期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
APFed: Adaptive personalized federated learning for intrusion detection in maritime meteorological sensor networks
1
作者 Xin Su Guifu Zhang 《Digital Communications and Networks》 2025年第2期401-411,共11页
With the rapid development of advanced networking and computing technologies such as the Internet of Things, network function virtualization, and 5G infrastructure, new development opportunities are emerging for Marit... With the rapid development of advanced networking and computing technologies such as the Internet of Things, network function virtualization, and 5G infrastructure, new development opportunities are emerging for Maritime Meteorological Sensor Networks(MMSNs). However, the increasing number of intelligent devices joining the MMSN poses a growing threat to network security. Current Artificial Intelligence(AI) intrusion detection techniques turn intrusion detection into a classification problem, where AI excels. These techniques assume sufficient high-quality instances for model construction, which is often unsatisfactory for real-world operation with limited attack instances and constantly evolving characteristics. This paper proposes an Adaptive Personalized Federated learning(APFed) framework that allows multiple MMSN owners to engage in collaborative training. By employing an adaptive personalized update and a shared global classifier, the adverse effects of imbalanced, Non-Independent and Identically Distributed(Non-IID) data are mitigated, enabling the intrusion detection model to possess personalized capabilities and good global generalization. In addition, a lightweight intrusion detection model is proposed to detect various attacks with an effective adaptation to the MMSN environment. Finally, extensive experiments on a classical network dataset show that the attack classification accuracy is improved by about 5% compared to most baselines in the global scenarios. 展开更多
关键词 Intrusion detection Maritime meteorological sensor network Federated learning Personalized model Deep learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部