期刊文献+
共找到374篇文章
< 1 2 19 >
每页显示 20 50 100
Co-production of biodiesel and methacrylated fatty acid through enzymatic catalysis with methyl methacrylate as acyl acceptor
1
作者 Dong Lu Shuming Jin +4 位作者 Qiuyang Wu Jiahao Liu Fang Wang Li Deng Kaili Nie 《Chinese Journal of Chemical Engineering》 2025年第9期16-24,共9页
Traditional biodiesel production primarily uses methanol as the acyl acceptor,but its toxicity to lipase increases process complexity and operational difficulty elevate manufacturing costs.This study aimed to explore ... Traditional biodiesel production primarily uses methanol as the acyl acceptor,but its toxicity to lipase increases process complexity and operational difficulty elevate manufacturing costs.This study aimed to explore a new method for enzymatic synthesis of biodiesel with methyl methacrylate(MMA)as acyl acceptor.Meanwhile,a 1,3-position specific lipase Lipozyme RM IM was applied as biocatalyst,which enables simultaneous production of biodiesel(FAMEs)and methacrylate fatty acid glycerides(MFAGs)via specific sn-1,3 transesterification of MMA with triglyceride.Under the optimal reaction conditions:temperature of 50℃,molar ratio of 4:1 for MMA to triglyceride,enzyme dosage of 7.5%(mass),and an extra water addition of 0.5%(mass);triglyceride conversion rate of 97%,and FAMEs yield of 65%could be obtained.Simultaneously,the multistage short-path distillation and column chromatographic method were combined used for the separation of the mixed products.Finally,the purity of FAME,MFADG,DMFAG,and MMFAG were 98%,97.8%,95.3%,and 81.78%,respectively.In this new approach,MMA demonstrates lower toxicity to lipases,allowing for straightfo rward addition of all the substrates without complex addition process,and enhancing operational feasibility.Meanwhile,the by-products of MFAGs could be applied as monomers in varnishes and protective coatings,which increased the value of the products.Thus,this investigation providing an alternative way to produce biodiesel,and providing a new pathway for the sustainable development of biodiesel. 展开更多
关键词 BIODIESEL methacrylated fatty acid TRANSESTERIFICATION Enzymatic catalysis Short-path distillation CO-PRODUCTION
在线阅读 下载PDF
Mesenchymal stem cells loaded on 3D-printed gradient poly(e-caprolactone)/methacrylated alginate composite scaffolds for cartilage tissue engineering 被引量:8
2
作者 Yanyan Cao Peng Cheng +6 位作者 Shengbo Sang Chuan Xiang Yang An Xiaochun Wei Zhizhong Shen Yixia Zhang Pengcui Li 《Regenerative Biomaterials》 SCIE 2021年第3期70-83,共14页
Cartilage has limited self-repair ability due to its avascular,alymphatic and aneural features.The combination of three-dimensional(3D)printing and tissue engineering provides an up-and-coming approach to address this... Cartilage has limited self-repair ability due to its avascular,alymphatic and aneural features.The combination of three-dimensional(3D)printing and tissue engineering provides an up-and-coming approach to address this issue.Here,we designed and fabricated a tri-layered(superficial layer(SL),middle layer(ML)and deep layer(DL))stratified scaffold,inspired by the architecture of collagen fibers in native cartilage tissue.The scaffold was composed of 3D printed depth-dependent gradient poly(e-caprolactone)(PCL)impregnated with methacrylated alginate(ALMA),and its morphological analysis and mechanical properties were tested.To prove the feasibility of the composite scaffolds for cartilage regeneration,the viability,proliferation,collagen deposition and chondrogenic differentiation of embedded rat bone marrow mesenchymal stem cells(BMSCs)in the scaffolds were assessed by Live/dead assay,CCK-8,DNA content,cell morphology,immunofluorescence and real-time reverse transcription polymerase chain reaction.BMSCs-loaded gradient PCL/ALMA scaffolds showed excellent cell survival,cell proliferation,cell morphology,collagen II deposition and hopeful chondrogenic differentiation compared with three individual-layer scaffolds.Hence,our study demonstrates the potential use of the gradient PCL/ALMA construct for enhanced cartilage tissue engineering. 展开更多
关键词 three-dimensional printing cartilage tissue engineering PCL methacrylated alginate bone marrow mesenchymal stem cells
原文传递
Preparation and characterization of methacrylated gelatin/bacterial cellulose composite hydrogels for cartilage tissue engineering 被引量:4
3
作者 Liling Gu Tao Li +7 位作者 Xiongbo Song Xianteng Yang Senlei Li Long Chen Pingju Liu Xiaoyuan Gong Cheng Chen Li Sun 《Regenerative Biomaterials》 SCIE EI 2020年第2期195-202,共8页
Methacrylated gelatin(GelMA)/bacterial cellulose(BC)composite hydrogels have been successfully prepared by immersing BC particles in GelMA solution followed by photo-crosslinking.The morphology of GelMA/BC hydrogel wa... Methacrylated gelatin(GelMA)/bacterial cellulose(BC)composite hydrogels have been successfully prepared by immersing BC particles in GelMA solution followed by photo-crosslinking.The morphology of GelMA/BC hydrogel was examined by scanning electron microscopy and compared with pure GelMA.The hydrogels had very well interconnected porous network structure,and the pore size decreased from 200 to 10 mm with the increase of BC content.The composite hydrogels were also characterized by swelling experiment,X-ray diffraction,thermogravimetric analysis,rheology experiment and compressive test.The composite hydrogels showed significantly improved mechanical properties compared with pure GelMA.In addition,the biocompatility of composite hydrogels were preliminarily evaluated using human articular chondrocytes.The cells encapsulated within the composite hydrogels for 7 days proliferated and maintained the chondrocytic phenotype.Thus,the GelMA/BC composite hydrogels might be useful for cartilage tissue engineering. 展开更多
关键词 methacrylated gelatin bacterial cellulose HYDROGEL cartilage tissue engineering
原文传递
Methacrylated gelatin and platelet-rich plasma based hydrogels promote regeneration of critical-sized bone defects 被引量:2
4
作者 Shichao Lian Zhiyu Mu +3 位作者 Zhengchao Yuan Muhammad Shafiq Xiumei Mo Weidong Mu 《Regenerative Biomaterials》 SCIE EI CSCD 2024年第4期66-81,共16页
Physiological repair of large-sized bone defects requires instructive scaffolds with appropriate mechanical properties,biocompatibility,biodegradability,vasculogenic ability and osteo-inductivity.The objective of this... Physiological repair of large-sized bone defects requires instructive scaffolds with appropriate mechanical properties,biocompatibility,biodegradability,vasculogenic ability and osteo-inductivity.The objective of this study was to fabricate in situ injectable hydrogels using platelet-rich plasma(PRP)-loaded gelatin methacrylate(GM)and employ them for the regeneration of large-sized bone defects.We performed various biological assays as well as assessed the mechanical properties of GM@PRP hydrogels alongside evaluating the release kinetics of growth factors(GFs)from hydrogels.The GM@PRP hydrogels manifested sufficient mechanical properties to support the filling of the tissue defects.For biofunction assay,the GM@PRP hydrogels significantly improved cell migration and angiogenesis.Especially,transcriptome RNA sequencing of human umbilical vein endothelial cells and bone marrow-derived stem cells were performed to delineate vascularization and biomineralization abilities of GM@PRP hydrogels.The GM@PRP hydrogels were subcutaneously implanted in rats for up to 4 weeks for preliminary biocompatibility followed by their transplantation into a tibial defect model for up to 8 weeks in rats.Tibial defects treated with GM@PRP hydrogels manifested significant bone regeneration as well as angiogenesis,biomineralization,and collagen deposition.Based on the biocompatibility and biological function of GM@PRP hydrogels,a new strategy is provided for the regenerative repair of large-size bone defects. 展开更多
关键词 large-sized bone defect repair platelet-rich plasma HYDROGEL tissue scaffold gelatin methacrylate
原文传递
An ionic liquid-reinforced gelatin hydrogel with strong adhesion,antibacterial and anti-inflammatory properties for treating oral ulcers
5
作者 Mengyu Chen Qinglin Zhou +5 位作者 Tianyun Qin Ningyao Sun Yuxi Chen Yuwei Gong Xingyi Li Jinsong Liu 《Chinese Chemical Letters》 2025年第7期430-437,共8页
Oral ulcers may greatly diminish patient life quality and potentially result in malignant transformations.Using gels or films as pseudomembrane barriers is an effective method for promoting ulcer healing.However,these... Oral ulcers may greatly diminish patient life quality and potentially result in malignant transformations.Using gels or films as pseudomembrane barriers is an effective method for promoting ulcer healing.However,these pseudomembranes face challenges such as saliva flushing,dynamic changes,and the presence of abundant microorganisms in the complex oral environment.Herein,we developed an injectable,photoinduction,in situ-enhanceable oral ulcer repair hydrogel(named as GIL2)by incorporating dynamic phenylboronic acid ester bonds and imidazole ions into a methacrylated gelatin matrix.GIL2 exhibited rapid gelation(3 s),low swelling properties(1.07 g/g),robust tensile strength(56.83 kPa)and high adhesive strength(63.38 kPa),allowing it to adhere effectively to the ulcer surface.Moreover,the GIL2 demonstrated intrinsic antibacterial and antioxidant qualities.Within a diabetic rat model for oral ulcers,GIL2 effectively eased oxidative stress and decreased the inflammation present in ulcerated wounds,thereby greatly hastening the healing process of these ulcers.Together,GIL2 hydrogel demonstrates remarkable adaptability within the oral milieu,revitalizing clinical strategy advancements for treating bacterialinfected oral ulcers. 展开更多
关键词 Ionic liquids methacrylated gelatin Adhesive hydrogel INJECTABILITY Oral ulcers
原文传递
The controlled oxidation states of the H_(4)PMo_(11)VO_(40)catalyst induced by plasma for the selective oxidation of methacrolein
6
作者 Gang Hu Chun Wang +2 位作者 Qinqin Wang Mingyuan Zhu Lihua Kang 《Chinese Chemical Letters》 2025年第2期161-166,共6页
In this paper,low-temperature dielectric-blocked discharge plasma(DBD)was employed for the first time to treat silica-doped H_(4)PMo_(11)VO_(40)(HPAV)catalysts(DBD(Ar/x)-MF-Catal)and apply them in the catalytic methac... In this paper,low-temperature dielectric-blocked discharge plasma(DBD)was employed for the first time to treat silica-doped H_(4)PMo_(11)VO_(40)(HPAV)catalysts(DBD(Ar/x)-MF-Catal)and apply them in the catalytic methacrolein(MAL)selective oxidation to produce methacrylic acid(MAA).This work investigates in detail the controllable regulation of the concentration of oxidation states on silica-doped HPAV catalysts by adjusting the DBD discharge with controlled changes in voltage,current,treatment time,and treatment medium.It reports the intrinsic correlation between oxidation states and MAL oxidation performance.The research results indicated that the catalytic performance was related to the presence of oxygen vacancies and oxygen species(VO^(2+)),and are the main reason for the selective oxidation of MAL to MAA.Besides,the generation of oxygen vacancies and VO^(2+)altered localized electrons,which resulted in the easier activation of O_(2).Theoretical calculations of DFT also proved the formation mechanism of oxygen vacancies and VO^(2+)and electron properties on high-performance polymers,which elucidated the intrinsic influence of catalyst components.The DBD(Ar/10)-MF-Catal catalysts with suitable VO^(2+)and oxygen vacancy concentrations exhibited the highest catalytic performance with 90%MAL conversion and 70%MAA selectivity and showed good stability(500 h). 展开更多
关键词 METHACROLEIN Methacrylic acid Oxygen vacancy PLASMA CATALYST DOPANT
原文传递
One-step Preparation of Brush-type Polystyrene(PS)-SiO_(2)-Poly(2-hydroxyethyl methacrylate)Janus Nanoparticle to Compatibilize PS/Poly(methyl methacrylate)Blends
7
作者 Feng-Yuan Tu Ming-Feng Wang +5 位作者 Gang Zhong Hua-Wei Qiao Bo-Tuo Zheng Can-Pei Liu Ming-Feng Chen Hua-Gui Zhang 《Chinese Journal of Polymer Science》 2025年第8期1375-1386,共12页
Compatibilization is crucial for the blending of immiscible polymers to develop high-performance composites;however,traditional compatibilization by copolymers(pre-made or in-situ generation)suffers from weak interfac... Compatibilization is crucial for the blending of immiscible polymers to develop high-performance composites;however,traditional compatibilization by copolymers(pre-made or in-situ generation)suffers from weak interface anchoring,and inorganic particles have gained extensive attention recently owing to their large interfacial desorption energy,while their low affinity to bulk components is a drawback.In this study,an interfacial atom transfer radical polymerization(ATRP)technique was employed to grow polystyrene(PS)and poly(2-hydroxyethyl methacrylate)(PHEMA)simultaneously on different hemispheres of Br-functionalized SiO_(2) nanoparticles to stabilize a Pickering emulsion,whereby a brush-type Janus nanoparticle(SiO_(2)@JNP)was developed.The polymer brushes were well-characterized,and the Janus feature was validated by transmission electron microscope(TEM)observation of the sole hemisphere grafting of SiO_(2)-PS as a control sample.SiO_(2)@JNP was demonstrated to be an efficient compatibilizer for a PS/poly(methyl methacrylate)(PMMA)immiscible blend,and the droplet-matrix morphology was significantly refined.The mechanical strength and toughness of the blend were synchronously enhanced at a low content SiO_(2)@JNP optimized~0.9 wt%,with the tensile strength,elongation at break and impact strength increased by 17.7%,26.6%and 19.6%,respectively.This enhancement may be attributed to the entanglements between the grafted polymer brushes and individual components that improve the particle-bulk phase affinity and enforce interfacial adhesion. 展开更多
关键词 COMPATIBILIZATION Janus particles POLYSTYRENE Poly(2-hydroxyethyl methacrylate) SiO_(2) Interface
原文传递
Oxidation of Methacrolein to Methacrylic Acid over Cu,P,Mo,V-Composites
8
作者 Weihua Wang Wenjie Xu +5 位作者 Nan Zhang Mingming Chen Jingqing Zhang Hongxing Liu Jianqiang Wang Yongfeng Hu 《Energy & Environmental Materials》 2025年第5期264-273,共10页
The purpose of this study is to develop novel P-Mo-V heteropoly compound catalysts for the oxidation of methacrolein to methacrylic acid.The introduction of Cu,as a modifying element,was employed to enhance the cataly... The purpose of this study is to develop novel P-Mo-V heteropoly compound catalysts for the oxidation of methacrolein to methacrylic acid.The introduction of Cu,as a modifying element,was employed to enhance the catalytic performance.Experimental results show that the addition of Cu significantly improved the catalyst performance,increasing the conversion rate of methacrolein from 17.2%to 84.2%,while the yield of methacrylic acid was boosted from 5.5%to 51.7%.A series of characterization results showed that both P-Mo-V and Cu-P-Mo-V catalysts primarily exhibited the crystal phase of[PMo_(12)O_(40)]^(3−),with a small amount of[PMo_(11)VO_(40)]^(3−)phase.However,the Cu-P-Mo-V catalyst exhibited much better oxidation–reduction ability compared to the P-Mo-V catalyst.Isolated Cu atoms were found to exist in a highly decentralized tetrahedral coordination structure,bridged by oxygen atoms within the heteropoly compound framework.The addition of Cu resulted in notable alterations in the modulation of the surface electronic structure,enhancement of oxidation–reduction ability,and optimization of the reaction pathway,thereby improving the overall catalytic activity of the catalyst.This study not only provides new insights into the modification of P-Mo-V heteropoly compound catalysts but also lays a foundation for understanding their catalytic mechanisms in organic synthesis reactions,demonstrating the potential of modifying elements in improving catalyst performance. 展开更多
关键词 cu p mo v-composite heteropoly compounds METHACROLEIN methacrylic acid OXIDATION
在线阅读 下载PDF
Temporary plugging agent transport behavior within visualized multi-fracture created during TPDF in a horizontal well: An experimental study
9
作者 Yu-Shi Zou Dian-Yu Li +4 位作者 Can Yang Yan-Chao Li Shi-Cheng Zhang Long-Qing Zou Xin-Fang Ma 《Petroleum Science》 2025年第9期3671-3687,共17页
Temporary plugging and diversion fracturing(TPDF)is widely used to promote the uniform and complex distribution of multi-clustered hydraulic fractures(HFs)in a horizontal well of the unconventional formations.However,... Temporary plugging and diversion fracturing(TPDF)is widely used to promote the uniform and complex distribution of multi-clustered hydraulic fractures(HFs)in a horizontal well of the unconventional formations.However,the migration behavior of temporary plugging agent(TPA),as a function of the concentration and particle size of TPA and cluster-perforation numbers,etc.,determining the effectiveness of this technique,remains unclear.Therefore,this study conducted innovatively a series of TPDF simulation experiments on transparent polymethyl methacrylate(PMMA)specimens(cubic block of 30 cm×30 cm×30 cm)to explore visually the migration behavior of TPA in multi-clustered HFs in a horizontal well.A laboratory hydraulic sandblasting perforation completion technique was implemented to simulate the multi-cluster perforations.All the distributions of wellbore,perforations,HFs,and TPA can be seen clearly inside the PMMA specimen post the experiment.The results show that there are four characteristic plugging positions for the TPA:mouth of HF,middle of HF,tip of HF,and the intersection of HFs.Small particle size TPA tends to migrate to the fracture tip for plugging,while large particle size TPA tends to plug at the fracture mouth.The migration of the TPA is influenced obviously by the morphology of the fracture wall.A smooth fracture wall is conducive to the migration of the TPA to the far end of HFs,but not conducive to generating the plugging zone and HF diversion.In contrast,a"leaf vein"fracture of rough wall is conducive to generating the plugging layer and the diversion of HFs,but not conducive to the migration of the TPA to the far end of HFs.The migration ability of TPA in a"shell"pattern is intermediate between the two above cases.Increasing TPA concentration can encourage TPA to migrate more quickly to the characteristic plugging position,and thereby to promote the creation of effective plugging and subsequently the multi-stage diversion of the HFs.Nevertheless,excessive concentration may cause the TPA to settle prematurely,affecting the propagation of the HFs to the far end.Increasing the number of clusters to a certain extent can encourage TPA to migrate into the HFs and form plugging,and promote the diversion.An evaluation system for the migration ability of granular TPA has been established,and it was calculated that when there is no plugging expectation target,the comprehensive migration ability of small particle size TPA is stronger than that of large particle size TPA.This research provides theoretical foundation for the optimization of temporary plugging parameters. 展开更多
关键词 Temporary plugging and diversion fracturing(TPDF) Polymethyl methacrylate(PMMA) Multi-cluster perforation Temporary plugging agent migration Visualization Plugging position
原文传递
Quenched PVDF/PMMA Porous Matrix for Triboelectric Energy Harvesting and Sensing
10
作者 Assem Mubarak Bayandy Sarsembayev +5 位作者 Yerzhigit Serik Abdirakhman Onabek Zhanat Kappassov Zhumabay Bakenov Kazuyoshi Tsuchiya Gulnur Kalimuldina 《Energy & Environmental Materials》 2025年第1期225-234,共10页
The rapid development of nanotechnology has significantly revolutionized wearable electronics and expanded their functionality.Through introducing innovative solutions for energy harvesting and autonomous sensing,this... The rapid development of nanotechnology has significantly revolutionized wearable electronics and expanded their functionality.Through introducing innovative solutions for energy harvesting and autonomous sensing,this research presents a cost-effective strategy to enhance the performance of triboelectric nanogenerators(TENGs).The TENG was fabricated from polyvinylidene fluoride(PVDF)and N,N'-poly(methyl methacrylate)(PMMA)blend with a porous structure via a novel optimized quenching method.The developed approach results in a highβ-phase content(85.7%)PVDF/3wt.%PMMA porous blend,known for its superior piezoelectric properties.PVDF/3wt.%PMMA modified porous TENG demonstrates remarkable electrical output,with a dielectric constant of 40 and an open-circuit voltage of approximately 600 V.The porous matrix notably increases durability,enduring over 36000 operational cycles without performance degradation.Moreover,practical applications were explored in this research,including powering LEDs and pacemakers with a maximum power output of 750mWm^(-2).Also,TENG served as a self-powered tactile sensor for robotic applications in various temperature conditions.The work highlights the potential of the PVDF/PMMA porous blend to utilize the next-generation self-powered sensors and power small electronic devices. 展开更多
关键词 N N0-poly(methyl methacrylate)(PMMA) robotic tactile sensors polyvinylidene fluoride(PVDF) QUENCHING triboelectric nanogenerators(TENGs)
在线阅读 下载PDF
Visualization test and numerical simulations of 2D blasting crack propagation
11
作者 Shan Guo Manchao He Seokwon Jeon 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4871-4888,共18页
Drilling and blasting,characterized by their efficiency,ubiquity,and cost-effectiveness,have emerged as predominant techniques in rock excavation;however,they are accompanied by enormous destructive power.Accurately c... Drilling and blasting,characterized by their efficiency,ubiquity,and cost-effectiveness,have emerged as predominant techniques in rock excavation;however,they are accompanied by enormous destructive power.Accurately controlling the blasting energy and achieving the directional fracture of a rock mass have become common problems in the field.A two-dimensional blasting(2D blasting)technique was proposed that utilizes the characteristic that the tensile strength of a rock mass is significantly lower than its compressive strength.After blasting,only a 2D crack surface is generated along the predetermined direction,eliminating the damage to the reserved rock mass caused by conventional blasting.However,the interior of a natural rock mass is a"black box",and the process of crack propagation is difficult to capture,resulting in an unclear 2D blasting mechanism.To this end,a single-hole polymethyl methacrylate(PMMA)test piece was used to conduct a 2D blasting experiment with the help of a high-speed camera to capture the dynamic crack propagation process and the digital image correlation(DIC)method to analyze the evolution law of surface strain on the test piece.On this basis,a three-dimensional(3D)finite element model was established based on the progressive failure theory to simulate the stress,strain,damage,and displacement evolution process of the model under 2D blasting.The simulation results were consistent with the experimental results.The research results reveal the 2D blasting mechanism and provide theoretical support for the application of 2D blasting technology in the field of rock excavation. 展开更多
关键词 2D blasting technology Non-explosive blasting Polymethyl methacrylate(PMMA) Visualization of crack propagation 3D numerical simulation
在线阅读 下载PDF
Equilibrium Swelling and Solute Diffusion Characteristics of Poly (Methacrylic Acid co-Poloxamer) Hydrogels 被引量:1
12
作者 徐晖 丁平田 +2 位作者 魏刚 周贵生 郑俊民 《Journal of Chinese Pharmaceutical Sciences》 CAS 2001年第4期203-207,共5页
Poly(methacrylic acid co-poloxamer) hydrogel networks were synthesized by free radical solution polymerization and their equilibrium swelling and solute permeation properties were characterized. These gels exhibited p... Poly(methacrylic acid co-poloxamer) hydrogel networks were synthesized by free radical solution polymerization and their equilibrium swelling and solute permeation properties were characterized. These gels exhibited pH dependant swelling and solute diffusivity due to the formation or disruption of hydrogen bonded complexation between methacrylic acid (MAA) and etheric (EO). In neutral and basic conditions (above the swelling transition pH), the copolymer swelling was greatly higher than acid condition. In complexed hydrogels, the diffusion coefficients of vitamin B12 (VB12) were in the range of 10-10 to 10-7 cm2s-1; While in uncomplexed hydrogels, the values were about 210-6 cm2s-1. The comonomer composition and synthesis conditions have great effect on the structure, and thereby, swelling and solute diffusion characteristics of the resultant hydrogels. For the copolymers with composition of less than or more than 1:1 MAA/EO molar ratio, the plot of lnD vs 1/H-1 followed two different linear equations of 慺ree volume theory? respectively. 展开更多
关键词 Methacrylic acid POLOXAMER pH Sensitive hydrogel Equilibrium swelling Solute diffusion Free volume theory
在线阅读 下载PDF
Preparation and properties of thermoexpandable polymeric microspheres 被引量:11
13
作者 Zhao-Sheng Hou Cheng-You Kan 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第9期1279-1281,共3页
In this paper, thermoexpandable polymeric microspheres were prepared by suspension polymerization with acrylonitrile (AN) and methyl methacrylate (MMA) as monomers and/-butane as a blowing agent. The micromorpholo... In this paper, thermoexpandable polymeric microspheres were prepared by suspension polymerization with acrylonitrile (AN) and methyl methacrylate (MMA) as monomers and/-butane as a blowing agent. The micromorphology and thermal stability were researched by polarized microscopy and TGA. The diameter of the expandable microspheres increased from about 20μm (unexpanded) to 40-80 μm (expanded) upon heating. The maximum expansion volume was higher than 22 times of the original volume and the density of the expanded microspheres was about 16.7 kg/m3. The blowing agent content in microspheres was about 20 wt% and To.e., Tm.e. and To.s. were 80℃, 120-130℃ and 140-145℃, respectively. 展开更多
关键词 Expandable microspheres Suspension polymerization Methyl methacrylate PROPERTIES
原文传递
Preparation of poly (methyl methacrylate)/nanometer calcium carbonate composite by in-situ emulsion polymerization 被引量:12
14
作者 史建明 包永忠 +1 位作者 黄志明 翁志学 《Journal of Zhejiang University Science》 EI CSCD 2004年第6期709-713,共5页
Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate(nano-CaCO3) surface modified with γ-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl ... Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate(nano-CaCO3) surface modified with γ-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO3 composite. The reaction between nano-CaCO3 and MPTMS, and the grafting of PMMA onto nano-CaCO3 were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO3 modified with MPTMS were much higher than that on nano-CaCO3 modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO3 increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO3 covered with PMMA was formed by in-situ emulsion polymerization. 展开更多
关键词 Methyl methacrylate Nanometer calcium carbonate Emulsion polymerization γ-methacryloxypropyltrimeth- oxysilane GRAFTING
在线阅读 下载PDF
Preparation and Properties of Paraffin/PMMA Shape-stabilized Phase Change Material for Building Thermal Energy Storage 被引量:7
15
作者 孟多 ZHAO Kang +1 位作者 WANG Anqi WANG Baomin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期231-239,共9页
The composite phase change material(PCM) consisting of phase change paraffin(PCP) and polymethyl methacrylate(PMMA) was prepared as a novel type of shape-stabilized PCM for building energy conservation through the met... The composite phase change material(PCM) consisting of phase change paraffin(PCP) and polymethyl methacrylate(PMMA) was prepared as a novel type of shape-stabilized PCM for building energy conservation through the method of bulk polymerization. The chemical structure, morphology, phase change temperature and enthalpy, and mechanical properties of the composite PCM were studied to evaluate the encapsulation effect of PMMA on PCP and determine the optimal composition proportion. FTIR and SEM results revealed that PCP was physically immobilized in the PMMA so that its leakage from the composite was prevented. Based on the thermo-physical and mechanical properties investigations, the optimal mass fraction of PCP in the composite was determined as 70%. The phase change temperature of the composite was close to that of PCP, and its latent heat was equivalent to the calculated value according to the mass fraction of PCP in the composite. For estimating the usability in practical engineering, thermal stability, reliability and temperature regulation performance of the composite were also researched by TG analysis, thermal cycling treatments and heating-cooling test. The results indicated that PCP/PMMA composite PCM behaved good thermal stability depending on the PMMA protection and its latent heat degraded little after 500 thermal cycling. Temperature regulation performance of the composite before and after thermal cycling was both noticeable due to its latent heat absorption and release in the temperature variation processes. The PCP/PMMA phase change plate was fabricated and applied as thermal insulator in miniature concrete box to estimate its temperature regulation effect under the simulated environmental condition. It can be concluded that this kind of PCP/PMMA shape-stabilized PCM with the advantages of no leakage, suitable phase change temperature and enthalpy, good thermal stability and reliability, and effective temperature regulation performance have much potential for thermal energy storage in building energy conservation. 展开更多
关键词 shape-stabilized PHASE CHANGE material PHASE CHANGE PARAFFIN polymethyl METHACRYLATE temperature regulation BUILDING energy conservation
原文传递
Effect of anti-biofilm glass–ionomer cement on Streptococcus mutans biofilms 被引量:7
16
作者 Su-Ping Wang Yang Ge +8 位作者 Xue-Dong Zhou Hockin HK Xu Michael D Weir Ke-Ke Zhang Hao-Hao Wang Matthias Hannig Stefan Rupf Qian Li Lei Cheng 《International Journal of Oral Science》 SCIE CAS CSCD 2016年第2期76-83,共8页
Dental restorative materials with antimicrobial properties can inhibit bacterial colonization, which may result in a reduction of caries at tooth-filling interaction zones. This study aimed to develop antibacterial gl... Dental restorative materials with antimicrobial properties can inhibit bacterial colonization, which may result in a reduction of caries at tooth-filling interaction zones. This study aimed to develop antibacterial glass-ionomer cements (GIC) containing a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM), and to investigate their effect on material performance and antibacterial properties. Different mass fractions (0, 1.1% and 2.2%) of DMADDM were incorporated into the GIC. The flexure strength, surface charge density, surface roughness and fluoride release were tested. A Streptococcus mutans biofilm model was used. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm matrix. In addition, biofilm metabolic activity, lactic acid metabolism and the expression of glucosyltransferase genes g/fB, gtfC and gtfD were measured. GIC containing 1.1% and 2.2% DMADDM had flexural strengths matching those of the commercial control (P〉0.1). DMADDM was able to increase the surface charge density but reduced surface roughness (P〈0.05). The incorporation of 1.1% and 2.2% DMADDM elevated the release of fluoride by the GIC in the first 2 days (P〈0.05). The novel DMADDM-modified GIC significantly reduced biofilm metabolic activity (P〈 0.05) and decreased lactic acid production (P〈 0.05). The quantitative polymerase chain reaction (qPCR) results showed that the expression of gtfB, g/fC and gtfD decreased when mass fractions of DMADDM increased (P〈0.05). EPS staining showed that both the bacteria and EPS in biofilm decreased in the DMADDM groups. The incorporation of DMADDM could modify the properties of GIC to influence the development of S. mutans biofilms. In this study, we investigated the interface properties of antibacterial materials for the first time. GIC containing DMADDM can improve material performance and antibacterial properties and may contribute to the better management of secondary caries. 展开更多
关键词 antibacterial properties dimethylaminododecyl methacrylate glass-ionomer cement material performance Streptococcusmutans biofilms
暂未订购
Characterization and Thermal Conductivity of Modified Graphite/Fatty Acid Eutectic/PMMA Form-Stable Phase Change Material 被引量:8
17
作者 孟多 WANG Lijiu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第3期586-591,共6页
We prepared and characterized a form-stable composite phase change material (PCM) with higher thermal conductivity. Capric acid(CA)-myristic acid(MA) eutectic as core, poly-methyl methacrylate (PMMA) as suppor... We prepared and characterized a form-stable composite phase change material (PCM) with higher thermal conductivity. Capric acid(CA)-myristic acid(MA) eutectic as core, poly-methyl methacrylate (PMMA) as supportive matrix and modified graphite (MG) powders serving as the thermal conductance improver were blended by bulk- polymerization method. The composite PCMs with different MG mass fraction (2%, 5%, 7%, 10% and 15%) were characterized by FT-IR, SEM, DSC technique and mechanical tests. Thermal conductivities of the composites were measured by transient hot-wire method. The results indicate that MG powders have been successfully inserted into the CA-MA/PMMA matrix without any chemical reaction with each other. The MG/CA-MA/PMMA composites maintain good thermal storage performance while the thermal conductivity has been enhanced significantly. The composite PCM added with 15 wt% MG powders increases approximately as 195.9% in thermal conductivity. Moreover, the thermal conductivity improvement of the composite PCMs is also verified by the melting-freezing experiment, which is profitable for the heat transfer efficiency in latent heat thermal energy storage system. 展开更多
关键词 form-stable composite PCM fatty acid eutectic poly-methyl methacrylate modified graphite thermal conductivity
原文传递
DESIGN AND SYNTHESIS OF NOVEL CHIRAL IONIC LIQUIDS AND THEIR APPLICATION IN FREE RADICAL POLYMERIZATION OF METHYL METHACRYLATE 被引量:5
18
作者 宛新华 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2003年第3期265-270,共6页
Two new chiral ionic liquids, 1 -((-)-menthoxycarbonylmethylene)-3-methylimidazolium hexafluorophosphateand 1-((-)-menthoxycarbonylmethylene)-3-hexadecylimidazolium hexafluorophosphate, were designed an d prepared. Th... Two new chiral ionic liquids, 1 -((-)-menthoxycarbonylmethylene)-3-methylimidazolium hexafluorophosphateand 1-((-)-menthoxycarbonylmethylene)-3-hexadecylimidazolium hexafluorophosphate, were designed an d prepared. Theirchemical structures were characterized by ~1H-NMR. Reverse atom transfer radical polymerization of methyl methacrylate(MMA) in these two ionic liquids was carried out using AIBN/CuCl_2/bipy as the initiating system. The resultant well-definedpolymethyl methacrylate (PMMA) was employed as a macroinitiator to induce the atom transfer radical polymerization ofmenthyl methacrylate (MnMA) in chlorobenzene, which yielded a PMMA-b-PMnMA diblock copolymer with narrow polydispersity. 展开更多
关键词 Chiral ionic liquids Reverse ATRP Free radical polymerization Methyl methacrylate Menthyl methacrylate
在线阅读 下载PDF
Polybutylacrylate/poly(methyl methacrylate) Core-Shell Elastic Particles as Epoxy Resin Toughener: Part I Design and Preparation 被引量:6
19
作者 JianliWANG MyonghoonLEE +2 位作者 XiaomeiYU JianbinJI KejianYAO 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第5期522-526,共5页
Polybutylacrylate (PBA)/poly(methyl methacrylate) (PMMA) core-shell elastic particles (CSEP), whose rubbery core diameter ranged from 0.08 μm to 1.38μm, were synthesized by using conventional emulsion polymerization... Polybutylacrylate (PBA)/poly(methyl methacrylate) (PMMA) core-shell elastic particles (CSEP), whose rubbery core diameter ranged from 0.08 μm to 1.38μm, were synthesized by using conventional emulsion polymerization, multi-step emulsion polymerization, and soapless polymerization. Allyl methacylate (ALMA) and ethylene glycol dimethacrylate (EGDMA) were selected as crosslinking reagents for core polymerization. Methacrylic acid (MAA) was used as functional co-monomer with methyl methacrylate as shell component. The content of vinyl groups in PBA rubbery core increased with the amount of crosslinking reagents. The core-shell ratio affected great on the morphology of the complex particles. Furthermore, the amounts of carboxyl on the surface of core-shell particles, copolymerized with acrylic acid, were determined by potentiometric titration. Results showed that methylacrylic acid was distributed mostly on the surface of particles. 展开更多
关键词 Core-shell polymers Polybutylacrylate Poly(methyl methacrylate) Epoxy resin
在线阅读 下载PDF
MgO–SBA-15 Supported Pd–Pb Catalysts for Oxidative Esterification of Methacrolein with Methanol to Methyl Methacrylate 被引量:4
20
作者 姜丽 刁琰琰 +3 位作者 韩军兴 闫瑞一 张香平 张锁江 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第10期1098-1104,共7页
Novel Mg O–SBA-15 supported catalysts were prepared for oxidative esterification of methacrolein(MAL) with methanol to methyl methacrylate(MMA). The Mg O–SBA-15 supports were synthesized with different magnesia load... Novel Mg O–SBA-15 supported catalysts were prepared for oxidative esterification of methacrolein(MAL) with methanol to methyl methacrylate(MMA). The Mg O–SBA-15 supports were synthesized with different magnesia loadings from different magnesium precursors and hydrochloric acid molar concentrations. The Mg O–SBA-15 supports and Pd–Pb/Mg O–SBA-15 catalysts were characterized by several analysis methods. The results revealed that the addition of Mg O improved the ordered structure of SBA-15 supports and provided surface alkalinity of SBA-15 supports. The average size of the Pd3 Pb particles on magnesia-modified Pd–Pb/Mg O–SBA-15 catalysts was smaller than that on the pure silica-based Pd–Pb/SBA-15 catalysts. The experiments on catalyst performance showed that the magnesia-modified Pd–Pb/Mg O–SBA-15 catalysts had higher activity than pure silica-based Pd–Pb/SBA-15 catalysts, showing the strong dependence of catalytic activity on the average size of active particles. The difference of activity between Pd–Pb/SBA-15 catalysts and Pd–Pb/Mg O–SBA-15 catalysts was due to the discrepant structural properties and surface alkalinity provided by Mg O, which led to the different Pd3 Pb particle sizes and then resulted in the different number of active sites. Besides magnesia loadings, other factors, such as hydrochloric acid molar concentration and magnesium precursors, had considerable influences on the catalytic activity. 展开更多
关键词 METHACROLEIN Methyl METHACRYLATE Oxidative ESTERIFICATION Pd–Pb BIMETAL SBA-15
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部