Grade-tonnage model is one of the research frontiers of systematical exploration theory. Based on the “Reserve Database of Mineral Resources in China (1997)”, this paper establishes the geological model, grade model...Grade-tonnage model is one of the research frontiers of systematical exploration theory. Based on the “Reserve Database of Mineral Resources in China (1997)”, this paper establishes the geological model, grade model, tonnage model, grade-tonnage model and tonnage-sequence model of contact metasomatic copper deposits in China. The mathematical properties of these models are described in detail.展开更多
The zircon ore deposit in metasediments and peralkaline granite of the Kyemyeongsan Formation is located in southwest of Chungju city, Korea. The deposit, closely associated with REE and Nb,is composed of metasomatic ...The zircon ore deposit in metasediments and peralkaline granite of the Kyemyeongsan Formation is located in southwest of Chungju city, Korea. The deposit, closely associated with REE and Nb,is composed of metasomatic alkaline rocks and rare metal alkali granite, and was formed in late Carboniferous (340~343Ma). Zircon occurs in different paragenetic sequence: (1) earlier rare metal alkali granite, (2) later metasomatic zircon ore. The metasomatic zone contains abundant microcline, albite and quartz with minor biotite, magnetite, hornblende, allanite and zircon. The alkali granites have high silica (72.13~74.52wt.% as SiO 2), and total iron content (5.95~6.89%), and are characterized by low Al 2O 3 content (7.12~9.74%). They also show variable K 2O content (3.60~6.98%), and high ratios of K 2O/Na 2O. The REE patterns of rare metal alkali granite are similar to those of felsic volcanics from rifts, or back arc basins in, or near continental crust. Zircon ores are characterized by high iron content and low Al 2O 3, SiO 2, and K 2O content and have unusually high total REE content (0.18~2.33%). REE patterns show relatively flat to somewhat heavy REE (HREE) depleted characteristics (Ce/Yb=0.39~5.17) with large Eu negative anomaly (Eu/Eu *=0.16~0.29). Laser ablation microprobe inductively coupled plasma mass spectrometer (LAM ICP MS) analyses has been carried on zircon. The REE patterns of mineral zircons are almost the same to those of zircon ores and rare metal alkali granites, which may reflect the inability of zircons to effectively fractionated REE at formation of origin. The Sm Nd isochron age of the zircon ore and rare metal alkali granite are 330Ma, and 331Ma, respectively with ε Nd(t) being range from -2.00 to -1.84. This data suggest that the ore forming material came from the mantle. Alkali granite has suffered extensive post magmatic metasomatism of a high temperature to produce zircon ores. Geochemical characteristics show that metasomatism of alkaline fluid was probably the dominant ore forming process in Chungju district.展开更多
Corundum(ruby-sapphire) is known to have formed in situ within Archean metamorphic rocks at several localities in the North Atlantic Craton of Greenland. Here we present two case studies for such occurrences:(1) Manii...Corundum(ruby-sapphire) is known to have formed in situ within Archean metamorphic rocks at several localities in the North Atlantic Craton of Greenland. Here we present two case studies for such occurrences:(1) Maniitsoq region(Kangerdluarssuk), where kyanite paragneiss hosts ruby corundum, and(2)Nuuk region(Stor?), where sillimanite gneiss hosts ruby corundum. At both occurrences, ultramafic rocks(amphibole-peridotite) are in direct contact with the ruby-bearing zones, which have been transformed to mica schist by metasomatic reactions. The bulk-rock geochemistry of the ruby-bearing rocks is consistent with significant depletion of SiO_2 in combination with addition of Al_2O_3, MgO, K_2O,Th and Sr relative to an assumed aluminous precursor metapelite. Phase equilibria modelling supports ruby genesis from the breakdown of sillimanite and kyanite at elevated temperatures due to the removal of SiO_2. The juxtaposition of relatively silica-and aluminum-rich metasedimentary rocks with low silica ultramafic rocks established a chemical potential gradient that leached/mobilized SiO_2 allowing corundum to stabilize in the former rocks. Furthermore, addition of Al_2O_3 via a metasomatic reaction is required, because Al/Ti is fractionated between the aluminous precursor metapelites and the resulting corundum-bearing mica schist. We propose that Al was mobilized either by complexation with hydroxide at alkaline conditions, or that Al was transported as K-Al-Si-O polymers at deep crustal levels.The three main exploration vectors for corundum within Archean greenstone belts are:(1) amphiboliteto granulite-facies metamorphic conditions,(2) the juxtaposition of ultramafic rocks and aluminous metapelite, and(3) mica-rich reactions zones at their interface.展开更多
Cr-spinel bearing wehrlite rocks of Bangriposi are found within the multiply deformed metasedimentary rocks of Singhbhum Group belonging to North Singhbhum Mobile Belt of eastern India. Detailed mineralogical and geoc...Cr-spinel bearing wehrlite rocks of Bangriposi are found within the multiply deformed metasedimentary rocks of Singhbhum Group belonging to North Singhbhum Mobile Belt of eastern India. Detailed mineralogical and geochemical studies reveal that these rocks have suffered a two-stage alteration involving a deeper level modal and cryptic metasomatism and a subsequent shallower depth pervasive hydrothermal alteration. Cryptic metasomatism is defined by elevated LREE contents of the wehrlite and its clinopyroxne grains. Metasomatism induced changes in the modal mineralogy of the rocks include the absence of primary orthopyroxene grains, presence of secondary diopside-phlogopite(now present as vermiculite) defining disequilibrium reaction textures and secondary orthopyroxene rims around serpentinized olivine. The mineralogical and geochemical changes due to the metasomatic event present a contrasting picture in regard to the metasomatic history of the rocks. Possible scenarios involving a single stage or multiple stage metasomatism events have been discussed while explaining the metasomatic reactions that took place. An attempt has been made to estimate the REE concentrations of the final equilibrating melt from REE contents of clinopyroxene grains of the wehrlite. The possibility of the LREE-enriched equilibrating melt of the wehrlite rocks(the deeper level metasomatic agent) being similar to residual melts from the E-MORB type parental melts of nearby gabbro suite has been ruled out by geochemical modeling. REE abundance patterns of several natural enriched melts have been compared with REE pattern of calculated LREE-enriched equilibrating melt of the wehrlite and most resemblance has been observed with calcic and potassic melts. It is therefore suggested that the Cr-spinel bearing wehrlite rocks of Bangriposi has been affected by a calcio-potassic melt in deeper level, prior to the shallow level serpentinization event.展开更多
Ruby-bearing marbles of the Southern Ural Mountains are developed in the metamorphic perimeter of granites-gneisses domes where high grade metamorphic granitization and diaphthoresis have occurred.Geological research ...Ruby-bearing marbles of the Southern Ural Mountains are developed in the metamorphic perimeter of granites-gneisses domes where high grade metamorphic granitization and diaphthoresis have occurred.Geological research into the development and occurrence of ruby-bearing marbles indicate that they formed as a result of repeated transformation.Their substrate consisted of an organogenous marine limestone containing Visean faunal remains.Intensive Mg metasomatism of limestone during early progressive stages of metamorphism resulted in a substrate of dolomite composition containing faunal remains with a calcite composition.Increased temperature and pressure resulted in metamorphism of early Mg metasomatites,turning them into fine-grained marble containing Visean faunal remains.Tensional stresses near the intrusive domes resulted in dedolomitization of early Mg metasomatites,giving rise to light,coarse-grained calcite marbles having polygonal-grained structure.Such carbonaceous marbles became metamorphosed around the perimeter of granite-gneiss massifs.Their rheological properties allowed for plastic flow in these marbles into areas of tectonic neutrality,forming bodies of rheomorphic marbles,sometimes even among marbled limestone.Relict bodies of Mg metasomatites underwent boudinage and rotation.Flow cleavage occurred in axial blocks of inter-dome structures and in their steep walls.Therefore platy jointing(banding,pseudo-lamination)formed in the marbles.Thickness of the plates is from several millimeters to 2-3m.Calcite underwent recrystallization with extension of grain size in the central parts of plates,sometimes amounting to 15-25cm in cross-section.Ruby-bearing marbles consist of Mg-calcite.The rock is coarse-grained,with a panidiomorphic texture.Schistosity is often observed in the plane of cleavage.Mg-calcite marble occurs among and grades into background calcite marbles,which are controlled by cleavage of flowing.It is supposed that the ruby-bearing Mg-calcite marbles bodies are elongated in the direction of dip.Their formation is caused by recrystallization under the action of rising metamorphogenic fluids at high temperatures and higher pressures(amphibolitic and epidote-amphibolitic facies).Ruby-bearing marbles formed at the end of the prograde stage of metamorphism.The early retrograde stage of metamorphism is defined by a new wave of Mg metasomatism and formation of calcite-dolomitic marbles with a poikiloblastic texture from calcite or Mg-calcite marbles.Usually the boundaries of the bodies are clear,planar,and controlled by cleavage.Studies of small bodies have shown that they are elongated in the direction of dip.Usually they contain pink corundum and/or pink spinel;red corundum is replaced by red spinel.Thus the initial marine limestones were transformed into various marbles and completely lost their primary composition and bedding as a result of metamorphism,deformation,and metasomatic transformation.Ruby-spinel mineralization in marbles is controlled by cleavage.展开更多
Pasveh gabbros are mafic component of a plutonic complex in the northwest Sanandaj- Sirjan Zone. These cumulative rocks are composed of plagioclase and calcic clinopyroxene (Cpx), which yield unusually high CaO (〉...Pasveh gabbros are mafic component of a plutonic complex in the northwest Sanandaj- Sirjan Zone. These cumulative rocks are composed of plagioclase and calcic clinopyroxene (Cpx), which yield unusually high CaO (〉19 wt.%) in whole-rock chemistry. Petrographical and geochemical data suggest that Pasveh gabbros can be divided into two groups: free scapolite and scapolite-bearing gabbros. The second group has higher Na20, K20, and P205 relative to free scapolite ones and is enriched in LIL (large ion lithophile) and HFS (high field strength) elements. Two stages of metasomatism affected the primary composition of mafic rocks. Firstly, high temperature reaction caused to invert primary high Ti clinopyroxene to low Ti cUnopyroxene+high Ti amphibole. This reaction was extensive and included all gabbroic samples. Hydrothermal fluids involved in this process can be derived from dehydration reactions of country rocks or from other magmas incorporated in the formation of Pasveh complex pluton. The second metasomatic stage relates to scapolitization of limited parts of gabbroic rocks. An external saline fluid, which is composed of major NaCI and minor KCI and P205 components, impacted locally on Pasveh gabbros and formed the second metasomatic stage. Possible sources of Na and Cl are primary evaporites or brines, which were present in the host sediments of the gabbros. The carbonate-free nature of these hydrothermal fluids suggests that hydrothermal fluids responsible for the formation of scapolite in Pasveh gabbros are derived from marine evaporitic parentage.展开更多
The Hougou gold deposit in northwestern Hebei is a typical K-metasomatism-related gold deposit hosted by K-altered rocks overprinting alkali intrusive rocks. In order to determine the age and pulse intervals of K-meta...The Hougou gold deposit in northwestern Hebei is a typical K-metasomatism-related gold deposit hosted by K-altered rocks overprinting alkali intrusive rocks. In order to determine the age and pulse intervals of K-metasomatism in this gold deposit, some metasomatic K-feldspars from K-altered rocks are selected to measure their formation time by laser probe 40Ar-39Ar dating method. The new analyzing data show that these metasomatic K-feldspar formed during 202.6 Ma and 176.7 Ma, and the corresponding K-metasomatism and associated gold mineralization occurred in the early stage of Mesozoic era. The pulse intervals of K-metasomatism in the Hougou area are estimated to be about 4 Ma.展开更多
The Precambrian Homrit-Waggat granite is a post-orogenic batholithic intrusion located in the northern region of the Nubian Shield,characterized by a typical annular morphology and significant secondary alteration.Thi...The Precambrian Homrit-Waggat granite is a post-orogenic batholithic intrusion located in the northern region of the Nubian Shield,characterized by a typical annular morphology and significant secondary alteration.This study aims to elucidate the processes that have shaped the intrusion in both macroscopic and microscopic perspectives,employing a combination of field observation and petrographic analysis alongside major and trace element compositions of minerals.Within the central region of the pluton,biotite and amphibole are observed sporadically,while the predominant crystallization of anhydrous oligoclase in the outer regions has led to a progressive increase in volatile components within the residual melt,ultimately resulting in a volatile-saturated aluminosilicate melt.The exsolved fluids subsequently interacted with the previously crystallized mineral assemblage,producing metasomatic overprinting.As the cooling and crystallization continued,the water pressure within the magma chamber gradually escalated until it equaled or surpassed the confining pressure,leading to the formation of fractures and veins filled with minerals that crystallized from the residual aqueous fluids.The ongoing degassing and expulsion of aqueous fluids from the magma chamber’s interior ultimately contributed to the collapse of the chamber’s roof,resulting in the annular ring-dike morphology observed in the Homrit Waggat pluton.展开更多
Marine carbonates,the major carrier of carbon upon the upper crust,can be subducted into the Earth’s interior along with oceanic crust,and then returned to the surface through magmatism,which constitute the deep carb...Marine carbonates,the major carrier of carbon upon the upper crust,can be subducted into the Earth’s interior along with oceanic crust,and then returned to the surface through magmatism,which constitute the deep carbon cycle.This process plays an important role in modulating the CO_(2) concentrations in the atmosphere over geologic time,and thus the forming of the habitable earth.Therefore,identifying recycled marine carbonates in the mantle is critical to well understand the global deep carbon cycle.Calcium is one of the major constituent cations in marine carbonates and its isotopes may be a potential tracer for recycled marine carbonates in the mantle.To further evaluate the capability and challenges of Ca isotopes as such a geochemical tracer,we reviewed the Ca isotopic compositions in important reservoirs and the behavior of Ca isotopes during high-temperature geological processes that are related to the deep carbon cycle,including plate subduction,mantle metasomatism,mantle partial melting,magma differentiation,etc.Available studies show that carbonate-rich marine sediments have significantly lowerδ^(44/40) Ca than the Earth mantle,and metasomatism by such recycled materials can cause lighter Ca isotopic compositions in deep mantle-derived rocks than those of the depleted mantle and mid ocean ridge basalts.However,the Ca isotopic fractionation during partial melting of mantle peridotites is small(~0.10‰)and the Ca isotopic fractionation during plate subduction and intermediate-mafic magma evolution is indistinguishable.These investigations suggest that Ca isotopes have great advances in tracing such recycled materials in the mantle.However,other processes(such as the influence by partial melts of eclogites)may induce similar effects on mantle-derived rocks as subducted marine carbonates but still remains debated,and thus further investigations are strongly needed in the future.展开更多
Emerald mineralization from the Bahutiya and Gurabanda areas of Jharkhand in the eastern part of India is a recent discovery.In this deposit,emerald mineralization occurs along the contact zone between pegmatite and e...Emerald mineralization from the Bahutiya and Gurabanda areas of Jharkhand in the eastern part of India is a recent discovery.In this deposit,emerald mineralization occurs along the contact zone between pegmatite and epidiorite-hornblende schist of the Dhanjori Group(2.1-2.9 Ga).Host rock petrographic characteristics,along with the spatial distribution of the emerald,suggest a metasomatic origin for the emerald mineralization in the study area.The well-developed emerald crystals are found along the S_(2)schistosity plane,suggesting lithological and structural control on the mineralization.Electron microprobe data of the emerald indicates that the green hue is primarily due to the variable chromium content and Be could have been derived from the soda-granite of the Singhbhum Shear Zone.The average Cr_(2)O_(3)and Cr concentration in the emerald is 0.038 wt%and 0.003 apfu,respectively.The ternary diagrams FeO-MgO-Cr_(2)O_(3)and FeO-Cr_(2)O_(3)-V_(2)O_(5)are plotted and superimposed on global emerald data,compiled from the literature,which shows the similarity of this deposit to other emerald deposits of the world.From the present study,it is inferred that the emerald deposits of Bahutiya and Gurabanda,Jharkhand,belong to the Type-IA category.展开更多
The Longshan orogenic belt is located in the southwestern margin of Ordos Basin at the junction zone between the Western Qinling and Northern Qilian orogenic belt.Voluminous Early Paleozoic magmatism in this area is o...The Longshan orogenic belt is located in the southwestern margin of Ordos Basin at the junction zone between the Western Qinling and Northern Qilian orogenic belt.Voluminous Early Paleozoic magmatism in this area is of key significance for determining the Early Paleozoic tectonic evolution and deep crust-mantle structure.Previous studies mainly focused on the Paleozoic granites;the coeval mafic rocks in this area are still poorly understood.A set of Late Silurian intraplate tholeiitic basalts has been discovered in Longshan area,providing key evidence for the mantle source and deep geodynamic background in this area.The Late Silurian Angou basalt has similar geochemical features as intraplate tholeiitic basalt,with high Na_(2)O/K_(2)O ratios(5.22-8.25),enriched in large ion lithophile elements and LREE.In combination with their relatively evolved Sr-Nd isotopic composition[^(87)Sr/^(86)Sr(i)=0.7128-0.7140;ε_(Nd)(t)=-5.55 to-3.40],it is suggested that it originated from decompression melting of metasomatized enriched mantle in extensional setting.These results indicate that the mantle source in the junction zone of the West Qinling-North Qilian orogenic belt evolved from depleted to enriched with the continuation of Proto-Tethys subduction from the Cambrian to the Silurian.These results are of great significance to understanding the genesis of contemporaneous granite and the crust-mantle interaction in the junction zone between the Western Qinling and Northern Qilian orogenic belt.展开更多
The Cretaceous gold deposits along the margins of the North China Craton(NCC),which formed in a craton destruction setting,display geological characteristics similar to traditional orogenic gold deposits typically ass...The Cretaceous gold deposits along the margins of the North China Craton(NCC),which formed in a craton destruction setting,display geological characteristics similar to traditional orogenic gold deposits typically associated with accretionary orogeny.These deposits,known as Jiaodong-type gold deposits,have attracted considerable attention.However,the lithospheric controls and formation mechanisms of these deposits remain unclear,as they cannot be fully explained by the supracrustal metamorphic genetic model commonly applied to classic orogenic gold deposits.In this study,the compiled S-Hg-Pb isotope ratios of gold deposits on different NCC margins display compatible variations to the Sr-Nd-Hg isotope ratios of mafic dikes spatial-temporally associated with the deposits.This implies that mantle lithosphere,metasomatized by variable proportions of oceanic and continental crust,was the source for both gold deposits and mafic dikes.Increase of oxygen fugacity and zirconεHf(t)from pre-to syn-gold granites suggests continuous basic magma underplating,which could induce concentrations of Au-rich sulfides and contribute additional Au to auriferous CO_(2)-rich fluids derived from metasomatized mantle lithosphere and basic magma.Localization of gold deposits was controlled by craton-margin sinistral shearing induced by clockwise rotation of the craton coincident with distal emplacement of metamorphic core complexes.Thus,the Cretaceous Jiaodong-type orogenic gold deposits were derived from fertilized mantle lithosphere through such crust-mantle processes within a lithosphere thinning background.展开更多
Mafic rocks generated from subduction settings have recorded valuable source information about the mantle source.In this study,we present a comprehensive analysis of zircon U–Pb dating,whole-rock major and trace elem...Mafic rocks generated from subduction settings have recorded valuable source information about the mantle source.In this study,we present a comprehensive analysis of zircon U–Pb dating,whole-rock major and trace elements,and Sr–Nd isotopic data for the mafic gabbro located in the Yumen area,on the western part of the Yangtze Block,South China,aiming to constrain the processes of mantle metaso-matism within subduction settings.U–Pb dating results for zircon yield crystallization ages of 800 Ma for type 1 mafic gabbro and 753–734 Ma for type 2 mafic gabbro.Type 1 mafic gabbro exhibits higher SiO_(2)(44.13%–48.93%)and Al_(2)O_(3)content but lower total Fe2O3 and MgO content than type 2 gabbro(SiO_(2):41.02%–43.28%).These gabbros dis-play a high-Mg^(#)signature(52.50–62.81 for type 1,50.89–57.04 for type 2),while they are enriched in significant large-ion lithophile elements(LILEs:Rb,Ba,Sr,K)and depleted in high-field-strength elements(HFSEs:Zr,Hf,Nd,Ta,Ti),which indicates an arc-like element signature.The positive whole-rockεNd(t)values(type 1:3.5–4.4,type 2:5.6–6.3)combined with a narrow range of(^(87)Sr/^(86)Sr)_(i)(type 1:0.7035–0.7043,type 2:0.7035–0.7036)of both gabbro types suggest a depleted lithospheric mantle origin.There-fore,these mafic rocks may derive from a metasomatized spinel lherzolite mantle source(with amphibole)due to the interactions of the deep mantle source and subductionfluid materials.We propose that the long-term metasomatism recorded by mafic gabbro in this study supports the fact that the subduction during the Neoproterozoic contributed to the formation of a metasomatized mantle source in the Yumen area,western Yangtze Block,South China.展开更多
Detailed in situ LM-ICPMS researches on the composite xenoliths from Yingfengling volcano of Leizhou Peninsula, South China, indicate that most incompatible trace elements of clino- pyroxenes in composite xenoliths de...Detailed in situ LM-ICPMS researches on the composite xenoliths from Yingfengling volcano of Leizhou Peninsula, South China, indicate that most incompatible trace elements of clino- pyroxenes in composite xenoliths decrease spatially from pyroxenites to distal lherzolites, and com- patible elements and HREE increase steeply. The increasing and decreasing rate is distinct for dif- ferent trace elements, which give rise to element chromatographic fractionation within metasomatized lherzolites. The element chromatographic fractionation result actually from the difference in element diffusive rate in melts or fluids percolating through wall-rock lherzolites. Based on element variation profiles in composite xenoliths this study indicates that Sr, Nb, La and Ce have the highest diffusive mobility, MREE-HREE are moderate, and Zr, Hf, Ti, Ga and Sc are very low in most cases. Higher diffusive rates of LREE than HREE would enlarge the REE fractionation of metasomatized peridotites, and lower diffusive rate of Zr, Hf and Ti relative to neighbor REEs with similar incompatibility would cause the relative depletion of these elements in metasomatized peridotites. Trace elements com- monly have a higher diffusive rate in fluid-rich infiltrating melt, which will weaken element chroma- tographic fractionation during the metasomatism. The range of mantle metasomatism caused by sili- cate melt intrusion is very limited, generally within tens of centimeters wide. The width of metasoma- tized wall-rock peridotites near the pyroxenite or horblendite veins was strictly controlled by both melt volume and chemical characteristics.展开更多
Hydrous Cr-bearing uvarovite garnets are rare in natural occurrences and belong to the ugrandite series and exist in binary solid solutions with grossular and andradite garnets. Here, we report the occurrence of hydro...Hydrous Cr-bearing uvarovite garnets are rare in natural occurrences and belong to the ugrandite series and exist in binary solid solutions with grossular and andradite garnets. Here, we report the occurrence of hydrous uvarovite garnet having Cr_(2)O_(3) upto 19.66 wt% and CaO of 32.12–35.14 wt% in the serpentinized mantle peridotites of Naga Hills Ophiolite(NHO), India. They occur in association with low-Cr diopsides. They are enriched in LILE(Ba, Sr), LREEs, with fractionating LREE-MREE [avg.(La/Sm)_(N) = 2.16] with flat MREE/HREE patterns [avg.(Sm/Yb)_(N) = 0.95]. Raman spectra indicate the presence of hydroxyl(OH^(–)) peaks from 3500 to 3700 cm^(-1). Relative abundances in fluid mobile elements and their close association with clinopyroxenes are suggestive of the formation of uvarovite garnets through low temperature metasomatic alteration of low-Cr diopsides by hydrothermal slab fluids. The high LREE concentration and absence of Eu anomaly in the garnet further attest to alkaline nature of the transporting slab dehydrated fluid rather the involvement of low-p H solution. The chemical characteristics of the hydroxyl bearing uvarovite hosted by the mantle peridotite of NHO deviate from the classical features of uvarovite garnet, and their origin is attributed to the fluid-induced metasomatism of the sub arc mantle wedge in a suprasubduction zone regime.展开更多
The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of su...The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of sub-continental lithospheric mantle(SCLM)sources and parental melt generation.So far,the traditional whole-rock lithophile geochemical data of these basic volcanic rocks have provided important constraints on the nature of SCLM sources.Integrated lithophile element and HSE geochemical data of these basic volcanic rocks also reveal the heterogeneity of the SCLM source,which is principally related to variable metasomatism resulting from previous subduction(s)and post-collisional mantle-crust interactions in an extensional setting.Lithophile element geochemical features suggest that the parental magmas have derived from metasomatized spinel-to garnet-bearing SCLM sources for Eocene and Miocene basic volcanic rocks with subduction signatures whereas originated from spinel-to garnet-bearing SCLM sources for Mio-Pliocene and Plio-Quaternary basaltic volcanic rocks without the subduction signature.Lithophile element and HSE geo-chemistry also reveal that Eocene and Miocene basic vol-canic rocks were affected by more pronounced crustal contamination than the basaltic volcanic rocks of Mio-Pliocene and Quaternary.Furthermore,the integrated lithophile element and HSE compositions of these basic volcanic rocks,together with the regional asymmetric lithospheric delamination model,reveal that the compositional variation(especially due to metasomatism)was significant temporally in the heterogeneity of the SCLM sources from which parental magmas formed during the Cenozoic era.展开更多
It is well established that Cretaceous magmatism in the South China Block(SCB)is related to the Paleo-Pacific subduction.However,the starting time and the associated deep crust-mantle processes are still debatable.Maf...It is well established that Cretaceous magmatism in the South China Block(SCB)is related to the Paleo-Pacific subduction.However,the starting time and the associated deep crust-mantle processes are still debatable.Mafic dike swarms carry important information on the deep earth(including mantle)geodynamics and geochemical evolution.In the Jiangnan Orogen(South China).there is no information on whether the Mesozoic magmatic activities in this region are also directly related to the Pacific subduction or not.In this study,we present detailed zircon U-Pb geochronological,wholerock element and Sr-Nd isotope data for Early Cretaceous Tuanshanbei dolerite dikes,and provide new constraints on the condition of the lithospheric mantle and mantle dynamics of the SCB during that time.LA-ICP-MS zircon U-Pb dating suggests that this dolerite erupted in the Early Cretaceous(~145 Ma).All samples have alkaline geochemical affinities with K_(2)O+Na_(2)O=3.11-4.04 wt%,K_(2)O/Na_(2)O=0.50-0.72,and Mg^(#)=62.24-65.13.They are enriched in LILE but depleted in HFSE with higher initial^(87)Sr/^(86)Sr ratio(0.706896-0.714743)and lower ε_(Nd)(t)(-2.61 to-1.67).They have high Nb/U,Nb/La,La/Sm and Rb/Sr,and low La/Nb,La/Ta,Ce/Pb,Ba/Rb,Tb/Yb and Gd/Yb ratios.Such geochemical signatures suggest that the fractional crystallization is obvious but crustal contamination play a negligible role during magmatic evolution.Tuanshanbei dolerite were most likely derived from low-degree(2%-5%)partial melting of a phlogopite-bearing mantle material consisted of~85% spinel peridotite and~15% garnet peridotite previously metasomatized by asthenospherederived fluids/melts with minor subduction-derived fluids/melts.Slab-rollback generally lead to the upwelling of the hot asthenosphere.The upwelling of asthenosphere consuming the lithospheric mantle by thermo-mechanical-chemical erosion.The lithospheric mantle may have partially melted due to the heating by the upwelling asthenosphere and lithospheric extension.It is inferred that the Tuanshanbei dolerite might be associated with the initial slab rollback and corresponding lithospheric extension occurred potentially at ca.145 Ma.展开更多
We investigated the weathering-pedogenesis of carbonate rocks and its environmental effects in subtropical regions of China. The investigation demonstrated that the weathering- pedogenesis of carbonate rocks is the pr...We investigated the weathering-pedogenesis of carbonate rocks and its environmental effects in subtropical regions of China. The investigation demonstrated that the weathering- pedogenesis of carbonate rocks is the process of a joint action of corrosion and illuviation and metasomatism in subtropical region. It is characterized by multi-stage, multi-path and multi-style. With the persisting development of weathering-pedogenesis of carbonate rocks, metasomatic pedogenesis progressively became the main process of the weathering-pedogenesis and the dominant style of formation of minerals. And it proceeds through the whole process of evolution of the weathering-pedogenesis of carbonate rocks. The stage evolution of weathering-pedogenesis of carbonate rocks and the fractionation evolution of newly produced minerals are characterized by obvious vertically zoning structures and the rules of gradation of elements geochemical characteristics in the carbonate rocks weathering profiles. The geochemical process of weathering-pedogenesis of carbonate rocks can be divided into three geochemical evolution stages, i.e., the Ca, Mg-depletion and Si, Al-enrichment stage; the Fe, Mn enrichment stage and the Si-depletion and Al-enrichment stage in the subtropical regions. Consistent with the three geochemical evolution stages, the sequence of formation and evolution of minerals can be divided into the clay mineral stage; the Fe, Mn oxide and the gibbsite stage. The influence of weathering-pedogenesis of carbonate rocks on the chemical forms of heavy elements is mainly affected via newly produced components and minerals in the process of weathering-pedogenesis, e.g., iron oxide minerals and organic matters. The important mechanism for the mobilization, transport and pollution of F and As is affected the selective adsorption and desorption of F and As on the surface of iron oxide minerals in the subtropical karst zones, i.e., the selective adsorption and desorption on mineral surfaces of newly produced minerals in the process of weathering-pedogenesis control the geochemical behavior of elements on the Earth's surface and environmental quality in subtropical regions.展开更多
Yixunite and damiaoite Were found in a cobalt- and copper-bearing platinum ore vein of a contact metasomatic deposit. The chief ore minerals are bornite, chalcopyrite, magnetite and carrollite. The platinum minerals i...Yixunite and damiaoite Were found in a cobalt- and copper-bearing platinum ore vein of a contact metasomatic deposit. The chief ore minerals are bornite, chalcopyrite, magnetite and carrollite. The platinum minerals include moncheite, sperrylite, daomanite, cobalt malanite and cooperite. Yixunite and damiaoite occur as immiscible globules, 1.0 to 2.0 mm in diameter. Yixunite is always in the central part of a globule. It is opaque with metallic lustre, bright white colour and black streak. HM = 5.8; VHN50 = 634 kg/mm2 (573-681 kg/ mm2); insoluble in HCl, HNO3, HF or H3PO4; no cleavage; no magnetism. Density is hard to measure because of small grain size. Calculated density = 18.21 g/cm3. Reflective colour is bright white with a yellowish tint. Isotropic. The mean analytical results (ranges) (%) are: Pt 82.8 (81.8-83.6), In 16.4(15.6-17.1) and total 99.2. The empirical formula (based on 4 atoms) is Pt2.993 In1.007 . The five strongest lines of X-ray diffraction (hkl, d,I) are 111, 2.30 (100); 200, 1.99 (60); 202, 1.411 (40);311, 1.203 (80); 222, 1.151(40). Space group: Pm3m with a =0.3988(3) nm and Z= 1. Damiaoite occurs as single globules or was exsolved from yixunite. Opaque with metallic lustre; bright white colour with black streak; HM = 5.3; VHN50 = 485 kg/mm2 (434-529 kg/mm2); insoluble in HC1, HNO3, HF or H3PO4; cleavage: no; magnetism: no. Density: hard to measure because of small grain size. Calculated density = 10.95 g/ cm3. Reflective colour is bright white with a yellowish tint. Isotropic. The mean analytical results (ranges) (%) are Pt 45.6 (45.4-46.0), In 53.5 (52.4-53.9), total 99.1. The empirical formula (based on 3 atoms) is Pt0.002 In1.998. The six strongest lines of X-ray diffraction (hkl.d,I) are 220,2.25 (100); 311,1.92 (60); 400,1.59 (60); 422,1.299 (80); 440,1.125 (60); 620,1.006 (70). Space group: Fm3m with a = 0.6364 (3) nm and Z = 4.展开更多
The mineralogical data materialized in the present work suggest that the previously described skarns at Ad Darb in the literature are actually marble deposits intercalated with schists and phyllites of different compo...The mineralogical data materialized in the present work suggest that the previously described skarns at Ad Darb in the literature are actually marble deposits intercalated with schists and phyllites of different compositions. The marble and associated metasediments lie to the west of striking ridges of marbles that are nearly aligned in the NNW-SSE direction. Garnet at Al Madhiq occurrence often occurs in the form of bands conformable with rock foliation (gneissosity and schistosity). It is suggested that the paragenesis “quartz-gar- net-epidote” is developed due to the percolation of some Al-rich solutions along rock foliation of the horn- blende gneiss, i.e. metasomatic garnet. Careful field investigation collaborated with petrographic and SEM studies, suggest the occurrence of another garnetiferous paragenesis associating quartz, mica and feldspar in pegmatites, aplites and quartz veins, i.e. exclusively igneous garnet. Metasomatic garnet in the calc-silicates of Al Madhiq is of grossular composition. It is commonly unzoned but some distinctly to slightly zoned crystals are observed where the core is andradite-rich and the rim is grossular. Metasomatic events responseble for growth of garnet in the calc-silicates led also to formation of epidote post-dating grossular. Hand specimens, microscopic investigation and BSE images prove that this epidote post-dates and replaces gros sular, and even rims it in some instances. Igneous garnet at Al Madhiq (almandine-spessartine) is found only in pegmatites and aplites that are genetically related to alkali granitoids. Sulphides (dominated by pyrite) occur in intemate association with domains rich in grossular and hence these sulphides are more likely hydrothermal indicating reducing conditions for formation of grossular.展开更多
基金National Doctoral Fund Project!(98024004)fund project of the L aboratoryofQuantitativePredictionExploration Assessment
文摘Grade-tonnage model is one of the research frontiers of systematical exploration theory. Based on the “Reserve Database of Mineral Resources in China (1997)”, this paper establishes the geological model, grade model, tonnage model, grade-tonnage model and tonnage-sequence model of contact metasomatic copper deposits in China. The mathematical properties of these models are described in detail.
文摘The zircon ore deposit in metasediments and peralkaline granite of the Kyemyeongsan Formation is located in southwest of Chungju city, Korea. The deposit, closely associated with REE and Nb,is composed of metasomatic alkaline rocks and rare metal alkali granite, and was formed in late Carboniferous (340~343Ma). Zircon occurs in different paragenetic sequence: (1) earlier rare metal alkali granite, (2) later metasomatic zircon ore. The metasomatic zone contains abundant microcline, albite and quartz with minor biotite, magnetite, hornblende, allanite and zircon. The alkali granites have high silica (72.13~74.52wt.% as SiO 2), and total iron content (5.95~6.89%), and are characterized by low Al 2O 3 content (7.12~9.74%). They also show variable K 2O content (3.60~6.98%), and high ratios of K 2O/Na 2O. The REE patterns of rare metal alkali granite are similar to those of felsic volcanics from rifts, or back arc basins in, or near continental crust. Zircon ores are characterized by high iron content and low Al 2O 3, SiO 2, and K 2O content and have unusually high total REE content (0.18~2.33%). REE patterns show relatively flat to somewhat heavy REE (HREE) depleted characteristics (Ce/Yb=0.39~5.17) with large Eu negative anomaly (Eu/Eu *=0.16~0.29). Laser ablation microprobe inductively coupled plasma mass spectrometer (LAM ICP MS) analyses has been carried on zircon. The REE patterns of mineral zircons are almost the same to those of zircon ores and rare metal alkali granites, which may reflect the inability of zircons to effectively fractionated REE at formation of origin. The Sm Nd isochron age of the zircon ore and rare metal alkali granite are 330Ma, and 331Ma, respectively with ε Nd(t) being range from -2.00 to -1.84. This data suggest that the ore forming material came from the mantle. Alkali granite has suffered extensive post magmatic metasomatism of a high temperature to produce zircon ores. Geochemical characteristics show that metasomatism of alkaline fluid was probably the dominant ore forming process in Chungju district.
基金the CARLSBERG FOUNDATION for support to carry out this work via grant CF16-0059
文摘Corundum(ruby-sapphire) is known to have formed in situ within Archean metamorphic rocks at several localities in the North Atlantic Craton of Greenland. Here we present two case studies for such occurrences:(1) Maniitsoq region(Kangerdluarssuk), where kyanite paragneiss hosts ruby corundum, and(2)Nuuk region(Stor?), where sillimanite gneiss hosts ruby corundum. At both occurrences, ultramafic rocks(amphibole-peridotite) are in direct contact with the ruby-bearing zones, which have been transformed to mica schist by metasomatic reactions. The bulk-rock geochemistry of the ruby-bearing rocks is consistent with significant depletion of SiO_2 in combination with addition of Al_2O_3, MgO, K_2O,Th and Sr relative to an assumed aluminous precursor metapelite. Phase equilibria modelling supports ruby genesis from the breakdown of sillimanite and kyanite at elevated temperatures due to the removal of SiO_2. The juxtaposition of relatively silica-and aluminum-rich metasedimentary rocks with low silica ultramafic rocks established a chemical potential gradient that leached/mobilized SiO_2 allowing corundum to stabilize in the former rocks. Furthermore, addition of Al_2O_3 via a metasomatic reaction is required, because Al/Ti is fractionated between the aluminous precursor metapelites and the resulting corundum-bearing mica schist. We propose that Al was mobilized either by complexation with hydroxide at alkaline conditions, or that Al was transported as K-Al-Si-O polymers at deep crustal levels.The three main exploration vectors for corundum within Archean greenstone belts are:(1) amphiboliteto granulite-facies metamorphic conditions,(2) the juxtaposition of ultramafic rocks and aluminous metapelite, and(3) mica-rich reactions zones at their interface.
基金the Department of Science and Technology (DST), New Delhi, India for providing the funds to carry out this research work (Grant No. SR/S4/ES-646/2012)
文摘Cr-spinel bearing wehrlite rocks of Bangriposi are found within the multiply deformed metasedimentary rocks of Singhbhum Group belonging to North Singhbhum Mobile Belt of eastern India. Detailed mineralogical and geochemical studies reveal that these rocks have suffered a two-stage alteration involving a deeper level modal and cryptic metasomatism and a subsequent shallower depth pervasive hydrothermal alteration. Cryptic metasomatism is defined by elevated LREE contents of the wehrlite and its clinopyroxne grains. Metasomatism induced changes in the modal mineralogy of the rocks include the absence of primary orthopyroxene grains, presence of secondary diopside-phlogopite(now present as vermiculite) defining disequilibrium reaction textures and secondary orthopyroxene rims around serpentinized olivine. The mineralogical and geochemical changes due to the metasomatic event present a contrasting picture in regard to the metasomatic history of the rocks. Possible scenarios involving a single stage or multiple stage metasomatism events have been discussed while explaining the metasomatic reactions that took place. An attempt has been made to estimate the REE concentrations of the final equilibrating melt from REE contents of clinopyroxene grains of the wehrlite. The possibility of the LREE-enriched equilibrating melt of the wehrlite rocks(the deeper level metasomatic agent) being similar to residual melts from the E-MORB type parental melts of nearby gabbro suite has been ruled out by geochemical modeling. REE abundance patterns of several natural enriched melts have been compared with REE pattern of calculated LREE-enriched equilibrating melt of the wehrlite and most resemblance has been observed with calcic and potassic melts. It is therefore suggested that the Cr-spinel bearing wehrlite rocks of Bangriposi has been affected by a calcio-potassic melt in deeper level, prior to the shallow level serpentinization event.
文摘Ruby-bearing marbles of the Southern Ural Mountains are developed in the metamorphic perimeter of granites-gneisses domes where high grade metamorphic granitization and diaphthoresis have occurred.Geological research into the development and occurrence of ruby-bearing marbles indicate that they formed as a result of repeated transformation.Their substrate consisted of an organogenous marine limestone containing Visean faunal remains.Intensive Mg metasomatism of limestone during early progressive stages of metamorphism resulted in a substrate of dolomite composition containing faunal remains with a calcite composition.Increased temperature and pressure resulted in metamorphism of early Mg metasomatites,turning them into fine-grained marble containing Visean faunal remains.Tensional stresses near the intrusive domes resulted in dedolomitization of early Mg metasomatites,giving rise to light,coarse-grained calcite marbles having polygonal-grained structure.Such carbonaceous marbles became metamorphosed around the perimeter of granite-gneiss massifs.Their rheological properties allowed for plastic flow in these marbles into areas of tectonic neutrality,forming bodies of rheomorphic marbles,sometimes even among marbled limestone.Relict bodies of Mg metasomatites underwent boudinage and rotation.Flow cleavage occurred in axial blocks of inter-dome structures and in their steep walls.Therefore platy jointing(banding,pseudo-lamination)formed in the marbles.Thickness of the plates is from several millimeters to 2-3m.Calcite underwent recrystallization with extension of grain size in the central parts of plates,sometimes amounting to 15-25cm in cross-section.Ruby-bearing marbles consist of Mg-calcite.The rock is coarse-grained,with a panidiomorphic texture.Schistosity is often observed in the plane of cleavage.Mg-calcite marble occurs among and grades into background calcite marbles,which are controlled by cleavage of flowing.It is supposed that the ruby-bearing Mg-calcite marbles bodies are elongated in the direction of dip.Their formation is caused by recrystallization under the action of rising metamorphogenic fluids at high temperatures and higher pressures(amphibolitic and epidote-amphibolitic facies).Ruby-bearing marbles formed at the end of the prograde stage of metamorphism.The early retrograde stage of metamorphism is defined by a new wave of Mg metasomatism and formation of calcite-dolomitic marbles with a poikiloblastic texture from calcite or Mg-calcite marbles.Usually the boundaries of the bodies are clear,planar,and controlled by cleavage.Studies of small bodies have shown that they are elongated in the direction of dip.Usually they contain pink corundum and/or pink spinel;red corundum is replaced by red spinel.Thus the initial marine limestones were transformed into various marbles and completely lost their primary composition and bedding as a result of metamorphism,deformation,and metasomatic transformation.Ruby-spinel mineralization in marbles is controlled by cleavage.
文摘Pasveh gabbros are mafic component of a plutonic complex in the northwest Sanandaj- Sirjan Zone. These cumulative rocks are composed of plagioclase and calcic clinopyroxene (Cpx), which yield unusually high CaO (〉19 wt.%) in whole-rock chemistry. Petrographical and geochemical data suggest that Pasveh gabbros can be divided into two groups: free scapolite and scapolite-bearing gabbros. The second group has higher Na20, K20, and P205 relative to free scapolite ones and is enriched in LIL (large ion lithophile) and HFS (high field strength) elements. Two stages of metasomatism affected the primary composition of mafic rocks. Firstly, high temperature reaction caused to invert primary high Ti clinopyroxene to low Ti cUnopyroxene+high Ti amphibole. This reaction was extensive and included all gabbroic samples. Hydrothermal fluids involved in this process can be derived from dehydration reactions of country rocks or from other magmas incorporated in the formation of Pasveh complex pluton. The second metasomatic stage relates to scapolitization of limited parts of gabbroic rocks. An external saline fluid, which is composed of major NaCI and minor KCI and P205 components, impacted locally on Pasveh gabbros and formed the second metasomatic stage. Possible sources of Na and Cl are primary evaporites or brines, which were present in the host sediments of the gabbros. The carbonate-free nature of these hydrothermal fluids suggests that hydrothermal fluids responsible for the formation of scapolite in Pasveh gabbros are derived from marine evaporitic parentage.
基金This work was supported by the National Natural Science Foundation of China (Grant No.49802021)
文摘The Hougou gold deposit in northwestern Hebei is a typical K-metasomatism-related gold deposit hosted by K-altered rocks overprinting alkali intrusive rocks. In order to determine the age and pulse intervals of K-metasomatism in this gold deposit, some metasomatic K-feldspars from K-altered rocks are selected to measure their formation time by laser probe 40Ar-39Ar dating method. The new analyzing data show that these metasomatic K-feldspar formed during 202.6 Ma and 176.7 Ma, and the corresponding K-metasomatism and associated gold mineralization occurred in the early stage of Mesozoic era. The pulse intervals of K-metasomatism in the Hougou area are estimated to be about 4 Ma.
基金supported by Science and Technology Development Fund(STDF)of the Arab Republic of Egypt(No.23080)entitled―Rare Metal Ore Deposits in Egypt:A comparative survey in altered granites from selected areas in the Central Eastern Desert‖(to M.A.ABU EL-RUS)National Key Research and Development Program of China(No.2023YFF0804200).
文摘The Precambrian Homrit-Waggat granite is a post-orogenic batholithic intrusion located in the northern region of the Nubian Shield,characterized by a typical annular morphology and significant secondary alteration.This study aims to elucidate the processes that have shaped the intrusion in both macroscopic and microscopic perspectives,employing a combination of field observation and petrographic analysis alongside major and trace element compositions of minerals.Within the central region of the pluton,biotite and amphibole are observed sporadically,while the predominant crystallization of anhydrous oligoclase in the outer regions has led to a progressive increase in volatile components within the residual melt,ultimately resulting in a volatile-saturated aluminosilicate melt.The exsolved fluids subsequently interacted with the previously crystallized mineral assemblage,producing metasomatic overprinting.As the cooling and crystallization continued,the water pressure within the magma chamber gradually escalated until it equaled or surpassed the confining pressure,leading to the formation of fractures and veins filled with minerals that crystallized from the residual aqueous fluids.The ongoing degassing and expulsion of aqueous fluids from the magma chamber’s interior ultimately contributed to the collapse of the chamber’s roof,resulting in the annular ring-dike morphology observed in the Homrit Waggat pluton.
基金Supported by the National Natural Science Foundation of China(Nos.42322302,42373048)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2022207)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB42020303)the Laoshan Laboratory(No.LSKJ202204100)。
文摘Marine carbonates,the major carrier of carbon upon the upper crust,can be subducted into the Earth’s interior along with oceanic crust,and then returned to the surface through magmatism,which constitute the deep carbon cycle.This process plays an important role in modulating the CO_(2) concentrations in the atmosphere over geologic time,and thus the forming of the habitable earth.Therefore,identifying recycled marine carbonates in the mantle is critical to well understand the global deep carbon cycle.Calcium is one of the major constituent cations in marine carbonates and its isotopes may be a potential tracer for recycled marine carbonates in the mantle.To further evaluate the capability and challenges of Ca isotopes as such a geochemical tracer,we reviewed the Ca isotopic compositions in important reservoirs and the behavior of Ca isotopes during high-temperature geological processes that are related to the deep carbon cycle,including plate subduction,mantle metasomatism,mantle partial melting,magma differentiation,etc.Available studies show that carbonate-rich marine sediments have significantly lowerδ^(44/40) Ca than the Earth mantle,and metasomatism by such recycled materials can cause lighter Ca isotopic compositions in deep mantle-derived rocks than those of the depleted mantle and mid ocean ridge basalts.However,the Ca isotopic fractionation during partial melting of mantle peridotites is small(~0.10‰)and the Ca isotopic fractionation during plate subduction and intermediate-mafic magma evolution is indistinguishable.These investigations suggest that Ca isotopes have great advances in tracing such recycled materials in the mantle.However,other processes(such as the influence by partial melts of eclogites)may induce similar effects on mantle-derived rocks as subducted marine carbonates but still remains debated,and thus further investigations are strongly needed in the future.
基金financial support to setup “DST-FIST Level-Ⅱ Facility” [No. SR/ FST/ESII-014/2012(C)] at the Department of Applied Geology (AGL), IIT(ISM) Dhanbad, India
文摘Emerald mineralization from the Bahutiya and Gurabanda areas of Jharkhand in the eastern part of India is a recent discovery.In this deposit,emerald mineralization occurs along the contact zone between pegmatite and epidiorite-hornblende schist of the Dhanjori Group(2.1-2.9 Ga).Host rock petrographic characteristics,along with the spatial distribution of the emerald,suggest a metasomatic origin for the emerald mineralization in the study area.The well-developed emerald crystals are found along the S_(2)schistosity plane,suggesting lithological and structural control on the mineralization.Electron microprobe data of the emerald indicates that the green hue is primarily due to the variable chromium content and Be could have been derived from the soda-granite of the Singhbhum Shear Zone.The average Cr_(2)O_(3)and Cr concentration in the emerald is 0.038 wt%and 0.003 apfu,respectively.The ternary diagrams FeO-MgO-Cr_(2)O_(3)and FeO-Cr_(2)O_(3)-V_(2)O_(5)are plotted and superimposed on global emerald data,compiled from the literature,which shows the similarity of this deposit to other emerald deposits of the world.From the present study,it is inferred that the emerald deposits of Bahutiya and Gurabanda,Jharkhand,belong to the Type-IA category.
基金supported by the National Natural Science Foundation of China(42172010,42372071,41102037)。
文摘The Longshan orogenic belt is located in the southwestern margin of Ordos Basin at the junction zone between the Western Qinling and Northern Qilian orogenic belt.Voluminous Early Paleozoic magmatism in this area is of key significance for determining the Early Paleozoic tectonic evolution and deep crust-mantle structure.Previous studies mainly focused on the Paleozoic granites;the coeval mafic rocks in this area are still poorly understood.A set of Late Silurian intraplate tholeiitic basalts has been discovered in Longshan area,providing key evidence for the mantle source and deep geodynamic background in this area.The Late Silurian Angou basalt has similar geochemical features as intraplate tholeiitic basalt,with high Na_(2)O/K_(2)O ratios(5.22-8.25),enriched in large ion lithophile elements and LREE.In combination with their relatively evolved Sr-Nd isotopic composition[^(87)Sr/^(86)Sr(i)=0.7128-0.7140;ε_(Nd)(t)=-5.55 to-3.40],it is suggested that it originated from decompression melting of metasomatized enriched mantle in extensional setting.These results indicate that the mantle source in the junction zone of the West Qinling-North Qilian orogenic belt evolved from depleted to enriched with the continuation of Proto-Tethys subduction from the Cambrian to the Silurian.These results are of great significance to understanding the genesis of contemporaneous granite and the crust-mantle interaction in the junction zone between the Western Qinling and Northern Qilian orogenic belt.
基金funded by the National Natural Science Foundation of China(42125203,42330809)the 111 project of the Ministry of Science and Technology(BP0719021).
文摘The Cretaceous gold deposits along the margins of the North China Craton(NCC),which formed in a craton destruction setting,display geological characteristics similar to traditional orogenic gold deposits typically associated with accretionary orogeny.These deposits,known as Jiaodong-type gold deposits,have attracted considerable attention.However,the lithospheric controls and formation mechanisms of these deposits remain unclear,as they cannot be fully explained by the supracrustal metamorphic genetic model commonly applied to classic orogenic gold deposits.In this study,the compiled S-Hg-Pb isotope ratios of gold deposits on different NCC margins display compatible variations to the Sr-Nd-Hg isotope ratios of mafic dikes spatial-temporally associated with the deposits.This implies that mantle lithosphere,metasomatized by variable proportions of oceanic and continental crust,was the source for both gold deposits and mafic dikes.Increase of oxygen fugacity and zirconεHf(t)from pre-to syn-gold granites suggests continuous basic magma underplating,which could induce concentrations of Au-rich sulfides and contribute additional Au to auriferous CO_(2)-rich fluids derived from metasomatized mantle lithosphere and basic magma.Localization of gold deposits was controlled by craton-margin sinistral shearing induced by clockwise rotation of the craton coincident with distal emplacement of metamorphic core complexes.Thus,the Cretaceous Jiaodong-type orogenic gold deposits were derived from fertilized mantle lithosphere through such crust-mantle processes within a lithosphere thinning background.
基金The National Natural Science Foundation of China[Grant Nos.42172056,42202048]co-supported this work.
文摘Mafic rocks generated from subduction settings have recorded valuable source information about the mantle source.In this study,we present a comprehensive analysis of zircon U–Pb dating,whole-rock major and trace elements,and Sr–Nd isotopic data for the mafic gabbro located in the Yumen area,on the western part of the Yangtze Block,South China,aiming to constrain the processes of mantle metaso-matism within subduction settings.U–Pb dating results for zircon yield crystallization ages of 800 Ma for type 1 mafic gabbro and 753–734 Ma for type 2 mafic gabbro.Type 1 mafic gabbro exhibits higher SiO_(2)(44.13%–48.93%)and Al_(2)O_(3)content but lower total Fe2O3 and MgO content than type 2 gabbro(SiO_(2):41.02%–43.28%).These gabbros dis-play a high-Mg^(#)signature(52.50–62.81 for type 1,50.89–57.04 for type 2),while they are enriched in significant large-ion lithophile elements(LILEs:Rb,Ba,Sr,K)and depleted in high-field-strength elements(HFSEs:Zr,Hf,Nd,Ta,Ti),which indicates an arc-like element signature.The positive whole-rockεNd(t)values(type 1:3.5–4.4,type 2:5.6–6.3)combined with a narrow range of(^(87)Sr/^(86)Sr)_(i)(type 1:0.7035–0.7043,type 2:0.7035–0.7036)of both gabbro types suggest a depleted lithospheric mantle origin.There-fore,these mafic rocks may derive from a metasomatized spinel lherzolite mantle source(with amphibole)due to the interactions of the deep mantle source and subductionfluid materials.We propose that the long-term metasomatism recorded by mafic gabbro in this study supports the fact that the subduction during the Neoproterozoic contributed to the formation of a metasomatized mantle source in the Yumen area,western Yangtze Block,South China.
基金This study was supported by the Innovation Project of the National Natural Science Foundation of China(Grant No.40221301)the National Natural Science Foundation of China(Grant Nos.40372087 and 40132010)Australian Research Council Grants(to S.Y.O'Reilly).
文摘Detailed in situ LM-ICPMS researches on the composite xenoliths from Yingfengling volcano of Leizhou Peninsula, South China, indicate that most incompatible trace elements of clino- pyroxenes in composite xenoliths decrease spatially from pyroxenites to distal lherzolites, and com- patible elements and HREE increase steeply. The increasing and decreasing rate is distinct for dif- ferent trace elements, which give rise to element chromatographic fractionation within metasomatized lherzolites. The element chromatographic fractionation result actually from the difference in element diffusive rate in melts or fluids percolating through wall-rock lherzolites. Based on element variation profiles in composite xenoliths this study indicates that Sr, Nb, La and Ce have the highest diffusive mobility, MREE-HREE are moderate, and Zr, Hf, Ti, Ga and Sc are very low in most cases. Higher diffusive rates of LREE than HREE would enlarge the REE fractionation of metasomatized peridotites, and lower diffusive rate of Zr, Hf and Ti relative to neighbor REEs with similar incompatibility would cause the relative depletion of these elements in metasomatized peridotites. Trace elements com- monly have a higher diffusive rate in fluid-rich infiltrating melt, which will weaken element chroma- tographic fractionation during the metasomatism. The range of mantle metasomatism caused by sili- cate melt intrusion is very limited, generally within tens of centimeters wide. The width of metasoma- tized wall-rock peridotites near the pyroxenite or horblendite veins was strictly controlled by both melt volume and chemical characteristics.
基金the funding received from the Science and Engineering Research Board (SERB), Govt. of India under GAP 3291funded by Ministry of Earth Science (MoES) with project reference number Mo ES/ P.O. (Seismic) 8 (09)-Geochron/2012。
文摘Hydrous Cr-bearing uvarovite garnets are rare in natural occurrences and belong to the ugrandite series and exist in binary solid solutions with grossular and andradite garnets. Here, we report the occurrence of hydrous uvarovite garnet having Cr_(2)O_(3) upto 19.66 wt% and CaO of 32.12–35.14 wt% in the serpentinized mantle peridotites of Naga Hills Ophiolite(NHO), India. They occur in association with low-Cr diopsides. They are enriched in LILE(Ba, Sr), LREEs, with fractionating LREE-MREE [avg.(La/Sm)_(N) = 2.16] with flat MREE/HREE patterns [avg.(Sm/Yb)_(N) = 0.95]. Raman spectra indicate the presence of hydroxyl(OH^(–)) peaks from 3500 to 3700 cm^(-1). Relative abundances in fluid mobile elements and their close association with clinopyroxenes are suggestive of the formation of uvarovite garnets through low temperature metasomatic alteration of low-Cr diopsides by hydrothermal slab fluids. The high LREE concentration and absence of Eu anomaly in the garnet further attest to alkaline nature of the transporting slab dehydrated fluid rather the involvement of low-p H solution. The chemical characteristics of the hydroxyl bearing uvarovite hosted by the mantle peridotite of NHO deviate from the classical features of uvarovite garnet, and their origin is attributed to the fluid-induced metasomatism of the sub arc mantle wedge in a suprasubduction zone regime.
文摘The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of sub-continental lithospheric mantle(SCLM)sources and parental melt generation.So far,the traditional whole-rock lithophile geochemical data of these basic volcanic rocks have provided important constraints on the nature of SCLM sources.Integrated lithophile element and HSE geochemical data of these basic volcanic rocks also reveal the heterogeneity of the SCLM source,which is principally related to variable metasomatism resulting from previous subduction(s)and post-collisional mantle-crust interactions in an extensional setting.Lithophile element geochemical features suggest that the parental magmas have derived from metasomatized spinel-to garnet-bearing SCLM sources for Eocene and Miocene basic volcanic rocks with subduction signatures whereas originated from spinel-to garnet-bearing SCLM sources for Mio-Pliocene and Plio-Quaternary basaltic volcanic rocks without the subduction signature.Lithophile element and HSE geo-chemistry also reveal that Eocene and Miocene basic vol-canic rocks were affected by more pronounced crustal contamination than the basaltic volcanic rocks of Mio-Pliocene and Quaternary.Furthermore,the integrated lithophile element and HSE compositions of these basic volcanic rocks,together with the regional asymmetric lithospheric delamination model,reveal that the compositional variation(especially due to metasomatism)was significant temporally in the heterogeneity of the SCLM sources from which parental magmas formed during the Cenozoic era.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42302235,41830211,42272100)Fundamental Research Funds for the Central Universities,Sun Yat-sen University(Grant No.23ptpy143)。
文摘It is well established that Cretaceous magmatism in the South China Block(SCB)is related to the Paleo-Pacific subduction.However,the starting time and the associated deep crust-mantle processes are still debatable.Mafic dike swarms carry important information on the deep earth(including mantle)geodynamics and geochemical evolution.In the Jiangnan Orogen(South China).there is no information on whether the Mesozoic magmatic activities in this region are also directly related to the Pacific subduction or not.In this study,we present detailed zircon U-Pb geochronological,wholerock element and Sr-Nd isotope data for Early Cretaceous Tuanshanbei dolerite dikes,and provide new constraints on the condition of the lithospheric mantle and mantle dynamics of the SCB during that time.LA-ICP-MS zircon U-Pb dating suggests that this dolerite erupted in the Early Cretaceous(~145 Ma).All samples have alkaline geochemical affinities with K_(2)O+Na_(2)O=3.11-4.04 wt%,K_(2)O/Na_(2)O=0.50-0.72,and Mg^(#)=62.24-65.13.They are enriched in LILE but depleted in HFSE with higher initial^(87)Sr/^(86)Sr ratio(0.706896-0.714743)and lower ε_(Nd)(t)(-2.61 to-1.67).They have high Nb/U,Nb/La,La/Sm and Rb/Sr,and low La/Nb,La/Ta,Ce/Pb,Ba/Rb,Tb/Yb and Gd/Yb ratios.Such geochemical signatures suggest that the fractional crystallization is obvious but crustal contamination play a negligible role during magmatic evolution.Tuanshanbei dolerite were most likely derived from low-degree(2%-5%)partial melting of a phlogopite-bearing mantle material consisted of~85% spinel peridotite and~15% garnet peridotite previously metasomatized by asthenospherederived fluids/melts with minor subduction-derived fluids/melts.Slab-rollback generally lead to the upwelling of the hot asthenosphere.The upwelling of asthenosphere consuming the lithospheric mantle by thermo-mechanical-chemical erosion.The lithospheric mantle may have partially melted due to the heating by the upwelling asthenosphere and lithospheric extension.It is inferred that the Tuanshanbei dolerite might be associated with the initial slab rollback and corresponding lithospheric extension occurred potentially at ca.145 Ma.
基金the Ministry of Science and Technology of China(Grant No.2006CB403200)National Natural Science Foundation of China(Grant No.49463011,49833002 and 49962002)+2 种基金the open foundation projects of the State Key Laboratory of Environmental Geochemistry(in the years of 1993 and 1995)Engineering Project for Cross-century Qualified Scientific and Technological Personnel of Guizhou Province (2000-2004)Science Foundation of Guizhou Province.
文摘We investigated the weathering-pedogenesis of carbonate rocks and its environmental effects in subtropical regions of China. The investigation demonstrated that the weathering- pedogenesis of carbonate rocks is the process of a joint action of corrosion and illuviation and metasomatism in subtropical region. It is characterized by multi-stage, multi-path and multi-style. With the persisting development of weathering-pedogenesis of carbonate rocks, metasomatic pedogenesis progressively became the main process of the weathering-pedogenesis and the dominant style of formation of minerals. And it proceeds through the whole process of evolution of the weathering-pedogenesis of carbonate rocks. The stage evolution of weathering-pedogenesis of carbonate rocks and the fractionation evolution of newly produced minerals are characterized by obvious vertically zoning structures and the rules of gradation of elements geochemical characteristics in the carbonate rocks weathering profiles. The geochemical process of weathering-pedogenesis of carbonate rocks can be divided into three geochemical evolution stages, i.e., the Ca, Mg-depletion and Si, Al-enrichment stage; the Fe, Mn enrichment stage and the Si-depletion and Al-enrichment stage in the subtropical regions. Consistent with the three geochemical evolution stages, the sequence of formation and evolution of minerals can be divided into the clay mineral stage; the Fe, Mn oxide and the gibbsite stage. The influence of weathering-pedogenesis of carbonate rocks on the chemical forms of heavy elements is mainly affected via newly produced components and minerals in the process of weathering-pedogenesis, e.g., iron oxide minerals and organic matters. The important mechanism for the mobilization, transport and pollution of F and As is affected the selective adsorption and desorption of F and As on the surface of iron oxide minerals in the subtropical karst zones, i.e., the selective adsorption and desorption on mineral surfaces of newly produced minerals in the process of weathering-pedogenesis control the geochemical behavior of elements on the Earth's surface and environmental quality in subtropical regions.
基金This project was supported by the National Nature Sciences Foundation of China Grant No.49172082
文摘Yixunite and damiaoite Were found in a cobalt- and copper-bearing platinum ore vein of a contact metasomatic deposit. The chief ore minerals are bornite, chalcopyrite, magnetite and carrollite. The platinum minerals include moncheite, sperrylite, daomanite, cobalt malanite and cooperite. Yixunite and damiaoite occur as immiscible globules, 1.0 to 2.0 mm in diameter. Yixunite is always in the central part of a globule. It is opaque with metallic lustre, bright white colour and black streak. HM = 5.8; VHN50 = 634 kg/mm2 (573-681 kg/ mm2); insoluble in HCl, HNO3, HF or H3PO4; no cleavage; no magnetism. Density is hard to measure because of small grain size. Calculated density = 18.21 g/cm3. Reflective colour is bright white with a yellowish tint. Isotropic. The mean analytical results (ranges) (%) are: Pt 82.8 (81.8-83.6), In 16.4(15.6-17.1) and total 99.2. The empirical formula (based on 4 atoms) is Pt2.993 In1.007 . The five strongest lines of X-ray diffraction (hkl, d,I) are 111, 2.30 (100); 200, 1.99 (60); 202, 1.411 (40);311, 1.203 (80); 222, 1.151(40). Space group: Pm3m with a =0.3988(3) nm and Z= 1. Damiaoite occurs as single globules or was exsolved from yixunite. Opaque with metallic lustre; bright white colour with black streak; HM = 5.3; VHN50 = 485 kg/mm2 (434-529 kg/mm2); insoluble in HC1, HNO3, HF or H3PO4; cleavage: no; magnetism: no. Density: hard to measure because of small grain size. Calculated density = 10.95 g/ cm3. Reflective colour is bright white with a yellowish tint. Isotropic. The mean analytical results (ranges) (%) are Pt 45.6 (45.4-46.0), In 53.5 (52.4-53.9), total 99.1. The empirical formula (based on 3 atoms) is Pt0.002 In1.998. The six strongest lines of X-ray diffraction (hkl.d,I) are 220,2.25 (100); 311,1.92 (60); 400,1.59 (60); 422,1.299 (80); 440,1.125 (60); 620,1.006 (70). Space group: Fm3m with a = 0.6364 (3) nm and Z = 4.
文摘The mineralogical data materialized in the present work suggest that the previously described skarns at Ad Darb in the literature are actually marble deposits intercalated with schists and phyllites of different compositions. The marble and associated metasediments lie to the west of striking ridges of marbles that are nearly aligned in the NNW-SSE direction. Garnet at Al Madhiq occurrence often occurs in the form of bands conformable with rock foliation (gneissosity and schistosity). It is suggested that the paragenesis “quartz-gar- net-epidote” is developed due to the percolation of some Al-rich solutions along rock foliation of the horn- blende gneiss, i.e. metasomatic garnet. Careful field investigation collaborated with petrographic and SEM studies, suggest the occurrence of another garnetiferous paragenesis associating quartz, mica and feldspar in pegmatites, aplites and quartz veins, i.e. exclusively igneous garnet. Metasomatic garnet in the calc-silicates of Al Madhiq is of grossular composition. It is commonly unzoned but some distinctly to slightly zoned crystals are observed where the core is andradite-rich and the rim is grossular. Metasomatic events responseble for growth of garnet in the calc-silicates led also to formation of epidote post-dating grossular. Hand specimens, microscopic investigation and BSE images prove that this epidote post-dates and replaces gros sular, and even rims it in some instances. Igneous garnet at Al Madhiq (almandine-spessartine) is found only in pegmatites and aplites that are genetically related to alkali granitoids. Sulphides (dominated by pyrite) occur in intemate association with domains rich in grossular and hence these sulphides are more likely hydrothermal indicating reducing conditions for formation of grossular.