Methane contributes to global warming,and livestock is one of the sources of methane production.However,methane emission studies using bibliometric tools in livestock are lacking.Given the negative impact of climate c...Methane contributes to global warming,and livestock is one of the sources of methane production.However,methane emission studies using bibliometric tools in livestock are lacking.Given the negative impact of climate change on the ecosystem and the rise in methane emissions,it is essential to conduct a bibliometrics study to provide an overview and research trends.We used the Bibliometrix package and VOSviewer to decipher bibliometric indices for methane emissions in cattle farms(MECF).Current dataset were collected from the Web of Science(Core Collection)database,and 8,998 publications were analyzed.The most co-occurring keywords scientists preferred were methane(1,528),greenhouse gas(443),methane emissions(440),and cattle(369).Methane was the most frequently used keyword in the published scientific literature.Thematic evolution of research themes and trend results highlighted carbon dioxide,methane,dairy cattle,cattle,and risk factors during 1999–2017.Chinese Academy of Sciences ranked on top with 485 publications,followed by Agriculture&Agri-Food Canada,University of Colorado,National Oceanic and Atmospheric Administration,and Aarhus University.Chinese Academy of Sciences was also the most cited organization,followed by the University of Colorado,Agriculture&Agri-Food Canada,National Oceanic and Atmospheric Administration,and United States Geological Survey.Source analysis showed that the Science of the Total Environment was cited with the highest total link strength.Science of the Total Environment ranked first in source core 1 with 290 citation frequencies,followed by Journal of Dairy Science with 223 citation frequencies.Currently,no bibliometric study has been conducted on MECF,and to fill this knowledge gap,we carried out this study to highlight methane emissions in cattle farms,aiming at a climate change perspective.In this regard,we focused on the research productivity of countries authors,journals and institutions,co-occurrence of keywords,evolution of research trends,and collaborative networking.Based on relevance degree of centrality,methane emissions and greenhouse gases appeared as basic themes,cattle,and dairy cattle appeared as emerging/declining themes,whereas,methane,greenhouse gas and nitrous oxide appeared to fall amongst basic and motor themes.On the other hand,beef cattle,rumen and dairy cow seem to be between motor and niche themes,and risk factors lie in niche themes.The present bibliometric analysis provides research progress on methane emissions in cattle farms.Current findings may provide a framework for understanding research trends and themes in MECF research.展开更多
Cutting farming-related methane emissions from ruminants is critical in the battle against climate change.Since scientists initially investigated the potential of marine macroalgae to reduce methane emissions,using se...Cutting farming-related methane emissions from ruminants is critical in the battle against climate change.Since scientists initially investigated the potential of marine macroalgae to reduce methane emissions,using seaweeds as an anti-methanogenic feed additive has become prevailing in recent years.Asparagopsis taxiformis is the preferred species because it contains a relatively higher concentration of bromoform.As a type of halogenated methane analogue,bromoform contained in A.taxiformis can specifically inhibit the activity of coenzyme M methyltransferase,thereby blocking the ruminal methanogenesis.However,bromoform is a potential toxin and ozone-depleting substance.In response,current research focuses on the effects of bromoform-enriched seaweed supplementation on ruminant productivity and safety,as well as the impact of large-scale cultivation of seaweeds on the atmospheric environment.The current research on seaweed still needs to be improved,especially in developing more species with low bromoform content,such as Bonnemaisonia hamifera,Dictyota bartayresii,and Cystoseira trinodis.Otherwise,seaweed is rich in bioactive substances and exhibits antibacterial,anti-inflammatory,and other physiological properties,but research on the role of these bioactive compounds in methane emissions is lacking.It is worthy of deeper investigation to identify more potential bioactive compounds.As a new focus of attention,seaweed has attracted the interest of many scientists.Nevertheless,seaweed still faces some challenges as a feed additive to ruminants,such as the residues of heavy metals(iodine and bromine)and bromoform in milk or meat,as well as the establishment of a supply chain for seaweed cultivation,preservation,and processing.We have concluded that the methane-reducing efficacy of seaweed is indisputable.However,its application as a commercial feed additive is still influenced by factors such as safety,costs,policy incentives,and regulations.展开更多
The paper deals with the urgent problem of gas-geochemical parameters in the seas and shelf transit zones based on a comparison of field studies and remote sensing data.The results of complex gas-geochemical studies o...The paper deals with the urgent problem of gas-geochemical parameters in the seas and shelf transit zones based on a comparison of field studies and remote sensing data.The results of complex gas-geochemical studies of the Daginsky gas-hydrothermal system are presented,as well as an assessment of methane emissions from the studied area.The Daginsky gas-hydrothermal system is located on the northeastern coast of Sakhalin Island,and is a unique object due to a combination of a number of factors:from zonality due to the proximity of the Okhotsk Sea and the geological structure,to the interaction of deep and surface processes manifested in the presence of biogenic and thermogenic methane,as well as mantle helium.Tectonic faults and oil and gas bearing structures of the northeastern shelf of Sakhalin,which determine the direction of natural gas flows and facilitate its migration to the surface,make a significant contribution to the gas appearance of thermal springs.The main gas is methane up to 90%,homologues of methane up to and including pentane have been established,and isolated high concentrations of helium and hydrogen,both dissolved and in the free gas of bubbles,have also been noted.The conducted isotope studies allow to speak about the complex genesis of the gas.δ^(13)C isotopic composition,ranging from−49.4‰to−60.2‰shows the dominance of biogenic methane with an admixture of thermogenic component.This is also confirmed by the presence of a fraction of mantle helium.The flow of methane into the atmosphere from the Daginsky area is 963757.5 mol/(km^(2)·day),or about 15.4 t/(km^(2)·year),which indicates the importance of this region for the regional and global carbon cycle.The dynamics of methane emissions can vary depending on various factors,such as seasonal fluctuations and geological activity,which further complicates the understanding of processes in the region.展开更多
Methane is one of the major greenhouse gases(GHGs)and agriculture is recognized as its primary emitter.Methane accounting is a prerequisite for developing effective agriculture mitigation strategies.In this review,met...Methane is one of the major greenhouse gases(GHGs)and agriculture is recognized as its primary emitter.Methane accounting is a prerequisite for developing effective agriculture mitigation strategies.In this review,methane accounting methods and research status for various agricultural emission source including rice fields,animal enteric fermentation and livestock and poultry manure management were overview,and the influencing factors of each emission source were analyzed and discussed.At the same time,it analyzes the different research efforts involving agricultural methane accounting and makes recommendations based on the actual situation.Finally,mitigation strategies based on accounting results and actual situation are proposed.This review aims to provide basic data and reference for agriculture-oriented countries and regions to actively participate in climate action and carry out effective methane emission mitigation.展开更多
Many studies on methane emissions from animal manure have revealed that animal manure is a major source of methane emissions to the atmosphere that can have negative consequences for people, animals and environment. I...Many studies on methane emissions from animal manure have revealed that animal manure is a major source of methane emissions to the atmosphere that can have negative consequences for people, animals and environment. In general, the release of methane can be influenced by the type of feed taken by animals, temperature, manure characteristics and so on. This study aimed at quantifying and comparing methane release from dairy manure with different piling treatments. Four treatments were designed including manure piling height 30, 45, 60 cm and adding 6 cm manure every day until the piling height was 60 cm. Static chamber method and gas chromatography were adopted to measure the methane emissions from April to June in 2009. Methane emission rates of all four manure treatments were low in the first week and then increased sharply until reaching the peak values. Subsequently, all the methane emission rates decreased and fluctuated within the steady range till the end of the experiment. Wilcoxon nonparametfic tests analysis indicated that methane emission rate was greatly influenced by manure piling height and manner. There were no significant relationships between methane emission rates and the temperatures of ambience and heap. However, regression analysis showed that the quadratic equations were found between emission rates of all treatments and the gas temperature in the barrels.展开更多
Background Sustainable strategies for enteric methane(CH_(4))mitigation of dairy cows have been extensively explored to improve production performance and alleviate environmental pressure.The present study aimed to in...Background Sustainable strategies for enteric methane(CH_(4))mitigation of dairy cows have been extensively explored to improve production performance and alleviate environmental pressure.The present study aimed to investigate the effects of dietary xylooligosaccharides(XOS)and exogenous enzyme(EXE)supplementation on milk production,nutrient digestibility,enteric CH_(4) emissions,energy utilization efficiency of lactating Jersey dairy cows.Forty-eight lactating cows were randomly assigned to one of 4 treatments:(1)control diet(CON),(2)CON with 25 g/d XOS(XOS),(3)CON with 15 g/d EXE(EXE),and(4)CON with 25 g/d XOS and 15 g/d EXE(XOS+EXE).The 60-d experimental period consisted of a 14-d adaptation period and a 46-d sampling period.The enteric CO_(2)and CH_(4) emissions and O2 consumption were measured using two GreenFeed units,which were further used to determine the energy utilization efficiency of cows.Results Compared with CON,cows fed XOS,EXE or XOS+EXE significantly(P<0.05)increased milk yield,true protein and fat concentration,and energy-corrected milk yield(ECM)/DM intake,which could be reflected by the significant improvement(P<0.05)of dietary NDF and ADF digestibility.The results showed that dietary supplementation of XOS,EXE or XOS+EXE significantly(P<0.05)reduced CH_(4) emission,CH_(4)/milk yield,and CH_(4)/ECM.Furthermore,cows fed XOS demonstrated highest(P<0.05)metabolizable energy intake,milk energy output but lowest(P<0.05)of CH_(4) energy output and CH_(4) energy output as a proportion of gross energy intake compared with the remaining treatments.Conclusions Dietary supplementary of XOS,EXE or combination of XOS and EXE contributed to the improvement of lactation performance,nutrient digestibility,and energy utilization efficiency,as well as reduction of enteric CH_(4) emissions of lactating Jersey cows.This promising mitigation method may need further research to validate its long-term effect and mode of action for dairy cows.展开更多
Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on gr...Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on grain yield,water productivity(WP),nitrogen use efficiency(NUE),and greenhouse gas emission in this practice.This study investigated the question using two rice cultivars in 2015 and 2016 grown in soil with wheat straw incorporated into it.Rice seeds were directly seeded into raised beds,which were maintained under aerobic conditions during the early seedling period.Three irrigation regimes:continuous flooding(CF),alternate wetting and drying(AWD),and furrow irrigation(FI),were applied from 4.5-leaf-stage to maturity.Compared with CF,both AWD and FI significantly increased grain yield,WP,and internal NUE,with greater increases under the FI regime.The two cultivars showed the same tendency in both years.Both AWD and FI markedly increased soil redox potential,root and shoot biomass,root oxidation activity,leaf photosynthetic NUE,and harvest index and markedly decreased global warming potential,owing to substantial reduction in seasonalThe results demonstrate that adoption of either AWD or FI could increase grain yield and resource-use efficiency and reduce environmental risks in dry direct-seeded rice grown on raised beds with wheat straw incorporation in the wheat–rice rotation system.展开更多
A three-year experiment was conducted in the middle-lower reaches of the Yangtze River in China to study the influence of continuous wheat straw return during the rice season and continuous rice straw return in wheat ...A three-year experiment was conducted in the middle-lower reaches of the Yangtze River in China to study the influence of continuous wheat straw return during the rice season and continuous rice straw return in wheat on methane (CH 4 ) emissions from rice fields in which, the rice-wheat rotation system is the most dominant planting pattern. The field experiment was initiated in October 2009 and has continued since the wheat-growing season of that year. The analyses for the present study were conducted in the second (2011) and third (2012) rice growing seasons. Four treatments, namely, the continuous return of wheat straw and rice straw in every season (WR), of rice straw but no wheat straw return (R), of wheat straw but no rice straw return (W) and a control with no straw return (CK), were laid out in a randomized split-plot design. The total seasonal CH 4 emissions ranged from 107.4 to 491.7 kg/ha (2011) and 160.3 to 909.6 kg/ha (2012). The increase in CH 4 emissions for treatments WR and W were 289% and 230% in the second year and 185% and 225% in the third year, respectively, in relation to CK. We observed less methane emissions in the treatment R than in CK by 14%-43%, but not statistically significant. Treatment R could increase rice productivity while no more CH 4 emission occurs. The difference in the total CH 4 emissions mainly related to a difference in the methane flux rate during the first 30-35 days after transplant in the rice growing season, which was caused by the amount of dissolved oxygen in paddy water and the amount of reducible soil materials.展开更多
Methane(CH_(4))emissions from ruminant production are a significant source of anthropogenic greenhouse gas production,but few studies have examined the enteric CH_(4)emissions of lactating dairy cows under different f...Methane(CH_(4))emissions from ruminant production are a significant source of anthropogenic greenhouse gas production,but few studies have examined the enteric CH_(4)emissions of lactating dairy cows under different feeding regimes in China.This study aimed to investigate the influence of different dietary neutral detergent fiber/non-fibrous carbohydrate(NDF/NFC)ratios on production performance,nutrient digestibility,and CH_(4)emissions for Holstein dairy cows at various stages of lactation.It evaluated the performance of CH_(4)prediction equations developed using local dietary and milk production variables compared to previously published prediction equations developed in other production regimes.For this purpose,36 lactating cows were assigned to one of three treatments with differing dietary NDF/NFC ratios:low(NDF/NFC=1.19),medium(NDF/NFC=1.54),and high(NDF/NFC=1.68).A modified acid-insoluble ash method was used to determine nutrient digestibility,while the sulfur hexafluoride technique was used to measure enteric CH4 emissions.The results showed that the dry matter(DM)intake of cows at the early,middle,and late stages of lactation decreased significantly(P<0.01)from 20.9 to 15.4 kg d^(–1),15.3 to 11.6 kg d^(–1),and 16.4 to 15.0 kg d^(–1),respectively,as dietary NDF/NFC ratios increased.Across all three treatments,DM and gross energy(GE)digestibility values were the highest(P<0.05)for cows at the middle and late lactation stages.Daily CH_(4)emissions increased linearly(P<0.05),from 325.2 to 391.9 kg d^(–1),261.0 to 399.8 kg d^(–1),and 241.8 to 390.6 kg d^(–1),respectively,as dietary NDF/NFC ratios increased during the early,middle,and late stages of lactation.CH_(4)emissions expressed per unit of metabolic body weight,DM intake,NDF intake,or fat-corrected milk yield increased with increasing dietary NDF/NFC ratios.In addition,CH_(4)emissions expressed per unit of GE intake increased significantly(P<0.05),from 4.87 to 8.12%,5.16 to 9.25%,and 5.06 to 8.17%respectively,as dietary NDF/NFC ratios increased during the early,middle,and late lactation stages.The modelling results showed that the equation using DM intake as the single variable yielded a greater R^(2)than equations using other dietary or milk production variables.When data obtained from each lactation stage were combined,DM intake remained a better predictor of CH_(4)emissions(R^(2)=0.786,P=0.026)than any other variables tested.Compared to the prediction equations developed herein,previously published equations had a greater root mean square prediction error,reflecting their inability to predict CH_(4)emissions for Chinese Holstein dairy cows accurately.The quantification of CH_(4)production by lactating dairy cows under Chinese production systems and the development of associated prediction equations will help establish regional or national CH_(4)inventories and improve mitigation approaches to dairy production.展开更多
Although the effect of animal and diet factors on enteric methane (CH4) emissions from confined cattle has been extensively examined, less data is available regarding CH4 emissions from grazing young cattle. A study...Although the effect of animal and diet factors on enteric methane (CH4) emissions from confined cattle has been extensively examined, less data is available regarding CH4 emissions from grazing young cattle. A study was undertaken to evaluate the effect of the physiological state of Holstein-Friesian heifers on their enteric CH4 emissions while grazing a perennial ryegrass sward. Two experiments were conducted: Experiment 1 ran from May 2011 for 11 weeks and Experiment 2 ran from August 2011 for 10 weeks. In each experiment, Holstein-Friesian heifers were divided into three treatment groups (12 animals/group) consisting of calves, yearling heifers, and in-calf heifers (average ages: 8.5, 14.5, and 20.5 months, respectively). Methane emissions were estimated for each animal in the final week of each experiment using the sulfur hexafluoride tracer technique. Dry matter (DM) intake was estimated using the calculated metabolizable energy (ME) requirement divided by the ME concentration in the grazed grass. As expected, live weight increased with increasing animal age (P 〈 0.001); however, there was no difference in live weight gain among the three groups in Experiment 1, although in Experiment 2, this variable decreased with increasing animal age (P 〈 0.001 ). In Experiment 1, yearling heifers had the highest CH4 emissions (g·d^-1) and in-calf heifers produced more than calves (P 〈 0.001 ). When expressed as CH4 emissions per unit of live weight, DM intake, and gross energy (GE) intake, yearling heifers had higher emission rates than calves and in-calf heifers (P 〈 0.001). However, the effects on CH4 emissions were different in Experiment 2, in which CH, emissions (g·d^-1) increased linearly with increasing animal age (P 〈 0.001), although the difference between yearling and in-calf heifers was not significant. The CH4/live weight ratio was lower in in-calf heifers than in the other two groups (P 〈 0.001 ), while CH4 energy output as a proportion of GE intake was lower in calves than in yearling and in-calf heifers (P 〈 0.05). All data were then pooled and used to develop prediction equations for CH4 emissions. All relationships are significant (P 〈 0.001), with R2 values ranging from 0.630 to 0.682. These models indicate that CH4 emissions could be increased by 0.252 g.d-1 with an increase of I kg live weight or by 14.9 g·d^-1 with an increase of 1 kg·d^-1 of DM intake; or, the CH4 energy output could be increased by 0.046 MJ·d^-1 with an increase of 1 MJ·d^-1 of GE intake. These results provide an alternative approach for estimating CH4 emissions from grazine dairy heifers when actual CH, emission data are not available.展开更多
Prediction of methane emissions at the stage of longwall planning constitutes the basis for the determination of the appropriate method and parameters of ventilation and selection of prevention means including the met...Prediction of methane emissions at the stage of longwall planning constitutes the basis for the determination of the appropriate method and parameters of ventilation and selection of prevention means including the methane drainage technol- ogy. The growth of methane saturation of coal seams with the extraction depth, with simultaneously increasing output concen- tration, contributes to the increase of the quantity of methane emitted into longwall areas. The subject matter of the article has been directed at the predicted quantity of methane emissions into planned longwalls with roof caving in the layer of seams adjacent to the roof of large thickness. The performed prognostic calculations of methane emissions into the longwall working were referred to two sources, i.e. methane liberated during coal mining by means of a cutter-loader and methane originating from the degasification of the floor layer destressed by the longwall conducted in the close-to-roof layer. The calculations of predictions allow to refer to the planned longwall, on account of the emitting methane, with possible and safe output quantity. Planning of extraction in the close-to-roof layer of a seam of large thickness with roof caving is especially important in con- ditions of increasing methane saturation with the depth of deposition and should be preceded by a prognostic analysis for de- termining the extraction possibilities of the planned longwall.展开更多
Methane in rice paddies is mainly produced by methanogenic communities feeding on carbon from root exudates and debris.However,the dominant root secretion governing methane emissions is not yet identified after decade...Methane in rice paddies is mainly produced by methanogenic communities feeding on carbon from root exudates and debris.However,the dominant root secretion governing methane emissions is not yet identified after decades of studies,even though secreted carbohydrates and organic acids have been shown to contribute to methane emissions.In this study,we discovered that fumarate and ethanol are two major rice-orchestrated secretions and play a key role in regulating methane emissions.Fumarate released in the rhizosphere is metabolized by microorganisms,supporting the growth of methanogenic archaea that produce methane as an end carbon product,while ethanol mitigates methane emissions through inhibition of methanogenic activity and growth as well as reducing fumarate synthesis in the rice root.Furthermore,we elucidated the route of fumarate metabolism in the anoxic rhizospheric zone.We found that fumarate in the rice root is produced from acetate via propionate and succinate,and when released into soil directly is oxidized to propionate before conversion via acetate into methane as the end product.The knowledge on fumarate and ethanol metabolism in rice was then used for hybrid breeding of new rice varieties with the property of low methane emission.Cultivation of these novel rice lines or employing our findings for rice cultivation managements showed up to 70%reductions in methane production from seven paddy field sites during 3 years of cultivation trials.Taken together,these findings offer great possibilities for effective mitigation of the global climatic impact of rice cultivation.展开更多
Understanding livestock performance in typical steppe ecosystems is essential for optimizing grassland-livestock interactions and minimizing environmental impact.To assess the effects of different stocking rates on th...Understanding livestock performance in typical steppe ecosystems is essential for optimizing grassland-livestock interactions and minimizing environmental impact.To assess the effects of different stocking rates on the growth performance,energy and nitrogen utilization,methane(CH_(4))emissions,and grazing behavior of Tan sheep,a 2-year grazing experiment in the typical steppe was conducted.The grazing area was divided into 9 paddocks,each 0.5 ha,with 3 spatial replicates for each stocking rate treatment(4,8,and 13 sheep per paddock),corresponding to 2.7,5.3,and 8.7 sheep ha^(–1).The results showed that the neutral detergent fiber(NDF)and acid detergent fiber(ADF)contents of herbage varied between grazing years(P<0.05),with a positive correlation between stocking rate and crude fiber content in the herbage(P<0.05).Dry matter intake(DMI)decreased with increasing stocking rate(P<0.05),and the average daily gain(ADG)was highest at 2.7 sheep ha^(–1)(P<0.05).Compared to 2.7 and 8.7 sheep ha^(–1),the5.3 sheep ha^(–1)treatment exhibited the lowest nutrient digestibility for dry matter,nitrogen,and ether extract(P<0.05).Fecal nitrogen was lowest at 8.7 sheep ha^(–1)(P<0.05),while retained nitrogen as a proportion of nitrogen intake was highest.Digestive energy(DE),metabolic energy(ME),and the ratios of DE to gross energy(GE)and ME to GE were highest at 8.7 sheep ha^(–1)(P<0.05).In contrast,CH_4 emissions,CH_4 per DMI,and CH_(4)E as a proportion of GE were highest at 2.7 sheep ha^(–1)(P<0.05).Stocking rate and grazing year did not significantly affect rumen fermentation parameters,including volatile fatty acids,acetate,propionate,and the acetate/propionate ratio.At 8.7sheep ha^(–1),daily grazing time and inter-individual distance increased,while time allocated to grazing,walking,and ruminating/resting decreased as stocking rates increased(P<0.05).This study highlights the importance of adjusting stocking rates based on the nutritional value of forage and grazing year to optimize grazing management.展开更多
Dietary fat content can reduce the methane production of dairy cows;however,the relevance fatty acid(FA)composition has towards this inhibitory effect is debatable.Furthermore,in-depth studies elucidating the effects ...Dietary fat content can reduce the methane production of dairy cows;however,the relevance fatty acid(FA)composition has towards this inhibitory effect is debatable.Furthermore,in-depth studies elucidating the effects of unsaturated fatty acids(UFA)on rumen function and the mechanism of reducing methane(CH_(4))production are lacking.This study exposed 10 Holstein cows with the same parity,similar milk yield to two total mixed rations:low unsaturated FA(LUFA)and high unsaturated FA(HUFA)with similar fat content.The LUFA group mainly added fat powder(C16:0>90%),and the HUFA group mainly replaced fat powder with extruded flaxseed.The experiment lasted 26 d,the last 5 d of which,gas exchange in respiratory chambers was conducted to measure gas emissions.We found that an increase in the UFA in diet did not affect milk production(P>0.05)and could align the profile of milk FAs more closely with modern human nutritional requirements.Furthermore,we found that increasing the UFA content in the diet lead to a decrease in the abundance of Methanobrevibacter in the rumen(|linear discriminant analysis[LDA]score|>2 and P 2 and P<0.05),which ultimately decreased CH4 production(P<0.05).Our results illustrated the mechanism involving decreased CH4 production when fed a UFA diet in dairy cows.We believe that our study provides new evidence to explore CH4 emission reduction measures for dairy cows.展开更多
Carbon emissions from wastewater treatment contribute to global warming and have received widespread attention.It is necessary to seek low-carbon wastewater treatment technologies.Microbial fuel cells(MFC)and osmotic ...Carbon emissions from wastewater treatment contribute to global warming and have received widespread attention.It is necessary to seek low-carbon wastewater treatment technologies.Microbial fuel cells(MFC)and osmotic microbial fuel cells(Os MFC)are low-carbon technologies that enable both wastewater treatment and energy recovery.In this study,MFC and Os MFC were used to treat sulfamethoxazole(SMX)wastewater,and direct carbon emissions during operation was calculated.The highest SMX removal rate can reach about 40%.Simultaneously,the CH_(4)emission factor was significantly reduced to<6 g CO_(2)/kg of chemical oxygen demand.The accumulation of SMX-degrading bacteria competed with methanogens for carbon source utilization,leading to a significant decrease in the relative abundance of methanogens.It is hoped that this study can provide a sustainable approach to antibiotic wastewater treatment and promote the development of low-carbon wastewater treatment technologies.展开更多
The Mekong Delta in Vietnam is a region that produces rice and emits methane,a potent greenhouse gas.Vietnam’s rice exports,which rank among the top four globally,have a significant impact on the world’s food suppy....The Mekong Delta in Vietnam is a region that produces rice and emits methane,a potent greenhouse gas.Vietnam’s rice exports,which rank among the top four globally,have a significant impact on the world’s food suppy.The Eddy Covariance system,positioned in the rice field,has been recording methane emission rates and bio-meteorological factors.This study presents the findings of three crop seasons(Summer-Autumn 2020(S-A20),Winter-Spring 2021(W-S21),and Spring-Summer 2021(S-S21))from the year 2020 to 2021.The highest CH4 emission value was observed in the S-S21 crop,reaching 4.14μmol s^(-1 )m^(-2).Elevated CH_(4) emission rates were predominantly recorded during the vegetative stage within first 21 days after planting,while lower CH_(4) emissions were observed during the reproductive and ripening stages.This pattern clearly indicates higher methane emissions at the vegetative stage of the growing rice,likely due to the abundance of organic matter in the rice fields.The average CH4 emission rate was 0.1μmol m^(-2) s^(-1).Notably,high methane emissions were recorded when the soil surface temperature was below 33℃.As a results,the S-S21 exhibits the highest methane emission rates compared to other seasons.展开更多
A numerical simulation model is presented in this paper,which comprises the processes of crop growth,soil organic carbon decomposition,and methane emissions in agroecosystems. Simulation results show that the model ca...A numerical simulation model is presented in this paper,which comprises the processes of crop growth,soil organic carbon decomposition,and methane emissions in agroecosystems. Simulation results show that the model can simulate the main process of methane emissions well, and the correlation coefficient between the simulated values and observed data is 0.79 with 239 samples,which passed a significance test of 0.01.The average error of methane emission simulation in whole growth period is about 15%.Numerical analysis of the model indicates that the average temperature during rice growth period has much impacts on methane emissions,and the basic trend of interannual methane emissions is similar to that of average temperature.The amount of methane emissions reduces about 34.93%,when the fertilizer is used instead of manure in single rice paddy.展开更多
Background Silage is widely used to formulate dairy cattle rations,and the utilization of antibiotics and methane emissions are 2 major problems for a sustainable and environmentally beneficial ruminant production sys...Background Silage is widely used to formulate dairy cattle rations,and the utilization of antibiotics and methane emissions are 2 major problems for a sustainable and environmentally beneficial ruminant production systems.Bacteriocin has received considerable attention because of its potential as an alternative to antibiotics in animal husbandry.However,the impact of bacteriocin-producing lactic acid bacteria on the microbiological conversion process of whole-plant corn silage and rumen fermentation remains limited.The purpose of this study was to assess the effect of 2 classⅡa bacteriocin-producing strains Lactiplantibacillusplontarum ATCC14917 and CICC24194 on bacterial community composition and ensiling profiles of whole-plant corn silage and its in vitro rumen fermentation,microbiota,and CH_(4) emissions.Results Both bacteriocin-producing strains increased the lactic acid concentration in silage fermented for 7 d,whereas the lowest lactic acid was observed in the ATCC14917 inoculated silage fermented for 90 d(P<0.05).The highest DM content was observed in the CICC24194 treatment(P<0.05),and the silages treated with both strains had the lowest DM loss(P<0.05).Bacteriocin-producing strains promoted the growth of Levilactobacillus brevis on d 60of ensiling.In addition,treatment with bacteriocin-producing strains increased the in vitro DM digestibility(P<0.05)and decreased the CH_(4) production(P<0.05).The results of random forest and clustering analyses at the genus level showed that ATCC14917 increased the relative abundance of the influential variable Bacillus compared to that in the control group,whereas CICC24194 decreased the relative abundance of the influential variable Ruminococcaceae UCG-005.The CICC24194 treatment had the lowest total bacterial,fungal,protozoan,and methanogen populations(P<0.05).Conclusions Both classⅡa bacteriocin-producing L.plantarum strains improved the fermentation quality of wholeplant corn silage by regulating the bacterial community composition during ensiling,with CICC24194 being the most effective.Both bacteriocin-producing strains mitigated CH_(4) production and improved digestibility by modulating the interactions among rumen bacteria,protozoa,methanogens,and the composition of fibrolytic bacteria.展开更多
Rice-duck (RD) and rice-fish (RF) ecological systems are major complex planting and breeding models of rice paddy fields in southern China. Studying the methane (CH4) and nitrous oxide (N2O) emissions and thei...Rice-duck (RD) and rice-fish (RF) ecological systems are major complex planting and breeding models of rice paddy fields in southern China. Studying the methane (CH4) and nitrous oxide (N2O) emissions and their economic value from these two ecosystems can provide theoretical and practical basis for further development and utilization of these classical agricultural techniques. CH4 and N2O emissions from RD and RF ecological systems were measured in situ by using static chambers technique. Using global warming potentials (GWPs), we assessed the greenhouse effect of CH4 and N2O and their economic value. Results showed that the peaks of CH4 emission fluxes from RD and RF appeared at full tillering stage and at heading stage, and the average emission fluxes were significantly (P〈 0.05) lower than that from CK. N2O fluxes remained low when the field is flooded and high after draining the water. Compared with CK, the total amount of N2O emissions was significantly (P〈0.05) higher and slightly lower than those from RD and RF, respectively. In 2006 and 2007, the total greenhouse effect of CH4 and N20 from RD and RF were 4 728.3 and 4 611 kg CO2 ha^-1, 4 545 and 4 754.3 kg CO2 ha^-1, respectively. The costs of greenhouse effect were 970.89 and 946.81 RMB yuan ha^-1, and 933.25 and 976.23 RMB yuan ha^-1, respectively, which were significant lower than those from CK (5 997.6 and 5 391.5 RMB yuan ha^-1). Except for the environment cost of CH4 and N2O, the economic benefits from RD and RF were 2 210.64 and 4 881.92 RMB yuan ha^-1; 3 798.37 and 5 310.64 RMB yuan ha^-1, respectively, higher than those from CK. Therefore, RD and RF complex ecological planting and breeding models can effectively decrease and control CH4 and N2O emissions, and they are two of the effective strategies to reduce greenhouse gases from rice paddy fields and contribute in alleviating global warming. Thus, their adoption is important to the environment together with their economy benefits.展开更多
This study was carried out in paddy fields to explore how organic manure applications would affect greenhouse emissions in South China. The results showed that the seasonal emission of CH4 under the chemical fertiliz...This study was carried out in paddy fields to explore how organic manure applications would affect greenhouse emissions in South China. The results showed that the seasonal emission of CH4 under the chemical fertilizer (CF) treatment was 271.47 kg/hm^2. In comparison, the seasonal emissions of CH4 under the treatment of pig manure (PM), chicken manure (CM) and rice straw (RS) increased by 50.61,260.22 and 602.82 kg/hm^2, respectively. N2O emission under the CF treatment was 1.22 kg/hm^2, while the N20 seasonal emissions under tile PM, CM and RS treatment decreased by 23.6% (P〈0.05), 31.7% (P〈0.05) and 30.9% (P〈0.05), respectively. Meanwhile, the readily oxidized organic carbon (which was oxidized by 167 mmol/L potassium permanganate, ROC167) of manure, paddy soil Eh value and temperature could also affect the CH4 emissions. The average yield of the organic fertilizer treatments increased by 6.8% compared with that of the CF treatment. Among all the organic fertilizer treatments, the PM treatment offered the lowest global warming potential and greenhouse gas intensity, in which the PM was of no significant difference from NF (no fertilizing) and CF. Therefore, the pig manure is capable of coordinating the relationship between environment and yield, and it also has a low ROC167 content, so the PM is considered worthy of recommendation.展开更多
基金supported by the Special Fund for Science and Technology Innovation Strategy of Guangdong Province,China(2022660500250009604)。
文摘Methane contributes to global warming,and livestock is one of the sources of methane production.However,methane emission studies using bibliometric tools in livestock are lacking.Given the negative impact of climate change on the ecosystem and the rise in methane emissions,it is essential to conduct a bibliometrics study to provide an overview and research trends.We used the Bibliometrix package and VOSviewer to decipher bibliometric indices for methane emissions in cattle farms(MECF).Current dataset were collected from the Web of Science(Core Collection)database,and 8,998 publications were analyzed.The most co-occurring keywords scientists preferred were methane(1,528),greenhouse gas(443),methane emissions(440),and cattle(369).Methane was the most frequently used keyword in the published scientific literature.Thematic evolution of research themes and trend results highlighted carbon dioxide,methane,dairy cattle,cattle,and risk factors during 1999–2017.Chinese Academy of Sciences ranked on top with 485 publications,followed by Agriculture&Agri-Food Canada,University of Colorado,National Oceanic and Atmospheric Administration,and Aarhus University.Chinese Academy of Sciences was also the most cited organization,followed by the University of Colorado,Agriculture&Agri-Food Canada,National Oceanic and Atmospheric Administration,and United States Geological Survey.Source analysis showed that the Science of the Total Environment was cited with the highest total link strength.Science of the Total Environment ranked first in source core 1 with 290 citation frequencies,followed by Journal of Dairy Science with 223 citation frequencies.Currently,no bibliometric study has been conducted on MECF,and to fill this knowledge gap,we carried out this study to highlight methane emissions in cattle farms,aiming at a climate change perspective.In this regard,we focused on the research productivity of countries authors,journals and institutions,co-occurrence of keywords,evolution of research trends,and collaborative networking.Based on relevance degree of centrality,methane emissions and greenhouse gases appeared as basic themes,cattle,and dairy cattle appeared as emerging/declining themes,whereas,methane,greenhouse gas and nitrous oxide appeared to fall amongst basic and motor themes.On the other hand,beef cattle,rumen and dairy cow seem to be between motor and niche themes,and risk factors lie in niche themes.The present bibliometric analysis provides research progress on methane emissions in cattle farms.Current findings may provide a framework for understanding research trends and themes in MECF research.
基金supported by the Youth Innovation Program of the Chinese Academy of Agricultural Sciences(Y2022QC10)the Agricultural Science and Technology Innovation Program,China(CAAS-ASTIP-2023-IFR-03,CAAS-IFR-ZDRW202302 and CAAS-IFR-ZDRW202404)the Basal Research Fund of the Institute of Feed Research of Chinese Academy of Agricultural Sciences(1610382024009)。
文摘Cutting farming-related methane emissions from ruminants is critical in the battle against climate change.Since scientists initially investigated the potential of marine macroalgae to reduce methane emissions,using seaweeds as an anti-methanogenic feed additive has become prevailing in recent years.Asparagopsis taxiformis is the preferred species because it contains a relatively higher concentration of bromoform.As a type of halogenated methane analogue,bromoform contained in A.taxiformis can specifically inhibit the activity of coenzyme M methyltransferase,thereby blocking the ruminal methanogenesis.However,bromoform is a potential toxin and ozone-depleting substance.In response,current research focuses on the effects of bromoform-enriched seaweed supplementation on ruminant productivity and safety,as well as the impact of large-scale cultivation of seaweeds on the atmospheric environment.The current research on seaweed still needs to be improved,especially in developing more species with low bromoform content,such as Bonnemaisonia hamifera,Dictyota bartayresii,and Cystoseira trinodis.Otherwise,seaweed is rich in bioactive substances and exhibits antibacterial,anti-inflammatory,and other physiological properties,but research on the role of these bioactive compounds in methane emissions is lacking.It is worthy of deeper investigation to identify more potential bioactive compounds.As a new focus of attention,seaweed has attracted the interest of many scientists.Nevertheless,seaweed still faces some challenges as a feed additive to ruminants,such as the residues of heavy metals(iodine and bromine)and bromoform in milk or meat,as well as the establishment of a supply chain for seaweed cultivation,preservation,and processing.We have concluded that the methane-reducing efficacy of seaweed is indisputable.However,its application as a commercial feed additive is still influenced by factors such as safety,costs,policy incentives,and regulations.
基金funded by a grant Russian Science Foundation(No.23-77-10038,https://rscf.ru/project/23-77-10038/)partly within the framework of the state task of the POI FEB RAS(No.124022100078-7).
文摘The paper deals with the urgent problem of gas-geochemical parameters in the seas and shelf transit zones based on a comparison of field studies and remote sensing data.The results of complex gas-geochemical studies of the Daginsky gas-hydrothermal system are presented,as well as an assessment of methane emissions from the studied area.The Daginsky gas-hydrothermal system is located on the northeastern coast of Sakhalin Island,and is a unique object due to a combination of a number of factors:from zonality due to the proximity of the Okhotsk Sea and the geological structure,to the interaction of deep and surface processes manifested in the presence of biogenic and thermogenic methane,as well as mantle helium.Tectonic faults and oil and gas bearing structures of the northeastern shelf of Sakhalin,which determine the direction of natural gas flows and facilitate its migration to the surface,make a significant contribution to the gas appearance of thermal springs.The main gas is methane up to 90%,homologues of methane up to and including pentane have been established,and isolated high concentrations of helium and hydrogen,both dissolved and in the free gas of bubbles,have also been noted.The conducted isotope studies allow to speak about the complex genesis of the gas.δ^(13)C isotopic composition,ranging from−49.4‰to−60.2‰shows the dominance of biogenic methane with an admixture of thermogenic component.This is also confirmed by the presence of a fraction of mantle helium.The flow of methane into the atmosphere from the Daginsky area is 963757.5 mol/(km^(2)·day),or about 15.4 t/(km^(2)·year),which indicates the importance of this region for the regional and global carbon cycle.The dynamics of methane emissions can vary depending on various factors,such as seasonal fluctuations and geological activity,which further complicates the understanding of processes in the region.
基金supported partly by the National Key R&D Program of China(No.2022YFE029500)the National Natural Science Foundation of China(No.51637005)+1 种基金the S&T Program of Hebei(No.G2020502001)the Information Plan of Chinese Academy of Sciences(No.CAS-WX 2023PY-0103)。
文摘Methane is one of the major greenhouse gases(GHGs)and agriculture is recognized as its primary emitter.Methane accounting is a prerequisite for developing effective agriculture mitigation strategies.In this review,methane accounting methods and research status for various agricultural emission source including rice fields,animal enteric fermentation and livestock and poultry manure management were overview,and the influencing factors of each emission source were analyzed and discussed.At the same time,it analyzes the different research efforts involving agricultural methane accounting and makes recommendations based on the actual situation.Finally,mitigation strategies based on accounting results and actual situation are proposed.This review aims to provide basic data and reference for agriculture-oriented countries and regions to actively participate in climate action and carry out effective methane emission mitigation.
基金supported by the Special Environmental Research Fund for Public Welfare(No.200809087)
文摘Many studies on methane emissions from animal manure have revealed that animal manure is a major source of methane emissions to the atmosphere that can have negative consequences for people, animals and environment. In general, the release of methane can be influenced by the type of feed taken by animals, temperature, manure characteristics and so on. This study aimed at quantifying and comparing methane release from dairy manure with different piling treatments. Four treatments were designed including manure piling height 30, 45, 60 cm and adding 6 cm manure every day until the piling height was 60 cm. Static chamber method and gas chromatography were adopted to measure the methane emissions from April to June in 2009. Methane emission rates of all four manure treatments were low in the first week and then increased sharply until reaching the peak values. Subsequently, all the methane emission rates decreased and fluctuated within the steady range till the end of the experiment. Wilcoxon nonparametfic tests analysis indicated that methane emission rate was greatly influenced by manure piling height and manner. There were no significant relationships between methane emission rates and the temperatures of ambience and heap. However, regression analysis showed that the quadratic equations were found between emission rates of all treatments and the gas temperature in the barrels.
基金the Key Program for International S&T Cooperation Projects of China(2022YFE0130100)Central Public-interest Scientific Institution Basal Research Fund of Chinese Academy of Agricultural Sciences(Y2022GH12).
文摘Background Sustainable strategies for enteric methane(CH_(4))mitigation of dairy cows have been extensively explored to improve production performance and alleviate environmental pressure.The present study aimed to investigate the effects of dietary xylooligosaccharides(XOS)and exogenous enzyme(EXE)supplementation on milk production,nutrient digestibility,enteric CH_(4) emissions,energy utilization efficiency of lactating Jersey dairy cows.Forty-eight lactating cows were randomly assigned to one of 4 treatments:(1)control diet(CON),(2)CON with 25 g/d XOS(XOS),(3)CON with 15 g/d EXE(EXE),and(4)CON with 25 g/d XOS and 15 g/d EXE(XOS+EXE).The 60-d experimental period consisted of a 14-d adaptation period and a 46-d sampling period.The enteric CO_(2)and CH_(4) emissions and O2 consumption were measured using two GreenFeed units,which were further used to determine the energy utilization efficiency of cows.Results Compared with CON,cows fed XOS,EXE or XOS+EXE significantly(P<0.05)increased milk yield,true protein and fat concentration,and energy-corrected milk yield(ECM)/DM intake,which could be reflected by the significant improvement(P<0.05)of dietary NDF and ADF digestibility.The results showed that dietary supplementation of XOS,EXE or XOS+EXE significantly(P<0.05)reduced CH_(4) emission,CH_(4)/milk yield,and CH_(4)/ECM.Furthermore,cows fed XOS demonstrated highest(P<0.05)metabolizable energy intake,milk energy output but lowest(P<0.05)of CH_(4) energy output and CH_(4) energy output as a proportion of gross energy intake compared with the remaining treatments.Conclusions Dietary supplementary of XOS,EXE or combination of XOS and EXE contributed to the improvement of lactation performance,nutrient digestibility,and energy utilization efficiency,as well as reduction of enteric CH_(4) emissions of lactating Jersey cows.This promising mitigation method may need further research to validate its long-term effect and mode of action for dairy cows.
基金the National Key Research and Development Program of China (2016YFD0300206-4)the National Natural Science Foundation of China (31461143015, 31471438)+3 种基金the National Key Technology R&D Program of China (2014AA10A605)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD-201501)the Top Talent Supporting Program of Yangzhou University (2015-01)the Hong Kong Research Grant Council (14122415,14160516,14177617,AoE/M-05/12,AoE/M-403/16)
文摘Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on grain yield,water productivity(WP),nitrogen use efficiency(NUE),and greenhouse gas emission in this practice.This study investigated the question using two rice cultivars in 2015 and 2016 grown in soil with wheat straw incorporated into it.Rice seeds were directly seeded into raised beds,which were maintained under aerobic conditions during the early seedling period.Three irrigation regimes:continuous flooding(CF),alternate wetting and drying(AWD),and furrow irrigation(FI),were applied from 4.5-leaf-stage to maturity.Compared with CF,both AWD and FI significantly increased grain yield,WP,and internal NUE,with greater increases under the FI regime.The two cultivars showed the same tendency in both years.Both AWD and FI markedly increased soil redox potential,root and shoot biomass,root oxidation activity,leaf photosynthetic NUE,and harvest index and markedly decreased global warming potential,owing to substantial reduction in seasonalThe results demonstrate that adoption of either AWD or FI could increase grain yield and resource-use efficiency and reduce environmental risks in dry direct-seeded rice grown on raised beds with wheat straw incorporation in the wheat–rice rotation system.
基金supported by the National Science and Technology Support Plan Project in China (No. 2012BAD04B08, 2011BAD16B14)
文摘A three-year experiment was conducted in the middle-lower reaches of the Yangtze River in China to study the influence of continuous wheat straw return during the rice season and continuous rice straw return in wheat on methane (CH 4 ) emissions from rice fields in which, the rice-wheat rotation system is the most dominant planting pattern. The field experiment was initiated in October 2009 and has continued since the wheat-growing season of that year. The analyses for the present study were conducted in the second (2011) and third (2012) rice growing seasons. Four treatments, namely, the continuous return of wheat straw and rice straw in every season (WR), of rice straw but no wheat straw return (R), of wheat straw but no rice straw return (W) and a control with no straw return (CK), were laid out in a randomized split-plot design. The total seasonal CH 4 emissions ranged from 107.4 to 491.7 kg/ha (2011) and 160.3 to 909.6 kg/ha (2012). The increase in CH 4 emissions for treatments WR and W were 289% and 230% in the second year and 185% and 225% in the third year, respectively, in relation to CK. We observed less methane emissions in the treatment R than in CK by 14%-43%, but not statistically significant. Treatment R could increase rice productivity while no more CH 4 emission occurs. The difference in the total CH 4 emissions mainly related to a difference in the methane flux rate during the first 30-35 days after transplant in the rice growing season, which was caused by the amount of dissolved oxygen in paddy water and the amount of reducible soil materials.
基金supported by the Key Program for International S&T Cooperation Projects of China(2016YFE0109000)the National Natural Science Foundation of China(31802085 and 31702133)the Central Public-interest Scientific Institution Basal Research Fund of Chinese Academy of Agricultural Sciences(Y2021GH18-2)。
文摘Methane(CH_(4))emissions from ruminant production are a significant source of anthropogenic greenhouse gas production,but few studies have examined the enteric CH_(4)emissions of lactating dairy cows under different feeding regimes in China.This study aimed to investigate the influence of different dietary neutral detergent fiber/non-fibrous carbohydrate(NDF/NFC)ratios on production performance,nutrient digestibility,and CH_(4)emissions for Holstein dairy cows at various stages of lactation.It evaluated the performance of CH_(4)prediction equations developed using local dietary and milk production variables compared to previously published prediction equations developed in other production regimes.For this purpose,36 lactating cows were assigned to one of three treatments with differing dietary NDF/NFC ratios:low(NDF/NFC=1.19),medium(NDF/NFC=1.54),and high(NDF/NFC=1.68).A modified acid-insoluble ash method was used to determine nutrient digestibility,while the sulfur hexafluoride technique was used to measure enteric CH4 emissions.The results showed that the dry matter(DM)intake of cows at the early,middle,and late stages of lactation decreased significantly(P<0.01)from 20.9 to 15.4 kg d^(–1),15.3 to 11.6 kg d^(–1),and 16.4 to 15.0 kg d^(–1),respectively,as dietary NDF/NFC ratios increased.Across all three treatments,DM and gross energy(GE)digestibility values were the highest(P<0.05)for cows at the middle and late lactation stages.Daily CH_(4)emissions increased linearly(P<0.05),from 325.2 to 391.9 kg d^(–1),261.0 to 399.8 kg d^(–1),and 241.8 to 390.6 kg d^(–1),respectively,as dietary NDF/NFC ratios increased during the early,middle,and late stages of lactation.CH_(4)emissions expressed per unit of metabolic body weight,DM intake,NDF intake,or fat-corrected milk yield increased with increasing dietary NDF/NFC ratios.In addition,CH_(4)emissions expressed per unit of GE intake increased significantly(P<0.05),from 4.87 to 8.12%,5.16 to 9.25%,and 5.06 to 8.17%respectively,as dietary NDF/NFC ratios increased during the early,middle,and late lactation stages.The modelling results showed that the equation using DM intake as the single variable yielded a greater R^(2)than equations using other dietary or milk production variables.When data obtained from each lactation stage were combined,DM intake remained a better predictor of CH_(4)emissions(R^(2)=0.786,P=0.026)than any other variables tested.Compared to the prediction equations developed herein,previously published equations had a greater root mean square prediction error,reflecting their inability to predict CH_(4)emissions for Chinese Holstein dairy cows accurately.The quantification of CH_(4)production by lactating dairy cows under Chinese production systems and the development of associated prediction equations will help establish regional or national CH_(4)inventories and improve mitigation approaches to dairy production.
基金funded by the Department for Environment Food & Rural Affairsthe Scottish Government+2 种基金the Department of Agriculture and Rural Development for Northern Irelandthe Welsh Government as part of the UK’s Agricultural GHG Research Platform initiative
文摘Although the effect of animal and diet factors on enteric methane (CH4) emissions from confined cattle has been extensively examined, less data is available regarding CH4 emissions from grazing young cattle. A study was undertaken to evaluate the effect of the physiological state of Holstein-Friesian heifers on their enteric CH4 emissions while grazing a perennial ryegrass sward. Two experiments were conducted: Experiment 1 ran from May 2011 for 11 weeks and Experiment 2 ran from August 2011 for 10 weeks. In each experiment, Holstein-Friesian heifers were divided into three treatment groups (12 animals/group) consisting of calves, yearling heifers, and in-calf heifers (average ages: 8.5, 14.5, and 20.5 months, respectively). Methane emissions were estimated for each animal in the final week of each experiment using the sulfur hexafluoride tracer technique. Dry matter (DM) intake was estimated using the calculated metabolizable energy (ME) requirement divided by the ME concentration in the grazed grass. As expected, live weight increased with increasing animal age (P 〈 0.001); however, there was no difference in live weight gain among the three groups in Experiment 1, although in Experiment 2, this variable decreased with increasing animal age (P 〈 0.001 ). In Experiment 1, yearling heifers had the highest CH4 emissions (g·d^-1) and in-calf heifers produced more than calves (P 〈 0.001 ). When expressed as CH4 emissions per unit of live weight, DM intake, and gross energy (GE) intake, yearling heifers had higher emission rates than calves and in-calf heifers (P 〈 0.001). However, the effects on CH4 emissions were different in Experiment 2, in which CH, emissions (g·d^-1) increased linearly with increasing animal age (P 〈 0.001), although the difference between yearling and in-calf heifers was not significant. The CH4/live weight ratio was lower in in-calf heifers than in the other two groups (P 〈 0.001 ), while CH4 energy output as a proportion of GE intake was lower in calves than in yearling and in-calf heifers (P 〈 0.05). All data were then pooled and used to develop prediction equations for CH4 emissions. All relationships are significant (P 〈 0.001), with R2 values ranging from 0.630 to 0.682. These models indicate that CH4 emissions could be increased by 0.252 g.d-1 with an increase of I kg live weight or by 14.9 g·d^-1 with an increase of 1 kg·d^-1 of DM intake; or, the CH4 energy output could be increased by 0.046 MJ·d^-1 with an increase of 1 MJ·d^-1 of GE intake. These results provide an alternative approach for estimating CH4 emissions from grazine dairy heifers when actual CH, emission data are not available.
文摘Prediction of methane emissions at the stage of longwall planning constitutes the basis for the determination of the appropriate method and parameters of ventilation and selection of prevention means including the methane drainage technol- ogy. The growth of methane saturation of coal seams with the extraction depth, with simultaneously increasing output concen- tration, contributes to the increase of the quantity of methane emitted into longwall areas. The subject matter of the article has been directed at the predicted quantity of methane emissions into planned longwalls with roof caving in the layer of seams adjacent to the roof of large thickness. The performed prognostic calculations of methane emissions into the longwall working were referred to two sources, i.e. methane liberated during coal mining by means of a cutter-loader and methane originating from the degasification of the floor layer destressed by the longwall conducted in the close-to-roof layer. The calculations of predictions allow to refer to the planned longwall, on account of the emitting methane, with possible and safe output quantity. Planning of extraction in the close-to-roof layer of a seam of large thickness with roof caving is especially important in con- ditions of increasing methane saturation with the depth of deposition and should be preceded by a prognostic analysis for de- termining the extraction possibilities of the planned longwall.
基金funded by Mr.Zheng Fang,Beijing Xianhe Transportation Technology Co.Ltd.Trees and Crops for the Future(TC4F)+2 种基金the Swedish Research Council for Environment,Agricultural Sciences and Spatial Planning(FORMASproject nos.219-2014-1172 and 2020-01327)NSFC Projects of International Cooperation and Exchanges,no.32011530117.Jia Hu obtained a stipend from the China Scholarship Council(file no.201708430115).
文摘Methane in rice paddies is mainly produced by methanogenic communities feeding on carbon from root exudates and debris.However,the dominant root secretion governing methane emissions is not yet identified after decades of studies,even though secreted carbohydrates and organic acids have been shown to contribute to methane emissions.In this study,we discovered that fumarate and ethanol are two major rice-orchestrated secretions and play a key role in regulating methane emissions.Fumarate released in the rhizosphere is metabolized by microorganisms,supporting the growth of methanogenic archaea that produce methane as an end carbon product,while ethanol mitigates methane emissions through inhibition of methanogenic activity and growth as well as reducing fumarate synthesis in the rice root.Furthermore,we elucidated the route of fumarate metabolism in the anoxic rhizospheric zone.We found that fumarate in the rice root is produced from acetate via propionate and succinate,and when released into soil directly is oxidized to propionate before conversion via acetate into methane as the end product.The knowledge on fumarate and ethanol metabolism in rice was then used for hybrid breeding of new rice varieties with the property of low methane emission.Cultivation of these novel rice lines or employing our findings for rice cultivation managements showed up to 70%reductions in methane production from seven paddy field sites during 3 years of cultivation trials.Taken together,these findings offer great possibilities for effective mitigation of the global climatic impact of rice cultivation.
基金supported by the National Natural Science Foundation of China(32161143028)the Key Technology of Grassland Ecological Civilization Demonstration Area in Ningxia Hui Autonomous Region,China(20210239)the Northwest Shelterbelt Construction Bureau of the National Forestry and Grassland Administration,China。
文摘Understanding livestock performance in typical steppe ecosystems is essential for optimizing grassland-livestock interactions and minimizing environmental impact.To assess the effects of different stocking rates on the growth performance,energy and nitrogen utilization,methane(CH_(4))emissions,and grazing behavior of Tan sheep,a 2-year grazing experiment in the typical steppe was conducted.The grazing area was divided into 9 paddocks,each 0.5 ha,with 3 spatial replicates for each stocking rate treatment(4,8,and 13 sheep per paddock),corresponding to 2.7,5.3,and 8.7 sheep ha^(–1).The results showed that the neutral detergent fiber(NDF)and acid detergent fiber(ADF)contents of herbage varied between grazing years(P<0.05),with a positive correlation between stocking rate and crude fiber content in the herbage(P<0.05).Dry matter intake(DMI)decreased with increasing stocking rate(P<0.05),and the average daily gain(ADG)was highest at 2.7 sheep ha^(–1)(P<0.05).Compared to 2.7 and 8.7 sheep ha^(–1),the5.3 sheep ha^(–1)treatment exhibited the lowest nutrient digestibility for dry matter,nitrogen,and ether extract(P<0.05).Fecal nitrogen was lowest at 8.7 sheep ha^(–1)(P<0.05),while retained nitrogen as a proportion of nitrogen intake was highest.Digestive energy(DE),metabolic energy(ME),and the ratios of DE to gross energy(GE)and ME to GE were highest at 8.7 sheep ha^(–1)(P<0.05).In contrast,CH_4 emissions,CH_4 per DMI,and CH_(4)E as a proportion of GE were highest at 2.7 sheep ha^(–1)(P<0.05).Stocking rate and grazing year did not significantly affect rumen fermentation parameters,including volatile fatty acids,acetate,propionate,and the acetate/propionate ratio.At 8.7sheep ha^(–1),daily grazing time and inter-individual distance increased,while time allocated to grazing,walking,and ruminating/resting decreased as stocking rates increased(P<0.05).This study highlights the importance of adjusting stocking rates based on the nutritional value of forage and grazing year to optimize grazing management.
基金supported by the National Key R&D Program of China (No.2022YFD1301001).
文摘Dietary fat content can reduce the methane production of dairy cows;however,the relevance fatty acid(FA)composition has towards this inhibitory effect is debatable.Furthermore,in-depth studies elucidating the effects of unsaturated fatty acids(UFA)on rumen function and the mechanism of reducing methane(CH_(4))production are lacking.This study exposed 10 Holstein cows with the same parity,similar milk yield to two total mixed rations:low unsaturated FA(LUFA)and high unsaturated FA(HUFA)with similar fat content.The LUFA group mainly added fat powder(C16:0>90%),and the HUFA group mainly replaced fat powder with extruded flaxseed.The experiment lasted 26 d,the last 5 d of which,gas exchange in respiratory chambers was conducted to measure gas emissions.We found that an increase in the UFA in diet did not affect milk production(P>0.05)and could align the profile of milk FAs more closely with modern human nutritional requirements.Furthermore,we found that increasing the UFA content in the diet lead to a decrease in the abundance of Methanobrevibacter in the rumen(|linear discriminant analysis[LDA]score|>2 and P 2 and P<0.05),which ultimately decreased CH4 production(P<0.05).Our results illustrated the mechanism involving decreased CH4 production when fed a UFA diet in dairy cows.We believe that our study provides new evidence to explore CH4 emission reduction measures for dairy cows.
基金the Fundamental Research Funds for Central Public Research Institutes of China(No.2022YSKY14)the Fundamental Research Funds for the Central Publicinterest Scientific Institution(No.2023YSKY-07)。
文摘Carbon emissions from wastewater treatment contribute to global warming and have received widespread attention.It is necessary to seek low-carbon wastewater treatment technologies.Microbial fuel cells(MFC)and osmotic microbial fuel cells(Os MFC)are low-carbon technologies that enable both wastewater treatment and energy recovery.In this study,MFC and Os MFC were used to treat sulfamethoxazole(SMX)wastewater,and direct carbon emissions during operation was calculated.The highest SMX removal rate can reach about 40%.Simultaneously,the CH_(4)emission factor was significantly reduced to<6 g CO_(2)/kg of chemical oxygen demand.The accumulation of SMX-degrading bacteria competed with methanogens for carbon source utilization,leading to a significant decrease in the relative abundance of methanogens.It is hoped that this study can provide a sustainable approach to antibiotic wastewater treatment and promote the development of low-carbon wastewater treatment technologies.
基金funded by Vietnam National University,Ho Chi Minh City(VNU-HCM)under grant number C2022-18-15.
文摘The Mekong Delta in Vietnam is a region that produces rice and emits methane,a potent greenhouse gas.Vietnam’s rice exports,which rank among the top four globally,have a significant impact on the world’s food suppy.The Eddy Covariance system,positioned in the rice field,has been recording methane emission rates and bio-meteorological factors.This study presents the findings of three crop seasons(Summer-Autumn 2020(S-A20),Winter-Spring 2021(W-S21),and Spring-Summer 2021(S-S21))from the year 2020 to 2021.The highest CH4 emission value was observed in the S-S21 crop,reaching 4.14μmol s^(-1 )m^(-2).Elevated CH_(4) emission rates were predominantly recorded during the vegetative stage within first 21 days after planting,while lower CH_(4) emissions were observed during the reproductive and ripening stages.This pattern clearly indicates higher methane emissions at the vegetative stage of the growing rice,likely due to the abundance of organic matter in the rice fields.The average CH4 emission rate was 0.1μmol m^(-2) s^(-1).Notably,high methane emissions were recorded when the soil surface temperature was below 33℃.As a results,the S-S21 exhibits the highest methane emission rates compared to other seasons.
基金This study is supported by the National Natural Science Foundation of China under the Program No.49899270.
文摘A numerical simulation model is presented in this paper,which comprises the processes of crop growth,soil organic carbon decomposition,and methane emissions in agroecosystems. Simulation results show that the model can simulate the main process of methane emissions well, and the correlation coefficient between the simulated values and observed data is 0.79 with 239 samples,which passed a significance test of 0.01.The average error of methane emission simulation in whole growth period is about 15%.Numerical analysis of the model indicates that the average temperature during rice growth period has much impacts on methane emissions,and the basic trend of interannual methane emissions is similar to that of average temperature.The amount of methane emissions reduces about 34.93%,when the fertilizer is used instead of manure in single rice paddy.
基金supported by the National Key R&D Program of China(grant number 2022YFD1301002)。
文摘Background Silage is widely used to formulate dairy cattle rations,and the utilization of antibiotics and methane emissions are 2 major problems for a sustainable and environmentally beneficial ruminant production systems.Bacteriocin has received considerable attention because of its potential as an alternative to antibiotics in animal husbandry.However,the impact of bacteriocin-producing lactic acid bacteria on the microbiological conversion process of whole-plant corn silage and rumen fermentation remains limited.The purpose of this study was to assess the effect of 2 classⅡa bacteriocin-producing strains Lactiplantibacillusplontarum ATCC14917 and CICC24194 on bacterial community composition and ensiling profiles of whole-plant corn silage and its in vitro rumen fermentation,microbiota,and CH_(4) emissions.Results Both bacteriocin-producing strains increased the lactic acid concentration in silage fermented for 7 d,whereas the lowest lactic acid was observed in the ATCC14917 inoculated silage fermented for 90 d(P<0.05).The highest DM content was observed in the CICC24194 treatment(P<0.05),and the silages treated with both strains had the lowest DM loss(P<0.05).Bacteriocin-producing strains promoted the growth of Levilactobacillus brevis on d 60of ensiling.In addition,treatment with bacteriocin-producing strains increased the in vitro DM digestibility(P<0.05)and decreased the CH_(4) production(P<0.05).The results of random forest and clustering analyses at the genus level showed that ATCC14917 increased the relative abundance of the influential variable Bacillus compared to that in the control group,whereas CICC24194 decreased the relative abundance of the influential variable Ruminococcaceae UCG-005.The CICC24194 treatment had the lowest total bacterial,fungal,protozoan,and methanogen populations(P<0.05).Conclusions Both classⅡa bacteriocin-producing L.plantarum strains improved the fermentation quality of wholeplant corn silage by regulating the bacterial community composition during ensiling,with CICC24194 being the most effective.Both bacteriocin-producing strains mitigated CH_(4) production and improved digestibility by modulating the interactions among rumen bacteria,protozoa,methanogens,and the composition of fibrolytic bacteria.
基金supported by Important National Science&Technoligy Specific Projects, China (2004BA520A02)
文摘Rice-duck (RD) and rice-fish (RF) ecological systems are major complex planting and breeding models of rice paddy fields in southern China. Studying the methane (CH4) and nitrous oxide (N2O) emissions and their economic value from these two ecosystems can provide theoretical and practical basis for further development and utilization of these classical agricultural techniques. CH4 and N2O emissions from RD and RF ecological systems were measured in situ by using static chambers technique. Using global warming potentials (GWPs), we assessed the greenhouse effect of CH4 and N2O and their economic value. Results showed that the peaks of CH4 emission fluxes from RD and RF appeared at full tillering stage and at heading stage, and the average emission fluxes were significantly (P〈 0.05) lower than that from CK. N2O fluxes remained low when the field is flooded and high after draining the water. Compared with CK, the total amount of N2O emissions was significantly (P〈0.05) higher and slightly lower than those from RD and RF, respectively. In 2006 and 2007, the total greenhouse effect of CH4 and N20 from RD and RF were 4 728.3 and 4 611 kg CO2 ha^-1, 4 545 and 4 754.3 kg CO2 ha^-1, respectively. The costs of greenhouse effect were 970.89 and 946.81 RMB yuan ha^-1, and 933.25 and 976.23 RMB yuan ha^-1, respectively, which were significant lower than those from CK (5 997.6 and 5 391.5 RMB yuan ha^-1). Except for the environment cost of CH4 and N2O, the economic benefits from RD and RF were 2 210.64 and 4 881.92 RMB yuan ha^-1; 3 798.37 and 5 310.64 RMB yuan ha^-1, respectively, higher than those from CK. Therefore, RD and RF complex ecological planting and breeding models can effectively decrease and control CH4 and N2O emissions, and they are two of the effective strategies to reduce greenhouse gases from rice paddy fields and contribute in alleviating global warming. Thus, their adoption is important to the environment together with their economy benefits.
文摘This study was carried out in paddy fields to explore how organic manure applications would affect greenhouse emissions in South China. The results showed that the seasonal emission of CH4 under the chemical fertilizer (CF) treatment was 271.47 kg/hm^2. In comparison, the seasonal emissions of CH4 under the treatment of pig manure (PM), chicken manure (CM) and rice straw (RS) increased by 50.61,260.22 and 602.82 kg/hm^2, respectively. N2O emission under the CF treatment was 1.22 kg/hm^2, while the N20 seasonal emissions under tile PM, CM and RS treatment decreased by 23.6% (P〈0.05), 31.7% (P〈0.05) and 30.9% (P〈0.05), respectively. Meanwhile, the readily oxidized organic carbon (which was oxidized by 167 mmol/L potassium permanganate, ROC167) of manure, paddy soil Eh value and temperature could also affect the CH4 emissions. The average yield of the organic fertilizer treatments increased by 6.8% compared with that of the CF treatment. Among all the organic fertilizer treatments, the PM treatment offered the lowest global warming potential and greenhouse gas intensity, in which the PM was of no significant difference from NF (no fertilizing) and CF. Therefore, the pig manure is capable of coordinating the relationship between environment and yield, and it also has a low ROC167 content, so the PM is considered worthy of recommendation.