Journal of Integrative Agriculture》 2025年第4期1310-1326,共17页
As a major contributor to methane production in agriculture,there is a need for a suitable methane inhibitor to reduce ruminant methane emissions and minimize the impact on the climate.This work aimed to explore the i... As a major contributor to methane production in agriculture,there is a need for a suitable methane inhibitor to reduce ruminant methane emissions and minimize the impact on the climate.This work aimed to explore the influence of cordycepin on rumen fermentation,gas production,microbiome and their metabolites.A total of 0.00,0.08,0.16,0.32,and 0.64 g L^(–1)cordycepin were added into fermentation bottles containing 2 g total mixed ration for in vitro ruminal fermentation,and then the gas produced and fermentation parameters were measured for each bottle.Samples from the 0 and 0.64 g L^(–1)cordycepin addition were selected for 16S rRNA gene sequencing and metabolome analysis.The result of this experiment indicated that the addition of cordycepin could linearly increase the concentration of total volatile fatty acid,ammonia nitrogen,the proportion of propionate,valerate,and isovalerate,and linearly reduce ruminal pH and methane,carbon dioxide,hydrogen and total gas production,as well as the methane proportion,carbon dioxide proportion and proportion of butyrate.In addition,there was a quadratic relationship between hydrogen and cordycepin addition.At the same time,the relative abundance of Succiniclasticum,Prevotella,Rikenellaceae_RC9_gut_group,NK4A214_group,Christensenellaceae_R_(7)_group,unclassified_F082,Veillonellaceae_UCG_001,Dasytricha,Ophryoscolex,Isotricha,unclassified_Eukaryota,Methanobrevibacter,and Piromyces decreased significantly after adding the maximum dose of cordycepin.In contrast,the relative abundance of Succinivibrio,unclassified_Succinivibrionaceae,Prevotellaceae_UCG_001,unclassified_Lachnospiraceae,Lachnospira,Succinivibrionaceae_UCG_002,Pseudobutyrivibrio,Entodinium,Polyplastron,unclassified_Methanomethylophilaceae,Methanosphaera,and Candidatus_Methanomethylophilus increased significantly.Metabolic pathways such as biosynthesis of unsaturated fatty acids and purine metabolism and metabolites such as arachidonic acid,adenine,and 2′-deoxyguanosine were also affected by the addition of cordycepin.Based on this,we conclude that cordycepin is an effective methane emission inhibitor that can change the rumen metabolites and fermentation parameters by influencing the rumen microbiome,thus regulating rumen methane production.This experiment may provide a potential theoretical reference for developing Cordyceps byproduct or additives containing cordycepin as methane inhibitors. 展开更多
关键词 CORDYCEPIN in vitro rumen fermentation rumen microbiome METABOLOME methane production
在线阅读 下载PDF
Challenges and development direction of deep fragmented soft coalbed methane in China 被引量:2
10
作者 Yiyu Lu Guilin Zhao +7 位作者 Zhaolong Ge Yunzhong Jia Jiren Tang Tianyi Gong Shan Huang Zhongtan Li Wenyu Fu Jianyu Mi 《Earth Energy Science》 2025年第1期38-64,共27页
Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehens... Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehensive review of commonly employed coalbed methane extraction technologies.It then delves into several critical issues in the current stage of CBM exploration and development in China,including the compatibility of existing technologies with CBM reservoirs,the characteristics and occurrence states of CBM reservoirs,critical desorption pressure,and gas generation mechanisms.Our research indicates that current CBM exploration and development technologies in China have reached an internationally advanced level,yet the industry is facing unprecedented challenges.Despite progress in low-permeability,high-value coal seams,significant breakthroughs have not been achieved in exploring other types of coal seams.For different coal reservoirs,integrated extraction technologies have been developed,such as surface pre-depressurisation and segmented hydraulic fracturing of coal seam roof strata.Additionally,techniques like large-scale volume fracturing in horizontal wells have been established,significantly enhancing reservoir stimulation effects and coalbed methane recovery rates.However,all of these technologies are fundamentally based on permeation.These technologies lack direct methods aimed at enhancing the diffusion rate of CBM,thereby failing to fully reflect the unique characteristics of CBM.Current CBM exploration and development theories and technologies are not universally applicable to all coal seams.They do not adequately account for the predominantly adsorbed state of CBM,and the complex and variable gas generation mechanisms further constrain CBM development in China.Finally,continuous exploration of new deep CBM exploration technologies is necessary.Integrating more effective reservoir stimulation technologies is essential to enhance technical adaptability concerning CBM reservoir characteristics,gas occurrence states,and gas generation mechanisms,ultimately achieving efficient CBM development.We conclude that while China possesses a substantial foundation of deep fractured CBM resources,industry development is constrained and requires continuous exploration of new CBM exploration and development technologies to utilize these resources effectively. 展开更多
关键词 Deep coalbed methane Exploration and development technology Reservoir characteristics Critical desorption pressure Gas production mechanism Development direction
在线阅读 下载PDF
Solar-driven methane-to-ethanol conversion by “intramolecular junction” with both high activity and selectivity 被引量:1
11
作者 Qijun Tang Wenguang Tu Zhigang Zou 《Chinese Journal of Structural Chemistry》 2025年第6期6-7,共2页
Methane(CH4),the predominant component of natural gas and shale gas,is regarded as a promising carbon feedstock for chemical synthesis[1].However,considering the extreme stability of CH4 molecules,it's quite chall... Methane(CH4),the predominant component of natural gas and shale gas,is regarded as a promising carbon feedstock for chemical synthesis[1].However,considering the extreme stability of CH4 molecules,it's quite challenging in simultaneously achieving high activity and selectivity for target products under mild conditions,especially when synthesizing high-value C2t chemicals such as ethanol[2].The conversion of methane to ethanol by photocatalysis is promising for achieving transformation under ambient temperature and pressure conditions.Currently,the apparent quantum efficiency(AQE)of solar-driven methane-to-ethanol conversion is generally below 0.5%[3,4].Furthermore,the stability of photocatalysts remains inadequate,offering substantial potential for further improvement. 展开更多
关键词 natural gas shale gasis target products carbon feedstock chemical synthesis howeverconsidering intramolecular junction solar driven methane ethanol conversion
原文传递
Constructing graphite-CeO_(2)interfaces to enhance the photothermal activity for solar-driven dry reforming of methane
12
作者 LI Ruitao GONG Kun +3 位作者 DAI Yuanyuan NIU Qiang LIN Tiejun ZHONG Liangshu 《燃料化学学报(中英文)》 北大核心 2025年第8期1137-1147,共11页
CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed gra... CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency. 展开更多
关键词 dry reforming of methane photothermal catalysis CeO_(2) GRAPHITE INTERFACES
在线阅读 下载PDF
Steam Methane Reforming(SMR)Combined with Ship Based Carbon Capture(SBCC)for an Efficient Blue Hydrogen Production on Board Liquefied Natural Gas(LNG)Carriers 被引量:1
13
作者 Ikram Belmehdi Boumedienne Beladjine +2 位作者 Mohamed Djermouni Amina Sabeur Mohammed El Ganaoui 《Fluid Dynamics & Materials Processing》 2025年第1期71-85,共15页
The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methaner... The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methanereforming(SMR)and ship-based carbon capture(SBCC).The first refers to the common practice used to obtainhydrogen from methane(often derived from natural gas),where steam reacts with methane to produce hydrogenand carbon dioxide(CO_(2)).The second refers to capturing the CO_(2) generated during the SMR process on boardships.By capturing and storing the carbon emissions,the process significantly reduces its environmental impact,making the hydrogen production“blue,”as opposed to“grey”(which involves CO_(2) emissions without capture).For the SMR process,the analysis reveals that increasing the reformer temperature enhances both the processperformance and CO_(2) emissions.Conversely,a higher steam-to-carbon(s/c)ratio reduces hydrogen yield,therebydecreasing thermal efficiency.The study also shows that preheating the air and boil-off gas(BOG)before theyenter the combustion chamber boosts overall efficiency and curtails CO_(2) emissions.In the SBCC process,puremonoethanolamine(MEA)is employed to capture the CO_(2) generated by the exhaust gases from the SMR process.The results indicate that with a 90%CO_(2) capture rate,the associated heat consumption amounts to 4.6 MJ perkilogram of CO_(2) captured.This combined approach offers a viable pathway to produce blue hydrogen on LNGcarriers while significantly reducing the carbon footprint. 展开更多
关键词 Carbon dioxide(CO_(2))emissions blue hydrogen boil-off gas(BOG) steam methane reforming(SMR) ship-based carbon capture(SBCC)
在线阅读 下载PDF
Orchestration of diverse components in soluble methane monooxygenase for methane hydroxylation
14
作者 Yunha Hwang Dong-Heon Lee Seung Jae Lee 《Chinese Journal of Catalysis》 2025年第1期204-212,共9页
Methane(CH_(4))has a higher heat capacity(104.9 kcal/mol)than carbon dioxide(CO_(2)),and this has inspired research aimed at reducing methane levels to retard global warming.Hydroxylation under ambient conditions thro... Methane(CH_(4))has a higher heat capacity(104.9 kcal/mol)than carbon dioxide(CO_(2)),and this has inspired research aimed at reducing methane levels to retard global warming.Hydroxylation under ambient conditions through methanotrophs can provide crucial information for understanding the harsh C-H activation of methane.Soluble methane monooxygenase(sMMO)belongs to the bacterial multi-component monooxygenase superfamily and requires hydroxylase(MMOH),regulatory(MMOB),and reductase(MMOR)components.Recent structural and biophysical studies have demonstrated that these components accelerate and retard methane hydroxylation in MMOH through protein-protein interactions.Complex structures of sMMO,including MMOH-MMOB and MMOH-MMOD,illustrate how these regulatory and inhibitory components orchestrate the di-iron active sites located within the four-helix bundles of MMOH,specifically at the docking surface known as the canyon region.In addition,recent biophysical studies have demonstrated the role of MmoR,aσ54-dependent transcriptional regulator,in regulating sMMO expression.This perspective article introduces remarkable discoveries in recent reports on sMMO components that are crucial for understanding sMMO expression and activities.Our findings provide insight into how sMMO components interact with MMOH to control methane hydroxylation,shedding light on the mechanisms governing sMMO expression and the interactions between activating enzymes and promoters. 展开更多
关键词 Soluble methane monooxygenase Non-hemedi-ironactivesite methane oxidation C-Hactivation O_(2)activation
在线阅读 下载PDF
CO_(2)-free hydrogen production from solar-driven photothermal catalytic decomposition of methane
15
作者 Yihan Zheng Yuxin Wang +6 位作者 Ruitao Li Haoran Yang Yuanyuan Dai Qiang Niu Tiejun Lin Kun Gong Liangshu Zhong 《Chinese Journal of Catalysis》 2025年第6期289-299,共11页
CO_(2)-free H_(2)refers to H_(2)production process without CO_(2)emission,which is a promising clean energy in the future.Catalytic decomposition of methane(CDM)is a competitive technology to produce CO_(2)-free H2 wi... CO_(2)-free H_(2)refers to H_(2)production process without CO_(2)emission,which is a promising clean energy in the future.Catalytic decomposition of methane(CDM)is a competitive technology to produce CO_(2)-free H2 with large-scale.However,CDM reaction is highly endothermic and is kinetically and thermodynamically unfavorable,which typically requires a harsh reaction temperature above 800℃.In this work,solar-driven photothermal catalytic decomposition of methane was firstly introduced to produce CO_(2)-free H_(2)relying solely on solar energy as the driving force.A high H_(2)yield of 204.6 mmol g^(–1)h^(–1)was observed over Ni-CeO2 interface under photothermal conditions,along with above 87%reduction in the apparent activation energy(11.2 vs.87.3 kJ mol^(–1))when comparing with the traditional thermal catalysis.Further studies suggested that Ni/CeO_(2)catalyst enhanced optical absorption in visible-infrared region to ensure the heat energy for methane decomposition.The generated electrons and holes participated in the redox process of photo-driven CDM reaction with enhanced separation ability of hot carriers excited by ultraviolet-visible light,which lowered activation energy and improved the photothermal catalytic activity.This work provides a promising photothermal catalytic strategy to produce CO_(2)-free H^(2)under mild conditions. 展开更多
关键词 CO_(2)-free hydrogen Hydrogen production Photothermal catalysis methane decomposition methane conversion
在线阅读 下载PDF
Photocatalytic,electrocatalytic and photoelectrocatalytic conversion of methane to alcohol
16
作者 Yu Huang Lei Zou +1 位作者 Yuan-Biao Huang Rong Cao 《Chinese Journal of Catalysis》 2025年第3期207-229,共23页
The conversion of the greenhouse gas methane to value-added chemicals such as alcohols is a promising technology to mitigate environmental issue and the energy crisis.Especially,the sustainable photocatalytic,electroc... The conversion of the greenhouse gas methane to value-added chemicals such as alcohols is a promising technology to mitigate environmental issue and the energy crisis.Especially,the sustainable photocatalytic,electrocatalytic and photoelectrocatalytic conversion of methane at ambient conditions is regarded as an alternative technology to replace with thermocatalysis.In this review,we summarize recent advances in photocatalytic,electrocatalytic and photoelectrocatalytic conversion of methane into alcohols.We firstly introduce the general principles of photocatalysis,electrocatalysis and photoelectrocatalysis.Then,we discuss the mechanism for selective activation of C-H bond and following oxygenation over metal,inorganic semiconductor,organic semiconductor,and heterojunction composite systems in the photocatalytic,electrocatalytic and photoelectrocatalytic methane oxidation in detail.Later,we present insights into the construction of effective photocatalyst,electrocatalyst and photoelectrocatalyst for methane conversion into alcohols from the perspective of band structures and active sites.Finally,the challenges and outlook for future designs of photocatalytic,electrocatalytic and photoelectrocatalytic methane oxidation systems are also proposed. 展开更多
关键词 Photocatalysis ELECTROCATALYSIS PHOTOELECTROCATALYSIS methane conversion ALCOHOL
在线阅读 下载PDF
Catalytic oxidation of methane for methanol production over copper sepiolite:Effect of noble metals
17
作者 Mingqiang Chen Tingting Zhu +4 位作者 Yishuang Wang Defang Liang Chang Li Haosheng Xin Jun Wang 《Chinese Journal of Chemical Engineering》 2025年第6期1-14,共14页
The direct oxidation of methane to methanol(DOMM) has been recognized as a significant technology for efficiently utilizing low-concentration coalbed methane(LCMM) and supplying liquid fuel.Herein,the noble metals(Pt,... The direct oxidation of methane to methanol(DOMM) has been recognized as a significant technology for efficiently utilizing low-concentration coalbed methane(LCMM) and supplying liquid fuel.Herein,the noble metals(Pt,Pd and Ru) modified Cu/alkalized sepiolite(CuX/SEPA) catalysts were prepared and used for the DOMM in a gas-phase system at low temperatures.The CuRu/SEPA exhibited the highest methanol production of 53 μmol·g^(-1)·h^(-1) and methanol selectivity of 90% under the optimal reaction conditions.Various characterizations demonstrated that the addition of Ru promoted the formation of Cu^(2+)and the contraction of Cu—Si/Al bonds to reduce the distance between framework Al atoms of SEPA to further generate more Al pairs,which facilitated the formation of reactive dicopper species([Cu_(2)O]^(2+)or [Cu_(2)O_(2)]^(2+)).Investigation of the reaction mechanism revealed that [Cu_(2)O]^(2+) or [Cu_(2)O_(2)]^(2+) species could adsorb and activate methane to form CH_(3)O^(*) species and ultimately generated methanol with the assistance of water. 展开更多
关键词 methane Partial oxidation methanOL Cu-based catalysts SEPIOLITE
在线阅读 下载PDF
Impact of Permeability Heterogeneity on Methane Hydrate Production Behavior during Depressurization with Controlled Sand Production
18
作者 Junyu Deng Rui Zhang +4 位作者 Xudong Zhao Hongzhi Xu Peng Ji Zizhen Zhang Yifan Yang 《Energy Engineering》 2025年第10期4153-4168,共16页
Field tests have demonstrated that depressurization with controlled sand production is an effective technique for natural gas hydrate extraction.Variations in depositional environments and processes result in signific... Field tests have demonstrated that depressurization with controlled sand production is an effective technique for natural gas hydrate extraction.Variations in depositional environments and processes result in significant heterogeneity within subsea natural gas hydrate-bearing sediments.However,the influence of permeability heterogeneity on production performance during depressurization with controlled sand production remains inadequately understood.In this study,a multiphase,multi-component mathematical model is developed to simulate depressurization with controlled sand production in methane hydrate-bearing sediments,incorporating geological conditions representative of unconsolidated argillaceous siltstone hydrate deposits in the Shenhu area of the South China Sea.The effects of permeability heterogeneity-specifically,horizontal autocorrelation length and global permeability heterogeneity-on production performance during depressurization with sand production are investigated using geostatistical modeling combined with finite difference method based numerical simulations.Results show that as the horizontal autocorrelation length of permeability distribution increases,cumulative gas production first rises and then declines,reaching its peak at λ_(Dh)=0.1,whereas sand production steadily increases.In addition,higher formation permeability heterogeneity results in increased cumulative gas and sand production,suggesting that greater heterogeneity promotesmethane hydrate decomposition and gas recovery.These findings can offer valuable insights for optimizing future field development of hydrate-bearing sediments by depressurization with controlled sand production. 展开更多
关键词 methane hydrate HETEROGENEITY DEPRESSURIZATION PRODUCTIVITY sand production
在线阅读 下载PDF
Electrochemical conversion of methane to bridge the gap in the artificial carbon cycle
19
作者 Yuhao Peng Yuefeng Song +4 位作者 Ihar Razanau Juanxiu Xiao Wei Xiao Di Hu Guoxiong Wang 《Journal of Energy Chemistry》 2025年第1期286-308,共23页
Methane, an abundant one-carbon(C_(1)) resource, is extensively used in the industrial production of vital fuels and value-added chemicals. However, current industrial methane conversion technologies are energy-and ca... Methane, an abundant one-carbon(C_(1)) resource, is extensively used in the industrial production of vital fuels and value-added chemicals. However, current industrial methane conversion technologies are energy-and carbon-intensive, mainly due to the high activation energy required to break the inert C–H bond, low selectivity, and problematic side reactions, including CO_(2)emissions and coke deposition. Electrochemical conversion of methane(ECM) using intermittent renewable energy offers an attractive solution, due to its modular reactor design and operational flexibility across a broad spectrum of temperatures and pressures. This review emphasizes conversion pathways of methane in various reaction systems, highlighting the significance and advantages of ECM in facilitating a sustainable artificial carbon cycle. This work provides a comprehensive overview of conventional methane activation mechanisms and delineates the complete pathways of methane conversion in electrolysis contexts. Based on surface/interface chemistry, this work systematically analyzes proposed reaction pathways and corresponding strategies to enhance ECM efficiency towards various target products, including syngas, hydrocarbons, oxygenates, and advanced carbon materials. The discussion also encompasses opportunities and challenges for the ECM process, including insights into ECM pathways, rational electrocatalyst design, establishment of benchmarking protocols, electrolyte engineering, enhancement of CH4conversion rates, and minimization of CO_(2)emission. 展开更多
关键词 methane Electrochemical conversion Reaction mechanism Catalyst design ELECTRODE ELECTROCATALYSIS
在线阅读 下载PDF
Co particles separated by immiscible Ag on yttria-stabilized zirconia as durable methane dry reforming catalyst under pressurized conditions
20
作者 Shi-Ning Li Juntao Yao +7 位作者 Shuxin Pang Jing-Peng Zhang Shiying Li Zhicheng Liu Lu Han Weibin Fan Kake Zhu Yi-An Zhu 《Chinese Journal of Catalysis》 2025年第7期82-96,共15页
It is economical to perform methane and carbon dioxide reforming(DRM)under industrially relevant high-pressure conditions,but the harsh operation condition poses a grand challenge for coke-resistant catalyst design.He... It is economical to perform methane and carbon dioxide reforming(DRM)under industrially relevant high-pressure conditions,but the harsh operation condition poses a grand challenge for coke-resistant catalyst design.Here,we propose to boost the coke-tolerance of Co catalyst by applying a contact potential introduced by immiscible Ag clusters.We demonstrate that Co clusters separated by neighboring Ag on Yttria-stabilized zirconia(YSZ)support can serve as a coke-and sintering-resistant DRM catalyst under diluent gas-free,stoichiometric CH_(4) and CO_(2) feeding,1123 K and 20 bar.Since immiscible metals are ubiquitous and metal contact influences surface work function in general,this new design concept may have general implications for tailoring catalytic properties of metals. 展开更多
关键词 methane dry reforming Carbon dioxide Heterogeneous catalysis CO AG
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部